On totally geodesic unit vector fields.

Yampolsky A.

Let T3 M be a unit tangent bundle of M endowed with Sasaki metric
[8]. If £ is a unit vector field on M, then one may consider £ as a mapping
&: M — Ty M. The image £(M) is a submanifold transverse to fibers in 77 M
with metric induced from T3 M. Conversely, a manifold transverse to fibers
in the (unit) tangent bundle can be given as image of some (unit) vector
field on the base manifold [1]. Thus, a transverse to fibers submanifold in
Ty M™ always can be locally represented by a unit vector field.

A unit vector field ¢ is said to be minimal if (M) is a minimal subman-
ifold in Ty M. A unit vector field on S tangent to fibers of Hopf fibration

53 %L §2is a unique one with globally minimal volume [4]. This result fails
in higher dimensions. A lower volume has a vector field with one singular
point. This field is a stereographic projection inverse image of parallel vec-
tor field on E™ [7]. The lowest volume has the North-South vector field with
two singular points [3]. In [10] the author found the second fundamental
form of £(M) and presented some examples of vector fields with constant
mean curvature. This result is a key to solve a problem on totally geodesic
unit vector fields on a given Riemannian manifold. In [11] this question was
treated in a case of 2-manifolds of constant curvature and in [13] was found
an example of totally geodesic unit vector field on a surface of revolution
with non-constant but sign-preserving Gaussian curvature.

In this note we drive the differential equation in covariant derivatives on
a unit vector field such that its solution provides a totally geodesic property
for £(M™)

Let &€ be a fixed unit vector field on Riemannian manifold M"™. Denote
by A¢ : T,M™ — fql a point-wise linear operator, acting as

AeX = Vx¢

In case of integrable distribution ¢+, the operator Ag is symmetric and
is known as Wiengarten or a shape operator for each hypersurface of the
foliation.

In general, A¢ is not symmetric, but formally preserves the Codazzi
equation. Namely, a covariant derivative of A¢ is defined by

(VxA )Y = VxVyé  Vy,vé. (1)



Then for the curvature operator of M™ we can write down the non-holonomic
Codazzi equation

R(X,Y)E = (VyAd)X  (VxA)Y.

Remark, that the right hand side is, up to constant, a skew symmetric part
of covariant derivative of Ae.
Introduce a symmetric tensor field

HQSSS(X,Y) = [(VyAg)X + (VxAg)Y], (2)
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which is a symmetric part of covariant derivative of A¢. The trace
n
Z Hesse(es, e;) == AE,
i=1

where ey, ... e, is an orthonormal frame, is known as rough Laplacian [2] of
the field . Therefore, one can treat the tensor field (2) as a rough Hessian
of the field. A vector field is called harmonic, if it is a critical point of energy
functional of mapping £ : M™ — Ty M™. Up to an additive constant, this
functional is a total bending of a unit vector field [9] and the unit vector
field is harmonic if and only if A = |VE[2E, where |[VE|? = Y1 [V, &2
with respect to orthonormal frame ey, ... e, [9].
Introduce a tensor field

Hme(X,Y) = £ [R(E, VXY + R(E, TyE)X], )

which is a symmetric part of tensor field R(§, Vx&)Y. The trace

n
AHg = Z ng(ei, 62')
1=1

is responsible for harmonicity of mapping £ : M™ — Ty M™. Precisely, a
harmonic unit vector field £ defines a harmonic map & : M™ — T7M™ if and
only if AHy = 0 [5]. From this viewpoint, it is natural to call the tensor
field (3) as harmonicity tensor of the field &.

Definition 1 A unit vector field & on Riemannian manifold M™ is called
totally geodesic if the image of (local) imbedding & : M™ — Ty M™ is totally
geodesic submanifold in the unit tangent bundle T1 M™ with Sasaki metric.

Now we can state a basic condition under which a given unit vector field &
generates a totally geodesic submanifold in 77 M™.



Proposition 1 Let M™ be Riemannian manifold and Ty M™ its unit tangent
bundle with Sasaki metric. Let & a smooth (local) unit vector field on M™.
The vector field £ generates a totally geodesic submanifold E(M™) C Ty M™
if and only if £ satisfies

Hesse(X,Y) = AcHme(X,Y) + (Ae X, AcY) €
for all (local) vector fields X and'Y on M™.
Proof. The differential of mapping & : M™ — TM™ is acting as
EX =X+ (Vx€)" = X" (4eX)", (4)

where V means Levi-Civita connection on M™ and the lifts are considered
to points of {(M™). It is well known that if £ is a unit vector field on
M™, then the vertical lift £V is a unit normal vector field on a hypersurface
TiM™ C TM™. Since & is of unit length, £, X 1 &Y and hence, in fact,
& TM™ — T (T M™).
Denote by Aé : qu — T,M" a formal adjoint operator
(AeX,Y) = (X, ALY),
Then for each Z € qu the vector field
Z = Az + 2v

is normal to {(M™).
Evidently, £(M™) is totally geodesic in Ty M™ if and only if at each point
qgeM™” 3 3
((Ve.x &Y, Z)) =0

vyhere V is the Levi-Civita connection of Sasaki metric on TM™. To calculate
Ve x &Y, use formulas [6], namely,

VY= (VxY)h L(RX, Y)Y, VxoYh=L(R(E X)),

v v v 1 h v v (5)

A direct calculation yields
Vex &Y = (V¥ + SR VXY + 3RETyOX) +
(vxvyg %R(X, Y)g)”.
Therefore, £(M™) is totally geodesic if and only if
(VxVy¢ %R(X, Y)E Z)y+

(VXY + GRIEVXEY + REVYOX, ALZ) =0



or equivalently

(VxVye %R(X, Y)e+ A VXY+%R(£,VX£)Y+%R(£, Vy6)X), Z) = 0.
Since Z € &1, we can rewrite the letter equation as

VxVyE  SROY)E+ A VY + SR(E VXY + SR(E VrE)X) = pt,
where p is some function. Finally, remark that

R(X,Y)§ =VxVyl VyVx{ Vixyg

and after substitution we get

% VxVy&+VyVx{ Veeré Ve,xé)+
S A REVXOY + R(E VyE)X) = pé.
Taking into account (1), (2) and (3) we can write
Hess¢(X,Y)+ AcHme(X,Y) = p&.

Multiplying the equation above by &, we can find easily p = <A§X , A5Y>.
So, finally

H688§(X, Y) = Agng(X, Y) + <A§X, A5Y> f

which completes the proof.
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