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Quantum effects in hole-type Si ÕSiGe heterojunctions
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The temperature and magnetic-field dependences of the resistance of Si/SiGe heterojunctions
with hole-type conductivity are investigated. It is shown that the features of these dependences are
due to a manifestation of quantum interference effects — weak localization of the mobile
charge carriers, and the hole–hole interaction in the two-dimensional electron system. On the basis
of an analysis of the quantum interference effects, the temperature dependence of the
dephasing time of the wave function of the charge carrier is determined:tw56.6310212T21 s.
This dependencetw}T21 must be regarded as a manifestation of hole–hole scattering
processes in the two-dimensional electron system. The contribution to the magnetoresistance
from the hole–hole interaction in the Cooper channel is extracted, and the corresponding
interaction constantl0

C'0.5 is found. ©2000 American Institute of Physics.
@S1063-777X~00!01208-1#
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INTRODUCTION

The most important research area in solid state phy
for the past two decades has been the physics of l
dimensional electron systems.1 Progress in semiconducto
technology, in particular, the development of molecul
beam epitaxy, has made it possible to create various s
conductor structures with a two-dimensional electron g
These include metal–insulator–semiconductor~MIS! struc-
tures and inversion layers, delta layers, andn–i –p–i –n su-
perlattices, single heterojunctions, and quantum w
~double heterojunctions!. In all cases the mobile charge ca
riers ~electrons or holes! occupy quantum levels in the co
responding potential well. The motion of the electrons alo
a certain direction~along thez axis! is restricted, while the
motion in thexy plane remains free.

Heterojunctions are contacts between two semicond
tors with slightly different band structures, a situation whi
is achieved by introducing a small amount of isovalent s
stitutional impurity atoms into the lattice. The discontinui
of the bands at the boundary and the internal field that ar
cause bending of the bands near the boundary, and this g
rise to a potential well with discrete energy states. The
verse phenomena in the two-dimensional electron
~Shubnikov–de Haas~SdH! oscillations, the quantum Hal
effect, electronic phase transitions! have become objects o
intensive study in recent times. The observation of SdH
cillations in heterojunctions~e.g., in GaAs/AlGaAs~Ref. 2!
or Si/SiGe@~Ref. 3!# and the quantum Hall effect can occ
only in modern structures with high values of the electr
mobility. In addition, heterojunctions not exhibiting magn
toquantum effects have displayed quantum interference
fects — weak localization of electrons~WL! and electron–
electron interaction~EEI!. These effects have been observe
e.g., in GaAs/AlGaAs heterojunctions4–6 and a SiGe quan
6091063-777X/2000/26(8)/6/$20.00
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tum well.7 As we know, for the manifestation of quantum
interference effects a high degree of disorder is required,
the presence of perceptible elastic scattering of electrons

It is of interest to ascertain whether both magnetoqu
tum and quantum interference effects can be investigated
single object. Let us consider in more detail the conditio
necessary for observation of these effects. The WL and
effects are manifested in a region of magnetic field valu
comparable in scale with the values of the characteri
fields for these effects, and at the same time such that
magnetic lengthLH at these fields remains larger than t
electron mean free pathl. The magnetic lengthLH

5(\c/2eH)1/2, which characterizes the electron wave fun
tion in a magnetic field, is determined only by the magne
field and does not depend on the kinetic properties of
electrons. The lengthLH corresponds to the field value a
which an area 2pLH

2 is threaded by one magnetic flux qua
tum F05hc/2e. Manifestation of quantum interference e
fects is possible under the conditionLH. l . If the opposite
inequality holds,LH, l , then magnetoquantum effects su
as SdH oscillations can come into play. Consequently, th
two types of quantum effects can be manifested at differ
values of the magnetic fields. This assertion is clearly illu
trated by the experimental data presented below for the
Si/SiGe heterojunctions.

1. GENERAL CHARACTERISTICS OF THE SAMPLES

The samples studied were grown1! by molecular-beam
epitaxy ~MBE! from solid Si and Ge sources by means
electron-beam evaporation and are dislocation-free, fu
strained heterostructures with modulated doping. Sample
and B differ by the percent Ge in the Si12xGex channels (x
50.36 and 0.13, respectively! and by their thicknesses~8 nm
and 30 nm! and also by the optimal temperatures of t
© 2000 American Institute of Physics
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610 Low Temp. Phys. 26 (8), August 2000 Komnik et al.
pseudomorphic growth of the Si12xGex channels~450 °C
and 875 °C!. First a silicon buffer layer 300 nm thick wa
grown on then-Si ~001! surface of the substrates. This w
followed by the growth of a Si12xGex channel, an undoped
Si spacer layer 20 nm thick, and an upper, boron-do
(2.531018 cm23) Si epitaxial layer 50 nm thick. The con
ducting region at the Si/SiGe boundary had a ‘‘doub
cross’’ configuration in the form of a narrow strip;0.5 mm
wide, ;4.5 mm long, and with a distance between the t
pairs of narrow potential leads;1.5–2.2 mm.

Table I shows the characteristics of two of the samp
studied ~A and B! as obtained from measurements of t
conductance, magnetoresistance oscillations, and the
coefficient at temperatures of 0.335–2.2 K.

The mobile charge carriers in these samples are ho
but to simplify the terminology we shall by convention ref
to them below as electrons. The value of the resistance
squareRh is given in the table for 2 K, since the minimum o
the resistance for sample A is observed near that temp
ture. The character of the temperature dependence of
resistance of the samples below 4.2 K turns out to be dif
ent. The resistanceRh for sample A as the temperature
lowered passes through a minimum~near 2 K! and then in-
creases somewhat~from 4.5 kV to 4.93 kV at 0.337 K!. This
clearly indicates a manifestation of quantum interference
fects and the appearance of quantum corrections to the
ductance. The resistanceRh for sample B decreases in th
temperature interval~from 2.7 kV to 2.5 kV), i.e., it does
not exhibit pronounced quantum interference effects. App
ently the quantum corrections arise against the backgro
of a temperature-related change in the resistance due to
factors. In such a situation the quantum corrections to
temperature dependence of the resistance cannot be re
extracted. Therefore, for analysis of quantum interference
predominantly use the corrections to the magnetic-field
pendence of the resistance~see Sec. 3!.

Figure 1 shows the dependence of the diagonal and
diagonal~Hall! components of the resistance as a function
the magnetic field for samples B and A at a temperature
;0.33 K. The curves exhibit SdH oscillations and ste
which appear on account of the quantum Hall effect. T
quantum numbersn of the steps and the oscillatory extrem
can be determined from the quantum Hall effect data, sin
as is well known,RH5h/e2n21 for a two-dimensional elec
tron gas in the quantum-Hall-effect regime, i.e.,RH 5 25813
n21 V. The values ofRH found experimentally are in satis
factory agreement. Sample B is more perfect and ha

TABLE I. Characteristics of the samples.

Parameter

Sample

A B

Rh , kV ~at 2 K! 4.5 2.7
nH310211, cm22 6.0 1.9
nSdH310211, cm22 6.7 2.0
mH , cm2 V21 s21 ;2 300 ;12 000
m* /m0 0.243 0.242
D, cm2 s21 14 25
d
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higher electron mobility, and the quantum-Hall-effect ste
are more pronounced for it.

2. ANALYSIS OF THE SHUBNIKOV–DE HAAS
OSCILLATIONS

The SdH oscillations are described by the relation

Drxx

rxx
0 5

C

sinhC
expS 2

pa

vct
D cosS 2p«F

\vc
1F D , ~1!

whereC52p2kT/(\vc); vc5eH/m* is the cyclotron fre-
quency,vct'mH, m is the mobility, a5t/tq , t is the
transport time,tq is the quantum scattering time,«F is the
Fermi energy, reckoned from the bottom of the first quan
zation band, andF is the phase. For a two-dimensional g
the Fermi energy is related to the electron concentration

«F5
p\2n

m*
. ~2!

In relation ~1! @upon substitution of~2!# the unknown
parameters are the effective massm* , the concentrationn,
anda, wheren appears in the last factor and the temperat
appears only in the first factor, which governs t
temperature-related damping of the SdH amplitude~Fig. 2!.
The desired quantitym* can be found by methods which ar
well known in the literature. For example, if we take in
account thatvct'mH and treat the mobility as known from
the kinetic characteristics, then after representing the exp
mental data in the form of ln(Drxx/r0) versus ln(C/
sinh(C))2pa/mH, one can find the value ofm* by fitting
the data for the entire interval of magnets and temperatu
studied to a single straight line. Another method8 can also be
used. By approximating sinh(C) as exp(C)/2, one can repre-

FIG. 1. Magnetic-field dependence of the diagonal componentRxx and off-
diagonal~Hall! componentRxy of the resistance~per square! for samples B
~a! and A ~b! at a temperature of 0.33 K.
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sent the experimental data for the amplitudes of the S
oscillations in the form of linear relations ln(A/T)}C
22p2km*T/(e\H), where C is a temperature-independe
constant. The slope of the straight lines at a fixed magn
field is determined the quantitym* that we seek. If the ef-
fective mass has been determined, then an analysis o
magnetic-field dependence of the amplitude of the SdH
cillations can yield the value ofn. The value of the charge
carrier concentration found from analysis of the period of
SdH oscillations in high fields under the assumption o
quadratic dispersion relation has turned out to be extrem
close to the value found from Hall measurements in l
fields ~see Table I!.

In the band structure of bulk samples of undeform
silicon the two degenerate maxima in the valence band a
point k50 correspond to hole valleys with effective mass
m* 50.5m0 ~heavy holes! and m* 50.15m0 ~light holes!.9

The concentration of light holes is very small compared
that of the heavy holes, but they have a substantially hig
mobility than do the heavy holes. From the SdH oscillatio
we have found for the first time the values of the effect
masses of holes in fully strained pseudomorphic Si/SiGe
erostructures~see Table I!. We see that, because of the com
plete lifting of the degeneracy, only one type of hole appe

FIG. 2. Magnetic-field dependence of the diagonal componentRxx of the
resistance~per square! for sample A at different temperatures.
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— heavy holes with an effective massm* 5(0.24
60.01)m0. It is this value of the effective mass which w
shall use below in an analysis of the quantum correction
the investigated hole-type Si/SiGe heterojunctions.

3. QUANTUM INTERFERENCE EFFECTS

The initial parts of the curves of the resistance of t
samples versus magnetic demonstrate a negative magne
sistance effect~Fig. 3!, which falls off noticeably in ampli-
tude as the temperature is raised. This is just how the qu
tum correction to the resistance from the WL effect beha
in the case of weak spin–orbit scattering. The manifesta
of the WL effect in small fields and the SdH quantum
oscillation effect in strong fields in the same sample is p
sible, as we have said, if there exists a region of magn
fields for which the magnetic lengthLH remains larger than
the electron mean free pathl. An estimate of the mean fre
path l and the characteristic transport elastic time timet can

FIG. 3. Magnetoresistance of sample A in low magnetic fields at vari
temperatures.
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612 Low Temp. Phys. 26 (8), August 2000 Komnik et al.
be made by using the expressionRh
215ne2t/m*

5ne2l /vFm* and the valuevF5(2pn)1/2\/m* for a two-
dimensional electron gas. For samples A and B we h
obtained the following formulas:vF59.783106 cm/s, t
52.86310213 s, and l'2.831026 cm for sample A, and
vF55.373106 cm/s, t51.7310213 s, andl'931026 cm
for sample B. It follows that quantum interference effects c
be observed in sample A in magnetic fields up to 4.5 k
and in sample B up to 0.5 kOe. We devote most of o
attention in the analysis of the quantum interference con
bution to the magnetoresistance for sample A.

In the manifestation of quantum interference effects
the weak localization of electrons10–15 and the electron–
electron interaction12–14,16,17— analysis of the behavior o
the quantum corrections to the conductance in a magn
field yields information about the most important charact
istics of the relaxation and interaction of electrons in t
investigated two-dimensional electron system: the depha
time tw of the electron wave function, its change with tem
perature, and the electron–electron interaction parametel.

3.1. Determination of the temperature dependence of tw

In a two-dimensional electron system in a perpendicu
magnetic field the change in conductance due to the
effect is described in the general case by the expression13,14

DsH
L ~H !5

e2

2p2\
F3

2
f 2S 4eHDtw*

\c D 2
1

2
f 2S 4eHDtw

\c D G , ~3!

where f 2(x)5 ln x1C(1/211/x), C is the logarithmic de-
rivative of theG function, tw

215tw0
2112ts

21 , (tw* )215tw0
21

1(4/3)tso
211(2/3)ts

21 , tw0 being the phase relaxation tim
due to inelastic scattering processes,tso the spin–orbit scat-
tering time, andts the spin–spin scattering time for scatte
ing on magnetic impurities~in the absence of which this tim
can be left out!, andD is the electron diffusion coefficient
The first term in~3! corresponds to the interference of th
wave functions of electrons found in the triplet spin sta
and the second to those in the singlet spin state. In the
of strong spin–orbit scattering (tw@tso) by virtue of the
inequality tw@tw* the change in conductance is determin
by the second term, which corresponds to a positive mag
toresistance. Fortw!tso the magnetoresistance is negativ
and the field dependenceDsH

L (H) is described by the ex
pression

DsH
L ~H !5

e2

2p2\
f 2S 4eHDtw

\c D . ~4!

The functionf 2(x) has the form1
24x

2 at smallx, i.e., in
low magnetic fields, and ln(x/7.12) in high fields. The char
acteristic field corresponding to the region of strong variat
of this function (H0

L5\c/(4eDtw)) is usually of the order
of ;0.1 kOe.

At small values of the magnetoresistance one can use
relation 2DsH

L (H)5@R(H)2R(0)#/(R(H)Rh(0)), and
here the field dependence of2DsH

L (H) reflects the trend of
the magnetoresistance. To fit theDsH

L (H) curves to relation
~3! and thus to obtain the desired value oftw requires knowl-
e
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edge of the electron diffusion coefficientD, which is deter-
mined from the formula for a two-dimensional electron ga
D5(1/2)vF

2t.
Analysis of the experimental curves for the magneto

sistance, replotted in the form of theDsH
L (H) curves in ac-

cordance with~3! showed that the quantum correction due
the WL effect gives a good description of only the initial pa
of theDsH

L (H) curves~here the results of the fitting to rela
tions ~3! and ~4! are no different, since these objects ha
weak spin–orbit scattering!. As the magnetic field increase
at H;0.2 kOe a magnetoresistance component of the op
site sign appears, its amplitude falling off with increasi
temperature in the interval 0.335–2 K. The assumption t
this component is due to the ordinary magnetoresistanc
the form Dr/r}H2 does not hold up, since the change
mobility in this temperature interval is insignificant. We ha
arrived at the conclusion that this component is a quan
correction due to the electron–electron interaction. Sev
forms of this correction are known. Manifestation of th
quantum correction due to the EEI in the diffusion channe
unlikely, since it is due to disruption of the interaction in th
spin subbands as a result of Zeeman splitting and beco
substantial at rather high magnetic fields (H.H0

D5pkT/
(gmB), where g is the Lande´ factor andmB is the Bohr
magneton!. The Maki–Thompson correction, which is due
a fluctuation process, has the same functional form as
localization correction and cannot alter the shape of the m
netoresistance curves~see Fig. 3!. The most likely candidate
is the quantum correction due to the EEI in the Coop
channel. The latter correction is described by t
expression:13,14,17

DsH
C52

e2

2p2\
lH

Cw2~a!; a5
2eDH

pckT
. ~5!

The functionw2 is similar to the functionf 2, but the charac-
teristic field H0

C5pckT/(2eD) is considerably higher than
H0

L , as a rule. In low magnetic fields (H,H0
C) we have

w2(a)'0.3a2, so that one may use this approximation
our case.

As we see from Eq.~5!, the Cooper quantum correctio
varies with temperature asT22, which agrees well with the
variation of the positive component of the magnetores
tance. The sign of the quantum correctionDsH

C ~and, accord-
ingly, the sign of the magnetoresistance! is determined by
the sign of the interaction constantlH

C : in the case of repul-
sion of the quasiparticles one haslH

C.0, giving a positive
magnetoresistance. The interaction constantlH

C is the param-
eter to be extracted from a fitting of the experimental curv
to expression~5!. Here, depending on the form of the curve
expression~3! or ~4! is used, withtw as the adjustable pa
rameter.

As a result of the calculations, in which a good descr
tion of the experiment was achieved, we obtained the te
perature dependence of the electron dephasing timetw ~the
unfilled symbols in Fig. 4!. It is approximated by a power
law functiontw56.6310212T21.

For sample B a negative magnetoresistance is also
served in low fields, but it is very weakly expressed, an
furthermore, as we have mentioned, it can be analyzed
terms of the concepts of quantum interference only in fie
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less than 0.5 kOe. The EEI contribution is not manifested
such fields. On the basis of an analysis of the initial parts
the magnetoresistance curves with the use of relation~4!, we
found thattw has the same dependence for sample B~the
triangles in Fig. 4! as for sample A~of course, the error with
which tw is determined is substantially larger for sample
than for sample A!.

A dependence of the form obtained here,tw}T21, de-
scribes electron–electron scattering processes in t
dimensional systems.17 The electron–electron scattering tim
was calculated in Ref. 18 for the case of collisions involvi
small changes in the energies and momenta of the electr

tee
215

kT

2p\2ndsD
ln~p\ndsD !, ~6!

wherends is the electron density of states. Using in~6! for
the case of sample A the value found forD and the calcu-
lated valuends5m* /(p\2) ~for a 2D electron system!, we
obtain the resulttee57.39310211T21. The values oftee

calculated from~6! differ from the experimental values oftw

by an order of magnitude, but such a disagreement is c
pletely acceptable in view of the estimates used fornds , D,
etc.

3.2. Interaction constant lH
C

The temperature dependence oflH
C ~Fig. 5! for sample A

agrees well with the theoretical prediction:14,17

~lH
C!2152 lnS T

Tc
D . ~7!

In relation ~7! for superconductors~in the case of attraction
lH

C,0), Tc has the well-known form

kTc5kuD expS 1

l0
D , ~8!

FIG. 4. Dephasing time versus temperature; the data were obtained from
weak localization and electron interaction effects for samples A (s) and B
(n).
n
f

o-

ns:

-

wherel0 is the interaction constant in the BCS theory. Ho
ever, as was shown in Ref. 19, even in the case of repul
of the electrons at small distances (lH

C.0) for the EEI ef-
fects, formula~7! remains valid at low magnetic fields, bu
the temperatureTc takes on a formal meaning:

kTc5«F expS 1

l0
CD . ~9!

In Fig. 5 it is easy to determine this characteristic tempe
ture Tc ~it is equal to 3.2 K! and then to find the bare valu
of the interaction constant,l0

C50.5.
The interaction constant found from the quantum corr

tions is usually written in terms of the universal constantF
— the angle-averaged interaction amplitude of the electr
at small momentum transfers. In the presence of screenin
the Coulomb type the constantF takes on values from zero
in the absence of screening~the ‘‘bare’’ interaction! to unity
in the case of complete screening. The functional form oF
is different for the interaction constants found from the te
perature and magnetic-field dependence of the quantum
rections, in the regions of weak and strong magnetic fie
and for weak and strong spin–orbit interaction. In the ca
considered, that of weak spin–orbit interaction, one sho
take l0

C512F for the interaction constant found from th
magnetic-field dependence of the quantum correction. T
F50.5, which is a completely reasonable value.2!

The value we have found forF is confirmed by an analy-
sis of the change in resistance of sample A at temperat
below the resistance minimum. For example, in the reg
0.3–0.8 K the temperature dependence of the resistanc
described well by a straight line in the coordinatesRh

2 ln(T) ~Fig. 6! and can be represented by the temperat
dependence predicted by the theory of WL and EEI:10,12

Ds5
e2

2p2\
aT ln~T!, ~10!

whereaT5p1lT in the case of weak spin–orbit interactio
(tw,ts0) andaT521/2p1lT in the case of strong spin–
orbit interaction (tw.tso), with p being the exponent of the
power-law dependencetw}T2p.

For sample A we obtained a valueaT51.2(60.01).
Since in our caseaT5p1lT andp51, we obtainlT.0.2.
For weak spin–orbit interaction the constantlT in zero or
low magnetic field has the form14,17

the

FIG. 5. Temperature dependence of the interaction parameter obtained
the weak localization and electron interaction effects for sample A.
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lT512
3

2
F. ~11!

From Eq.~11! for lT.0.2 we getF50.53.

CONCLUSION

In summary, systems containing a two-dimensional
of holes and having a certain relationship between the ela
and inelastic relaxation times can manifest effects of w
localization and interaction of holes~in the magnetoresis
tance and in the temperature dependence of the resista!
in low magnetic fields, and magnetoquantum effe
~Shubnikov–de Haas oscillations and the quantum Hall
fect! in high fields. Analysis of the quantum interferen
effects has yielded the value and temperature dependen
the dephasing timetw of the wave function of the mobile
charge carriers in the Si/SiGe heterojunctions studied her
was found that this temperature dependence has the
tw}T21 and describes hole–hole scattering processes
two-dimensional conducting system. Information was a
obtained on the temperature-dependent interaction con
lT

C in the Cooper channel.
The authors thank C. P. Parry, P. J. Phillips, and T

FIG. 6. Temperature dependence of the resistanceRxx of sample A.
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