Quantum size effect and effects of quantum interference


Quantum size effect and effects of quantum interference in thin films

 

· The priority experimental investigations of the quantum size effect in the conductivity of thin films of bismuth [1], antimony [2], and their alloys [3], tin [4], superconducting tin films [5] had been performed.

 

· First the effects of weak localization and electron interaction in  thin films of bismuth [6] and antimony [7] had been observed. The possibility of separation of the effect of weak localization and the effect of the electron interaction had been shown [8]. It is assumed that the strong spin-orbit electron interaction in bismuth films occurs due to the existence of a potential gradient near the metal surface [9, 10].


1. Yu.F. Komnik, E.I. Bukhshtab, Observation of quantum and classical size effects in thin polycrystalline bismuth films // Soviet Phys. JETP, 54, 63-68 (1968) (in Russian).
2. Yu.F. Komnik, E.I. Bukhshtab, Detection of quantum oscillation of conductivity in thin antimony films // Soviet JETP Letters, 6, 536-540 (1967) (in Russian).
3. E.I. Bukhshtab, Yu.V. Nikitin, and Yu.F. Komnik, Quantum size effect in bismuth–antimony alloy films // Sov. J. Low Temp. Phys., 3, 366 (1977).
4. Yu.F. Komnik, E.I. Buckhshtab, Yu.V. Nikitin and F.I. Chuprinin, C. Sulkowski, Space quantization in thin tin films // Thin Solid Films, 11, 1, 43-51, (1972).
5. Yu.F. Komnik, E.I. Bukhshtab, K.K. Mankovskii, Quantum size effect in superconducting tin films // Soviet Phys. JETP, 57, 1495-1504 (1969) (in Russian).
6. Yu.F. Komnik, E.I. Bukhshtab, A.V. Butenko, and V.V. Andrievskii, Localization effects in bismuth films in a weak magnetic field // Sov. J. Low Temp. Phys., 8, 656 (1982).
7. A.V. Butenko, E.I. Bukhshtab, and Yu.F. Komnik, Localization of electrons in thin antimony films // Sov. J. Low Temp. Phys., 9, 52 (1983).

8. Yu.F. Komnik, E.I. Bukhshtab, A.V. Butenko, V.V. Andrievskii, Separation of the electron localization and interaction in bismuth film resistance // Solid State Communs, 44, 865-867 (1982).

9. Yu.F. Komnik, I.B. Berkutov, V.V. Andrievskii, Spin-orbit interaction in thin bismuth films// Low Temp. Phys., 31, 326 (2005).

10. Yu.F. Komnik, V.V. Andrievskii, I.B. Berkutov, Manifestation of the spin-orbit interaction in bismuth films in a parallel magnetic field // Low Temp. Phys., 33, 79 (2007).

 

Investigation of effects of weak localization and interaction of charge carriers in 2D electron gas

· The electric properties of Si monocrystals with Sb δ-layer of different concentrations have been investigated in complex. The effects of weak localization, electron-electron [1] and electron-phonon interactions [2], effects of happing conductivity and nonlinear effects [3] have been analyzed based on the concept of quantum corrections to conductivity induced by the effects of weak localization and electron interaction in 2D disordered electron system [4].

 

· The effects of weak localization and interaction of charge carriers in a two-dimensional hole gas in Si1-xGex quantum wells of different compositions have been investigated [5-7]. It is shown that in the heterostructures studied splitting of the spin states occurs due to the influence of the perturbing potential (Rashba mechanism) [8,9]. The effect of the electronic overheating in heterostructure Si1-xGex of conductivity was realized. The temperature dependence of the electron-phonon relaxation time was found using analysis of dependence of amplitude attenuation of Shubnikov-de Haas oscillations on temperature and applied electrical field [10, 11, 12].
 

1. V.Yu. Kashirin, Yu.F. Komnik, O.A. Mironov, C.J. Emeleus, and T.E. Whall, Peculiarities of electronic properties of δ (Sb)-layers in epitaxial silicon. II. Effects of weak localization and electron–electron interaction // Low Temp. Phys., 22, 897 (1996).
2. V.Yu. Kashirin, Yu.F. Komnik, A.S. Anopchenko, O.A. Mironov, C.J. Emeleus, and T.E. Whall, Peculiarities in the electron properties of Sb-layers in epitaxial silicon. III. Electron–phonon relaxation // Low Temp. Phys., 23, 303 (1997).
3. Vit.B. Krasovitsky, Yu.F. Komnik, O.A. Mironov, C.J. Emeleus, and T.E. Whall, Peculiarities of electronic properties of Sb-layers in epitaxial silicon. IV. Hopping conductivity and nonlinear effects // Low Temp. Phys., 24, 182 (1998).
4. S. Agan, O.A. Mironov, E.H. C. Parker, T.E. Whall, C.P. Parry, V.Yu. Kashirin, Yu.F. Komnik, Vit.B. Krasovitsky, and C.J. Emeleus, Low-temperature electron transport in Si with an MBE-grown Sb δ-layer// Phys. Rev. B, 63, 075402 (2001).

5. Yu.F. Komnik, V.V. Andrievskii, I.B. Berkutov, S.S. Kryachko, M. Myronov, and T.E. Whall, Quantum effects in hole-type Si/SiGe heterojunctions // Low Temp. Phys., ¹8, 26, 609 (2000).

6. I.B. Berkutov, Yu.F. Komnik, and V.V. Andrievskii., Myronov M., and Leadley D.R.,  Weak localization and charge-carrier interaction effects in a two-dimensional hole gas in a germanium quantum well in a SiGe/Ge/SiGe heterostructure // Low Temp. Phys., 32, 683 (2006).
7.  D.R. Leadley, V.V. Andrievskii, I.B. Berkutov,  Y.F. Komnik,  T. Hackbarth,  O.A. Mironov, Quantum interference effects in p-Si1-xGex quantum wells // J. Low Temp. Phys. 159, 1/2, 230 (2010).
8. V.V. Andrievskii, A.Yu. Rozheshchenko, and Yu.F. Komnik, M. Myronov, O.A. Mironov, and T.E. Whall, Quantum interferometry and spin-orbit effects in a heterostructure with a 2D hole gas in a Si0.2Ge0.8 quantum well // Low Temp. Phys., 29, 318 (2003).
9.  V.V. Andrievskii,  I.B. Berkutov,  T. Hackbarth,  Yu.F. Komnik,  O.A. Mironov,  M. Myronov,  V.I. Litvinov,    T.E. Whall, Quantum interference and spin-splitting effects in Si1-xGex p-type quantum wells // NATO SCIENCE SERIES: II: Mathematics, Physics and Chemistry, 148, 1, 319 (2004).
10. V.V. Andrievskii, I.B. Berkutov, Yu.F. Komnik, O.A. Mironov, and T.E. Whall, Temperature dependence of the electron–phonon scattering time of charge carriers in p-Si/SiGe heterojunctions // Low Temp. Phys., ¹ 12, 26, 890 (2000)
11. Berkutov I.B., Andrievskii V.V., Komnik Y.F., Mironov O.A. Study of overheating effects in SiGe-based p-type heterostructures: Methods of the hole temperature determination // Materialwissenschaft und Werkstofftechnik, 42, 1, 15-18 (2011).
12. Berkutov I.B. Low Temperature Overheating Effect in SiGe p-Type Quantum Wells. Methods of the Hole–Phonon Energy Relaxation Time Determination // Acta Physica Polonica A, 119, 2, 228-230 (2011). .