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The magnetic field dependence of the resistance of bismuth thin films �100–700 Å thick� at low
temperatures �1.5–77 K� are analyzed in the conceptual framework of quantum corrections to
the conductivity due to weak localization and electron interaction effects. It is shown that the
diversity and variability of the magnetoresistance curves in a parallel field upon variations of the
thickness and temperature are due to the fact that the spin-orbit interaction time �so increases
with increasing field, altering the relationship between �so and the phase relaxation time ��. This
result supports the hypothesis that the strong spin-orbit interaction manifested in the surface scat-
tering of electrons is due to the existence of a potential gradient near the metal surface, and a
parallel magnetic field alters the orientation of the spins, accompanied by a decrease of the rate
of spin-orbit processes. © 2007 American Institute of Physics. �DOI: 10.1063/1.2409638�
INTRODUCTION

The experimentally obtained spin-orbit interaction time
�so in thin films indicates that in the elastic scattering of
electrons in them, spin-flip processes occur at a higher rate
than theoretical estimates predict.1–4 A possible explanation
for this is the hypothesis that because the surface scattering
of electrons in thin films is dominant, it is accompanied by
strong spin-orbit interaction.

Merservey and Tedrow5 have analyzed the experimental
data for the spin-orbit relaxation time determined from the
Knight shift, the critical magnetic field of superconducting
films, experiments on the tunneling of spin-polarized elec-
trons into a superconductor, and spin resonance in metals.
Those authors verified that �so

−1 obeys the dependence on the
atomic number Z of the metal predicted in the theory of
Abrikosov and Gor’kov,1 which considers the spin-orbit in-
teraction in the scattering of electrons on impurities. That
theory predicts the relation

�so
−1

�−1 � �aZ�4, �1�

where � is the elastic scattering time, and a=e2 /�c=1/137 is
the fine-structure constant. The ratio �so

−1 /�−1=� is a phenom-
enological parameter introduced by Dyson6 and has the
meaning of the probability of surface scattering with a spin
flip. The authors of Ref. 5 constructed the dependence of
�so

−1 /�−1 on Z for 10 metals and were convinced that, despite
the large error in the determination of �so for the methods
indicated above, relation �1� is functionally satisfied to a first
approximation. Since the data for �so analyzed in Ref. 5 per-
tained to thin films, the authors proceeded from the assump-
tion that surface scattering is dominant in them and took the
time � to be the transit time of an electron between the two
surfaces, �sf =L /vF, where L is the film thickness and vF is
the Fermi velocity. Meanwhile, it turned out that the numeri-
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cal values of �so
−1 / ��sf�−1 were severalfold greater than the

values expected according to Eq. �1� and reached �0.1–0.5
for heavy metals.

The appearance of a theory of weak localization �WL�7–9

and electron interaction �EEI�9–12 effects and the experimen-
tal observations of these effects has made it possible to ob-
tain information about the spin-orbit scattering time from
analysis of the magnetic field dependence of the resistance. It
follows from the theory of the weak localization effect that in
the case of a weak spin-orbit interaction ��so���, where ��

is the relaxation time of the phase of the electron wave func-
tion� the quantum corrections give a negative magnetoresis-
tance. For a strong spin-orbit interaction ��so���� the mag-
netoresistance �MR� is positive, with a logarithmic saturation
at high fields. For �so��� the MR curve passes through a
maximum in the positive region and subsequently becomes
negative �see below for details�. Although the behavior of the
magnetoresistance is determined by the relationship between
�so and the time ��, which at helium temperatures is, as a
rule, greater than �, the shape of the MR curves is indicative
for qualitative assessment.

The first experimental studies of the weak localization
effect in thin films often found manifestations of strong spin-
orbit interaction. For example, for metals with large and in-
termediate values of Z �for films of Bi,13–16 Au,17,18 Pt,19 W,
Ta, Mo, Zr,20 Pd,21 and Sb22� positive magnetoresistance
��so���� was found; for metals with small or intermediate
values of Z �for films of Ag23,18 and Cu24–26 and even the
light Mg27� magnetoresistance curves with a maximum ��so

���� or negative magnetoresistance �for Cu28 and Mg29

films� were found.
The description of the experimental curves with the aid

of the theoretical formulas makes it possible to obtain the
values of �� and �so to rather high accuracy �in cases where
the diffusion coefficient is reliably known�. This fitting pro-
© 2007 American Institute of Physics
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cedure works best for MR curves with a maximum. The
values of �so obtained have turned out to be relatively small:
e.g., in Cu films the following values of �so have been ob-
tained: 8.4�10−12 s,24 6.8�10−12 s,30 and, according to Ref.
28, 10−12 s��so�10−11 s; in Ag films �so=2�10−11 s;24,18

and, in Mg films �so=1�10−10 s.27 The values of �� and
�so have also been found successfully in the case of posi-
tive MR: in Au films �so=8.2�10−13 s;18 in Sb films
�so=5�10−13 s;22,31 in Bi films �so=3�10−13 s,14 �1–5�
�10−13 s,16 �4–8��10−13 s;30 and, in films of the refractory
metals W, Ta, Mo, and Zr �so��3–8��10−13 s.20 From pa-
pers in which the values of the elastic relaxation time � are
given, one can estimate the parameter �. For example, ac-
cording to Ref. 18, for Ag and Au films ��0.015 and �
�0.25, respectively, which exceed the estimates from for-
mula �1� by a factor of 3-4; in Sb films ��0.02,31 which is 3
times greater than the estimate from formula �1�, etc.

Lindelof and Wang32 confirmed the previous assumption
that a high probability of spin-orbit interaction is inherent to
surface scattering. Assuming that the value of �so observed in
Mg films is a sum of bulk and surface scattering contribu-
tions,

�so
−1 = ��so

b �−1 + ��so
sf �−1 = ��b/�b� + ��sf/�sf� ,

where �b and �sf are the probabilities of spin flip during bulk
and surface scattering, and �b and �sf are the corresponding
elastic times, those authors showed that �sf is greater than �b

by one or two orders of magnitude �depending on the type of
substrate�. Similarly, in Ref. 33 it was found for Au films that
�sf �2�10−2 and �b�4�10−4, i.e., �sf ��b.

In Ref. 34 the behavior of the time �so with changing
thickness L was investigated for bismuth films and it was
found that �so tends to increase with increasing L. This attests
to the fact that strong spin-orbit interaction in bismuth films
is due to the surface scattering contribution, the role of which
decreases with increasing film thickness.

In Ref. 34 it was conjectured that the enhancement of the
spin-orbit interaction for surface scattering of electrons is
due to a gradient of the internal crystalline potential near the
metal surface, the existence of which follows from the
boundary conditions for the electron wave function. Since in
an electron’s motion towards the surface and reflection from
it there is no invariance associated with spin symmetry upon
time inversion, the description of the process of reflection of
an electron from the surface should include a term due to
spin-orbit interaction. We note that this situation is similar to
the problem of the asymmetry of the potential well formed in
a semiconductor heterojunction, which was considered by
Rashba and co-workers.35,36

It follows from the Hamiltonian of the spin-orbit
interaction37

Hso =
h

�2m0c�2 ��V�r� � p�	̂ �2�

�where V�r� is the potential, p is the electron quasimomen-
tum, and 	̂ is a Pauli matrix� that the spin of an electron near
the surface �or the axis of precession of the spin� turns par-
allel to the surface of the crystal. A magnetic field directed
parallel to the surface of the film is taken into account by
means of a term describing the Zeeman interaction,
Hz = g*
BB . �3�

The combined influence of the spin-orbit and Zeeman
interactions can alter the intensity of the spin-orbit scattering
in the surface reflection of electrons.

The goal of the experiments reported here was to check
the hypothesis of a possible influence of a parallel magnetic
field on the characteristics of the spin-orbit scattering in bis-
muth thin films.

I. EXPERIMENT

A. Shape of the magnetoresistance curves

The experimental curves of the resistance of bismuth
thin films as functions of the strength of a parallel magnetic
field were obtained on the same four series of bismuth thin-
film samples as in Ref. 34, where the behavior of the mag-
netoresistance in a perpendicular magnetic field was investi-
gated. In each series of films there were three �or four�
different thicknesses, in the interval 100–700 Å. The experi-
mental technique is described in Ref. 34.

In a perpendicular magnetic field the presence of strong
spin-orbit interaction in the films was manifested by a posi-
tive sign of the MR and the logarithmic saturation of the MR
curves at high magnetic fields that is characteristic of the
weak localization effect. With increasing film thickness and
increasing temperature, this anomaly decreases in amplitude
�see Fig. 1 in Ref. 34�.

In a parallel magnetic field one observes an extraordi-
narily diverse and mutable picture in recording the MR of
bismuth films. The shape of the curves and the sign of the
MR change with the film thickness, temperature, and, so
some degree, under the influence of changes of the structural
characteristics.

For films of thickness 150–250 Å at temperatures of
4.2 K and below one observes positive MR, for which the
shape of the MR curves is characteristic of the weak local-
ization effect. When the temperature is raised to �15–20 K
in the region of fields above 0.5 T a downward bend appears
on the MR curves, and in the interval 20–77 K the MR
becomes negative and decreases in amplitude with increasing
temperature.

For films of thickness 250–400 Å, one observes MR
curves with a maximum even at helium temperatures, the
amplitude of the maximum decreasing noticeably in the tem-
perature interval 1.6–4.2 K �Fig. 1�. After the maximum the
MR curves pass into the negative region. With increasing
temperature a completely negative MR is formed �Fig. 2�.
The temperature of the transition to a completely negative
MR tends to decrease with increasing film thickness. When
the temperature is raised to 77 K the value of the negative
MR decreases noticeably.

In samples with more perfect structure the formation of
the maximum on the magnetic field scale is delayed, and the
transition of the MR to the negative region is not observed in
the whole magnetic field interval investigated.

Films greater than 400 Å thick at temperatures of 4.2 K
and below are also characterized by positive MR with a
maximum or saturation �Fig. 3�. With increasing tempera-



Low Temp. Phys. 33 �1�, January 2007 Komnik et al. 81
ture, however, negative MR �or a tendency toward its forma-
tion� is manifested only at temperatures of 10–20 K, while
at higher temperatures the MR is positive.

At room temperatures the MR of the bismuth films of all
thicknesses is of very low amplitude and approximately qua-
dratic in magnetic field.

B. Qualitative explanation

The MR curves are shaped by the influence of a number
of factors: the contribution of the classical �Drude� variation
of the resistance in magnetic field, of the type 
2B2 �
 is the
mobility�, a possible contribution of the classical size effect,
and the contributions of the weak localization and electron
interaction effects. The contribution of the classical MR in-
creases somewhat in magnitude with increasing film thick-
ness owing to growth of 
 and decreases with increasing
temperature because of a decline in 
, but these changes of

 are slight, and, moreover, the classical change of the resis-
tance gives only a positive MR. The classical size effect in
thin films in a parallel magnetic field, predicted in Ref. 38,
can be realized only under the condition l�L, where l is the
electron mean free path. The hallmarks of the classical size
effect, in the form a weak decrease of the resistance in the

FIG. 1. Magnetic field dependence of the change of the resistance �� of a
sample 320 Å thick at T �K�: 1.6 �1�, 2.7 �2�, 3.2 �3�, 4.2 �4�.

FIG. 2. Magnetic field dependence of the change of the resistance �� of a
sample 380 Å thick at T �K�: 2 �1�, 4.2 �2�, 14 �3�, 20 �4�, 77 �5�.
high magnetic field region, were observed in Ref. 39 in con-
densed Ag and Au films of micron thickness in magnetic
fields of tens of kilooersteds. In our case the classical size
effect is unlikely to be reflected in the change of resistance in
magnetic field.

It should be supposed that complex changes of the shape
of the MR curves for bismuth films in a parallel magnetic
field with increasing film thickness and temperature are due
mainly to the contribution of quantum interference effects—
weak localization and electron interaction. The interaction
effect does not lead to a change of sign of the MR with
increasing temperature. The governing role in the transfor-
mation of the MR curves of bismuth films is played by the
weak localization effect. The change in sign of the MR in the
weak localization effect occurs upon transition from strong
to weak spin-orbit interaction.

The corrections to the conductivity of a thin film due to
the weak localization of electrons vary according to the fol-
lowing relations:

— in a perpendicular magnetic field9

�	B�

WL =
e2

2�2�
�3

2
f2	4eBD

h
��

*
 −
1

2
f2	4eBD

h
��
� , �4�

— in a parallel magnetic field40

�	B�

WL =
e2

2�2�
�3

2
ln	L2e2B2D

3�2 ��
* + 1


−
1

2
ln	L2e2B2D

3�2 ��+1
� , �5�

where D is the diffusion coefficient, f2�x�=ln�x�+�1/x
+1/2�,  is the logarithmic derivative of the � function, �� is
the phase relaxation time, and ��

* is the time modified by the
spin-orbit interaction: ���

*�−1=��
−1+4/3�so

−1, where �so is the
relaxation time of the spin due to the spin-orbit interaction in
the elastic scattering of electrons. Equations �4� and �5� cor-
respond to the diffusion regime, which is realized in the ob-
jects under study �l�L�, where L�= �D���1/2 is the phase
relaxation length, and l�LH

2 /L, where LH= �� /eB�1/2 is the
magnetic length�. For the quantum correction to the conduc-

FIG. 3. Magnetic field dependence of the change of the resistance �� of a
sample of thickness �Å�: 400 �1�, 480 �2�, 520 �3� at a temperature of 4.2 K.
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tivity of a film in an in-plane magnetic field in the diffusion
regime an expression analogous to Eq. �5� was obtained in
Ref. 41; in addition, in that paper solutions for the interme-
diate and ballistic regimes are also given. According to the
analysis in Ref. 42, for bismuth films of small thickness it is
sufficient to use expressions �4� and �5�.

Two terms in formulas �4� and �5� reflect the spin state of
electrons on conjugate trajectories forming the interference
contribution to the conductivity. The first term corresponds
to a triplet spin state of the electrons �total spin j=1�, which
is characterized by three possible values of the projections of
the total moment �M =0, ±1�. The latter, as a result of the
spin-orbit scattering varies in a random manner. The spin-
orbit elastic scattering suppresses the coherence of the elec-
tronic states in the triplet channel. The second term corre-
sponds to a singlet spin state of the electrons �j=0�, which is
damped only on account of inelastic scattering processes.
Remarkably, the interference term corresponding to the sin-
glet state of the electrons enters with a minus sign and leads
to a change of the correction to the conductivity opposite to
that of the triplet term.

In the case of a weak spin-orbit interaction ��so����, ��

and ��
* are close in value, and formulas �4� and �5� give

negative magnetoresistance. For a strong spin-orbit interac-
tion ��so���� the value of 	B

WL is governed by the second
term in Eqs. �4� and �5�, which leads to an anomalous posi-
tive magnetoresistance. If �so is less than but close to ��, then
�� will be more than twice as large as ��

* , and so initially,
with increasing field, one observes positive MR owing to the
singlet term, but then, on account of the triplet term, which
has a coefficient of 3 /2, the MR becomes negative. The po-
sition of the resulting maximum of �	B on the magnetic field
scale is close to the value of the characteristic field B0

WL

=�c /4eD��.
In analyzing the weak localization effect in bismuth thin

films in a perpendicular magnetic field it was found34 that at
helium temperatures the time �so is an order of magnitude �or
more� shorter than ��. This was determined by observation of
positive MR at all temperatures and for films of all the thick-
nesses studied. With increasing film thickness one observes a
tendency for the value of �so to increase while �� remains
practically unchanged. As a result, the difference of these
times decreases. The difference of the times �� and �so also
decreases with increasing temperature, on account of the de-
crease of ��,

The picture described above for the transformation of the
MR curves in a parallel field can be explained qualitatively
if it is assumed that with increasing magnetic field strength
the spin relaxation time �so decreases. Indeed, only in the
case when the times �� and �so become close will a MR
curve with a maximum be formed, and when the inequality
�so��� is realized the MR will be negative. This crossover
should occur more easily when the initial values of �� and �so

are already close, i.e., in thicker films or at higher tempera-
tures. In more perfect films the time �� is somewhat longer
than in otherwise similar samples �see Fig. 4 in Ref. 34�, and
therefore the formation of a maximum of the MR is delayed
on the thickness and temperature scales.
The above-described variations of the shape of the
parallel-field MR curves upon variation of the temperature
and film thickness are in complete accordance with our
stated assumption.

II. RESULTS OF CALCULATIONS

If it is assumed that the observed changes of the resis-
tance of the samples in magnetic field are due to magnetic-
field-induced changes of the classical �Drude� contribution
and quantum corrections to the conductivity,

	�B� = 	0
D + �	D�B� + �	WL�B� + �	EEI, �6�

to determine �	WL�B� one should separate these contribu-
tions. The transition from the “total correction to the resis-
tance” to the correction to the conductivity is made with the
use of the relation

− �	 = ���B� − ��0��/��B���0� ,

where � is the “resistance per square” of the film. To separate
the Drude contribution, as in Ref. 34, we use the procedure
proposed in Ref. 43, namely: in the logarithmic saturation
region of the functions �4� and �5�, find the values of the
mobility 
 such that the function 	D�B�=	0

D / �1+
2B2� de-
scribing the magnetic-field-induced change of the classical
contribution agrees with the experimental dependence 	�B�.
The mobility values obtained are in good agreement with the
values of the averaged mobility of the electrons and holes
calculated from the system of equations for the conductivity,
magnetoresistance, and Hall coefficient of bismuth
films.44–46 The difference between the experimental curve
	�B� and the “Drude” curve 	0+�	D�B� is the sum of the
corrections �	WL�B�+�	EEI. The correction �	EEI due to
the electron interaction effect is independent of magnetic
field and is automatically eliminated under the requirement
that the magnetic-field-induced change of the conductivity
due to the localization correction vanish at B=0. The in-
ferred magnetic field dependence of the localized correction
�	WL�B� is compared with the theoretical formulas �4� and
�5�. In such a procedure the coincidences of the times �� and
�so are the fitting parameters. The diffusion coefficients were
calculated, as in Ref. 34, by the Einstein formula from the
conductivity and electron density of states on the Fermi sur-
face, with the changes of the charge carrier density and
Fermi energy with decreasing thickness of the bismuth film
taken into account.45

The values of �� and �so obtained in the analysis of the
weak localization effect in a perpendicular magnetic field on
the whole reproduce the results of the previous
calculations.34 These values were used as the starting values
in the search for values of the times �� and �so for description
of the curves �	WL�B�� in a parallel magnetic field. We as-
sumed that these relaxation characteristics cannot change ap-
preciably when the orientation of the magnetic field changes.

The influence of a parallel magnetic field on the charac-
teristics of spin-orbit scattering in bismuth thin films was
manifested in an extremely peculiar but completely unam-
biguous way. It turned out that the �	WL�B� curves cannot be
described by a pair of magnetic-field-independent times ��

and �so. It is impossible to describe the experimental curves
by formula �5� obtained on the assumption of magnetic-field-
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independent times �� and �so. In the motion along the experi-
mental curve each successive point requires changing the
value of at least one of these times. Since it seemed unlikely
for �� to be influenced by a weak parallel magnetic field,47,48

we assumed that it remains unchanged. It was found that in
the low-field region the values of �so calculated according to
formula �5� increase. Let us illustrate this by a transparent
construction �Fig. 4�. If the values �� and �so known from
experiments in a perpendicular field are used, then the calcu-
lated curve describes only a very short initial segment of the
�	WL�B� curve, and then it moves away sharply into the
region of negative �	WL values �Fig. 4, curve 1�. Increasing
the values of �so allows one to obtain values of �	WL on
successive small segments of the �	WL�B� curve all the way
up to B�0.5 T �Fig. 4, curves 2-6�. However, at higher
fields it is necessary in some cases to subsequently decrease
�so to get the experimental values of �	WL. We note that
changing the initial values of �� only degrades the computa-
tional situation.

Thus only values of �so that vary with magnetic field
allow one to describe the experimental �	WL�B� curves with
the aid of formula �5�. Examples of the curves obtained for
the time �so as a function of the parallel magnetic field are
illustrated in Fig. 5. An important feature of these curves is
that �so increases strongly at fields up to B�0.3–0.5 T and
then remains constant or even decreases. It can be noted in
Fig. 5 that with increasing temperature, as the inequality
kBT�g*
BB begins to hold and becomes stronger, the rise of
�so becomes less.

The physical reason for the growth of �so in a parallel
magnetic field consists in the following. In the absence of
magnetic field the spins of the electrons near the surface
become oriented parallel to the surface under the influence of
the potential gradient �see formula �2�� but with a random
distribution in the azimuthal direction. The spin relaxation is
of a diffusional character and in the general case must be
described by the D’yakonov–Perel’ mechanism,49 which is
characterized by a spin relaxation rate proportional to 2/� .

FIG. 4. Illustration of the description of the magnetic-field-induced change
of the conductivity according to Eq. �5� for a sample 380 Å thick at a
temperature of 4.2 K and for values of the phase relaxation time ��=4.6
�10−12 s and spin-orbit interaction time �so �s�: 2�10−13 �1�, 7�10−13 �2�,
1.1�10−12 �3�, 1.3�10−12 �4�, 1.52�10−12 �5�, and 1.67�10−12 �6�; the
experimental dependence is shown by a solid curve �——�.
so
We note that in Refs. 50 and 51 it was shown that in narrow
semiconductor quantum wells, in which spin splitting occurs,
under weak localization conditions the rate of electron spin
relaxation by the D’yakonov–Perel’ mechanism decreases.
As a result, there is a certain level of spin relaxation rate in
the absence of magnetic field.

Radical changes of the spin relaxation,47 and, in some
cases, of the phase relaxation as well,52—occur when a mag-
netic field is turned on. The main result of Ref. 52 �see also
53� pertains to the influence on the phase relaxation process
by a magnetic field applied parallel to a two-dimensional
layer of free carriers in a quantum well in a semiconductor
with the zinc blende structure. It was shown that the Zeeman
interaction leads to additional dephasing of the electron wave
function which can be described by a temperature-
independent time �H�B�. From the relation 1/���B�
=1/���0�+1/�H�B� one gets the expression ���B� /���0�
= �1+���0� /�H�B��−1, which characterizes the influence of
magnetic field on ��. This influence is appreciable under the
condition g*
BB�� / ��so���−1/2. In our objects in fields
B�1 T the inequality is strongly the opposite. If one
nevertheless uses the hypothetical expression 1/�H

=�so�0�g*2
B
2B2 /�2, as was done in the experimental paper,54

then estimates show that the change of �� in a field B=1 T is
only 20%. Thus our assumption that the time �� remains
unchanged with increasing magnetic field is admissible.

A magnetic field parallel to the surface tends to order the
orientation of the electron spins interacting with the surface.
In a system with an ordered polarization of spins the charac-
ter of the spin relaxation is no longer diffusional, and it dif-
fers from the D’yakonov–Perel’ mechanism.47 In Ref. 47 �us-
ing as an example a quantum well in a semiconductor of the
GaAs type� the evolution of the spin density after the cre-
ation of local polarization of the spins in the system was
calculated as a function of the coordinate and time at differ-
ent values of the parallel magnetic field. The calculations
showed that the turning on of even a weak magnetic field
�g*
BB�� /�so� results in a manyfold decrease of the spin
density S�r , t� �with units of 1 / �2�D�so��, which character-
izes the distribution of the spin polarization in space and
time. This is indicative of an increase of �so under the influ-
ence of a parallel magnetic field, or, more precisely, it attests

FIG. 5. Magnetic field dependence of the spin-orbit interaction time �so for
a sample 380 Å thick at T �K�: 2 �1�, 4.2 �2�, 20 �3�.
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to the appearance in the disordered spin system of some new
evolutionary mechanism of spin relaxation upon partial �or
total� polarization of the spin system in place of the
D’yakonov–Perel’ diffusion mechanism.

Experimental observations of an increase of the time �so

under conditions of spin-orbit interaction by the Rashba
mechanism in quantum well in semiconductors under the
influence of a parallel magnetic field were made in Refs. 48
and 54. In Ref. 48 an analysis of the recording of the MR of
an InP/ InGaAs/ InP quantum well in tilted magnetic fields
showed that the manifestation of spin-orbit interaction in the
form of a maximum of the MR at low fields is determined by
the normal component of the field; here �� is independent of
magnetic field, while �so increases with increasing parallel
component of the magnetic field. The authors of Ref. 54
recorded the resistance of an InAlAs/ InGaAs/ InAlAs quan-
tum well as a function of the value of the perpendicular
magnetic field B� for different values of the parallel mag-
netic field B�, and from an analysis of quantum corrections to
the conductivity the changes of �� and �so as functions of B�

were determined. In Refs. 48 and 54 it was found that the
change of �so occurs in accordance with the hypothetical de-
pendence �so�1+�B2. The analogy between our problem of
the spin-orbital processes near the surface in bismuth films
and processes occurring in a semiconductor quantum well is
only very rough. Moreover, in our case the rapid growth of
�so occurs at relatively low fields, and because of the small-
ness of the interval our construction procedure �see Fig. 5�
does not permit determination of the functional form of the
rise of �so with field.

III. ROLE OF THE QUANTUM INTERACTION CORRECTION
TO THE MAGNETORESISTANCE

The interaction correction to the conductivity is indepen-
dent of magnetic field �in the region where Zeeman splitting
is absent�, but it has a temperature dependence of the
form9–11

�	EEI�T� =
e2

2�2�
� ln	 kBT�

�

 , �7�

where � is the interaction constant.
In the separation of the Drude contribution and quantum

corrections to the conductivity, according to Eq. �6�, the cor-
rection �	EEI is determined by the shift of the reference
point of the conductivity necessary in order to satisfy the
requirement that the magnetic-field-induced change of the
conductivity due to the localization correction must vanish at
B=0. The value of this shift agrees in order of magnitude
with the estimate from formula �7� and varies strictly by a
ln T law �for estimation we used the value �=0.9, which
follows from the temperature dependence of the quantum
correction to the conductivity of bismuth films at a high
magnetic field �B�1.5 T� in which the weak-localization
contribution is destroyed55�.

Meanwhile, in a magnetic field, dependence of the resis-
tance on the field can appear due to the interaction correction
�	EEI. As was shown in Ref. 56, when the conductivity ten-
sor is inverted to the magnetoresistance tensor, the correction
to the resistance acquires a factor of −�1−�c

2�2��, where
� =eB /m* is the cyclotron frequency. This transformation
c
takes into account the fact that the correction to the Hall
conductivity can be neglected in the diffusion regime. The
change of the resistance due to �	EEI is described by the
expression57,58

�xx�B,T� =
1

	0
−

1

	0
2 �1 − ��c��2��	xx

EEI�T� . �8�

In Eq. �7� the argument of the logarithm kBT� /��1 and,
hence, the interaction correction �	EEI is negative and can
lead to negative quadratic magnetoresistance. However,
since ��c��2�1 in our objects, the magnetic-field-induced
change of the resistance is insignificant. Consequently, the
interaction correction determines only a shift of the magne-
toresistance curve to lower values of the resistance in zero
field, and it is not reflected in the ���B� curves in Figs. 1–3.
The absolute value of the change of resistance due to the
interaction correction at helium temperatures is of the same
order as the characteristic change of the resistance under the
influence of the weak localization effect in the magnetic field
interval shown. With increasing temperature, both correc-
tions decrease, and at room temperature the weak positive
magnetoresistance is the classical �Drude� magnetic-field-
induced change of the resistance under conditions where the
weak localization and electron interaction effects are absent.

CONCLUSION

The quantum corrections to the conductivity due to the
weak localization effect in bismuth thin films in a parallel
magnetic field are actually manifested only at helium tem-
peratures and are responsible for the maximum of the mag-
netoresistance, which falls off rapidly in amplitude as the
temperature increases in the interval 1.5–10 K �see Figs. 1
and 2�. Analysis of the magnetic-field-induced change of the
localization correction showed that with increasing strength
of the parallel magnetic field in the interval 0–0.5 T the
spin-orbit interaction time �so grows. This result should be
interpreted as a transition from a diffusional character of the
spin relaxation according to the D’yakonov-Perel’ mecha-
nism to a different �evolutionary� character of the spin relax-
ation in a system with an ordered orientation of the spins that
arises under the influence of a parallel magnetic field. Such
an interpretation supports the assumption that the surface
scattering that is dominant in thin films is characterized by
strong spin-orbit interaction due to the existence of a gradi-
ent of the internal potential near the surface.
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