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During the twentieth century, Morse theory

should have developed in three main stages:

1. Critical point theory for finite-dimensional

manifolds.

2. Morse theory for ordinary differential equa-

tions (geodesics).

3. Morse theory for partial differential equa-

tions (minimal surfaces).

(However, event transpired somewhat differ-

ently.)



The simplest case of Morse theory for finite-

dimensional manifolds is expressed by the so-

called mountain pass lemma.

It states: Suppose that all the critical points

of a smooth proper function f : R2 → [0,∞)

are nondegenerate. If f has two local minima

(lake bottoms), it must also have at least one

critical point of index one (mountain pass).



Idea behind the proof of the mountain pass

lemma: We consider the gradient of f ,

∇f defined by 〈∇f, v〉 = df(v),

for all tangent vectors v. The vector field X =

−∇f has a corresponding one-parameter group

{φt : t ∈ R} of local diffeomorphisms of R2.

One can try to find local minima by the method

of steepest descent, that is, by following flow-

lines p 7→ φt(p) for the vector field X.



Suppose now that p and q are distinct local

minima for f , and consider

F = {γ : [0,1] → R2|γ(0) = p, γ(1) = q}.

Since R2 is connected there is at least one el-

ement γ ∈ F. Applying φt to this path gives a

collection of paths

φt ◦ γ : [0,1] −→ R.

Take a sequence ti → ∞, and let φti ◦ γ(si) be

a point in the image φti ◦ γ([0,1]) at which f

assumes its maximum value. We can assume

that si converges to some point s∞ ∈ (0,1).

We claim that ri = γi(s∞) converges to a crit-

ical point of index one.



Indeed,

X(ri) = −∇f(ri) → 0,

since otherwise φt would push the value of f

down at a rate of speed bounded below by a

positive number, and eventually the value of f

would become negative.

Thus we have a sequence {ri} which has the

properties:

1. f(ri) is bounded.

2. ∇f(ri) → 0.

Since f is proper, a subsequence of the ri’s

converges. The limit r must be a critical point

since ∇f(ri) → 0. (We leave it to the reader

to construct that argument that it must have

index one.)



What is needed for this argument to work?

Clearly, we can replace properness of f by the

following criterion: The function f : R2 → R
satisfies condition C if whenever {ri} is a se-

quence such that

1. f(ri) is bounded, and

2. ∇f(ri) → 0,

then {ri} possesses a convergent subsequence.

The argument can then be carried through in

many cases when R2 is replaced by a complete

Riemannian manifold, perhaps even infinite-

dimensional.



Finite-dimensional Morse theory in a nutshell:
Let M be a complete finite-dimensional Rie-
mannian manifold, f : M → [0,∞) a function
which satisfies condition C. Then

• For a generic perturbation of f , we can
arrange that all the critical points of f are
nondegenerate.

• Condition C implies that the number of
critical points with f ≤ c is finite.

• The critical points form the basis for a
chain complex from which one can calcu-
late the homology of M .

(This last point has been emphasized in Wit-
ten’s work on supersymmetry and Morse the-
ory, but it was implicit also in Milnor’s Lectures
on the h-cobordism theorem.)



From the last fact, one obtains the Morse in-

equalities, which include the generalized moun-

tain pass lemma: If f : Rn → R is a nonnegative

proper function whose critical points are non-

degenerate, then

(number of mountain passes)

≥ (number of lake bottoms)− 1.



More generally, the Morse inequalities for a

generic function f : M → [0,∞) satisfying con-

dition C imply that

(number of critical points of index λ)

≥ dimHλ(M ;F ),

when F is any field. As described in Milnor’s

Morse theory , these inequalities have many ap-

plications to submanifold theory.



Recall the beautiful resolution of the Weyl prob-

lem by Pogorelov, Nirenberg, ... Any Rieman-

nian metric of positive curvature on S2 can be

realized by a unique isometric imbedding.

For Riemannian metrics on RP2, the story is

quite different. If f : RP2 → R3 is any immer-

sion, then a height function h : RP2 → R (nor-

malized to be nonnegative) must have a critical

point of index one, because H2(RP2;Z2) 6= 0.

Such a critical point must be a point of non-

positive curvature. So the standard metric of

constant positive curvature on RP2 cannot be

realized by an immersion into R3.



Question: If M is an n-dimensional mani-

fold with a metric of positive sectional cur-

vatures which admits an isometric immer-

sion into R2n−1, must M be homeomorphic

to a sphere?

Yes, if n = 2 by above argument and if n = 3

by a Morse theory argument in Proc. AMS,

vol. 70 (1978), pages 72-74. Morse theory on

finite-dimensional manifolds is a natural tech-

nique to use on this problem.



The simplest second-order linear ordinary dif-

ferential equation is

γ′′(t) = 0, with solutions γ(t) = at + b.

Here we can assume that γ is vector-valued,

that is, that it takes its values in RN .

The simplest way to make this equation non-

linear is to imagine that

γ : [0,1] −→ M ⊂ RN , γ(0) = p, γ(1) = q,

and look for solutions to

(γ′′(t))> = 0,

where (·)> represents orthogonal projection into

the tangent space.

Solutions are called geodesics from p to q.

The theory of geodesics formed the kernel of

Morse’s calculus of variations in the large.



Variational formulation: We let

Ω(M ; p, q) = {γ : [0,1] → M |γ(0) = p, γ(1) = q},

and define the action function J : Ω(M, p, q) →
R by

J(γ) =
1

2

∫ 1

0
|γ′(t)|2dt.

The Euler-Lagrange equations for J are just

the geodesic equations.



Morse studied critical points of J using finite-

dimensional approximations to the infinite-dimensional

space Ω(M ; p, q). Morse theory of geodesics

in a nutshell: Let M be a complete finite-

dimensional Riemannian manifold.

• For a generic choice of p and q, all the

critical points of J are nondegenerate.

• Condition C implies that the number of

critical points with J(f) ≤ c is finite.

• The critical points form the basis for a

chain complex from which one can calcu-

late the homology of Ω(M, p, q).



In particular, the last fact yields the Morse in-

equalities,

(number index λ critical points of J)

≥ dimHλ(Ω(M ; p, q);F ),

when F is any field. In his thesis, Serre showed

that if M is compact, then Ω(M ; p, q) has non-

vanishing Hλ for λ arbitrarily large. This plus

the Morse inequalities implied: If M is a com-

pact Riemannian manifold, then any two generic

points on M can be connected by infinitely

many geodesics.



Conclusion: One can use algebraic topol-

ogy to prove existence of solutions to or-

dinary differential equations.

Palais and Smale found a beautiful reformula-

tion of Morse’s theory, in which one regards a

suitable completion of Ω(M ; p, q) as an infinite-

dimensional Hilbert manifold with a complete

Riemannian metric, such that

J : Ω(M ; p, q) → R

satisfies condition C.



One can also consider the periodic case, in

which

J : Map(S1, M) → R

is defined by

J(γ) =
1

2

∫
S1
|γ′(t)|2dt.

The solutions to the Euler-Lagrange equations

in this case are periodic geodesics. One can

ask: Is it true that any compact manifold with

finite fundamental group must contain infinitely

many geometrically distinct smooth closed geodesics

(Klingenberg)? Note that multiple covers of

a single prime geodesics should not be consid-

ered to be geometrically distinct. The question

has been answered in many cases.



A difficulty in the Morse theory of periodic

geodesics is that critical points for

J : Map(S1, M) → R

can never be nondegenerate in the usual sense,

because J is preserved by the group action

φ : Map(S1, M)× S1 → Map(S1, M),

φ(γ, s)(t) = γ(s + t).



Morse theory of periodic geodesics in a nut-

shell: Let M be a complete finite-dimensional

Riemannian manifold.

• For a generic choice of metric on M , all

nonconstant geodesics lie on one-dimensional

nondegenerate critical submanifolds.

• Condition C implies that the number of

such submanifolds with J(f) ≤ c is finite.

• The critical submanifolds form the basis for

an equivariant chain complex from which

one can calculate the homology of Map(S1, M).

• In particular, one obtains equivariant Morse

inequalities.



The simplest second-order linear partial differ-
ential equation of elliptic type is

∂2f

∂x2
+

∂2f

∂y2
= 0,

and its solutions are known as harmonic func-
tions. Here we can assume that f is vector-
valued, that is, that it takes its values in RN .

The simplest way to make this equation non-
linear is to imagine that

f : R2 −→ M ⊂ RN ,

and look for solutions to(
∂2f

∂x2
+

∂2f

∂y2

)>
= 0,

where (·)> represents orthogonal projection into
the tangent space.

Solutions are called harmonic maps from R2

into M . We can imagine imposing boundary
conditions or replacing R2 by a compact Rie-
mann surface Σ.



We believe the case where the domain is a

compact Riemann surface yields the simplest

and most beautiful theory. Here is the varia-

tional formulation: Consider the energy

E : Map(Σ, M)× T → R,

which is defined by

E(f, ω) =
1

2

∫
Σ
|df |2dA.

Here Σ is a Riemann surface of a given genus

g and T is the Teichmüller space of conformal

structure on Σ. The norm of df and the area

element on Σ are calculated with respect to

any Riemannian metric within the conformal

equivalence class selected by ω. (It turns out

that E does not depend on the choice of metric

on Σ, only its conformal equivalence class.)

The critical points for E are not just harmonic,

but also conformal. Thus they are in fact min-

imal surfaces.



One would like to develop a Morse theory for E

because it should have important applications

to minimal surface theory.

Question: Given a choice of genus g, what

are the conditions on the topology of a

smooth compact manifold M with finite

fundamental group which ensure that for

generic choice of Riemannian metric on M,

there are infinitely many geometrically dis-

tinct minimal surfaces of genus g?

Just as in Serre’s thesis, a Morse theory for

E might well provide an avenue whereby the

algebraic topology of Map(Σ, M) can yield in-

formation on the solution to nonlinear partial

differential equations.



(Bott, 1980, Bulletin AMS)

Marston Morse had developed the abtract set-

ting of the variational theory ... in large part

because he hoped to make it applicable to min-

imal surface theory and other variational prob-

lems. Unfortunately, however, a direct exten-

sion of the Morse Theory just does not work

for variational problems in more than one vari-

able.... In the context of the Palais-Smale the-

ory, one understands this phenomenon in terms

of the Sobolev inequalities, which show that

the conditions on a map ... to have finite area

are far from forcing it to be continuous....



Indeed, the function E determines a natural

topology on the space of maps Map(Σ, M),

the so-called L2
1 topology.

When Σ has dimension one, this topology is

weakly homotopically equivalent to the compact-

open topology familiar to topologists.

When Σ has dimension two, it just barely fails

to lie within the Sobolev range that would make

it homotopy equivalent to the usual space of

continuous functions.



(Smale, 1977, Bulletin AMS)

In the theory of Plateau’s problem, I had been

intrigued by a result of Morse Tompkins and

Schiffman in 1939. Their theorem asserted

that if a Jordan curve in R3 spans two stable

minimal surfaces, then it spans a third of un-

stable type. This was suggestive of a Morse

theory for Plateau’s problem . In the sixties, I

tried without success to find such a theory, or

to imbed the Morse-Tompkins-Schiffman re-

sult in a general conceptual setting. Tromba

and Uhlenbeck may now have succeeded in ini-

tiating a development of calculus of variations

in the larger for more than one independent

variable.



What Uhlenbeck (in conjunction with Sacks)

had discovered was that when the domain has

dimension two—and only dimension two—there

is a simple procedure for perturbing the energy

function so that the corresponding completion

of Map(Σ, M) does in fact lie within Sobolev

range.

For each element in Teichmüller space T , we

give Σ a canonical metric in its conformal equiv-

alence class. This metric is the constant cur-

vature metric of total curvature one.



Following Sacks and Uhlenbeck, Annals of Math.,

1981, we can then define the α-energy , for

α > 1. It is the function

Eα : Map(Σ, M)× T → R,

given by the formula

Eα(f, ω) =
1

2

∫
Σ
[(1 + |df |2)α − 1]dA.

It is then the case that for fixed choice of ω

Eα,ω : Map(Σ, M) → R, Eα,ω(f) = Eα(f, ω),

satisfies condition C in a suitable completion

of Map(Σ, M). Note that Eα → E as α → 1.



There is a full Morse theory for suitable per-

turbations of Eα,ω (so that all critical points

are nondegenerate). However, as α → 1, se-

quences of α-energy critical points tend to bub-

ble, showing that Morse inequalities cannot

hold for E itself. On the other hand, a better

understanding of bubbling might provide par-

tial Morse inequalities.

Moreover, the partial Morse theory that does

exist when energy is low has had some inter-

esting applications, including the sphere the-

orem of Micallef and myself: If a compact

simply connected Riemannian manifold of di-

mension at least four has positive curvature on

isotropic two-planes, it must be homeomorphic

to a sphere.



Recent results that form part of the foundation

for a projected partial Morse theory for minimal

tori:

• For a generic choice of metric on M , all

prime minimal two-sphere, projective planes,

tori and Klein bottles lie on nondegenerate

critical submanifolds of the dimensions de-

manded by the group actions.

• If the dimension of the ambient manifold

is at least five, there are only finitely many

prime minimal two-spheres and projective

planes below any given energy level. There

are only finitely many minimal tori and Klein

bottles with energy below a given bound

and conformal structure in a given com-

pact subset of Teichmüller space.



What are the next steps?

The above theorems need to be generalized

to arbitrary genus. Once we show that the

number of minimal surface configurations for

a given genus are finite, we need to understand

the boundary maps in the corresponding Morse

complex. Although much remains to be done,

the prospects for a Morse theory for minimal

tori, at least, look bright....


