Особенности избыточной проводимости и возможная псевдощель в сверхпроводниках FeSe

А.Л. Соловьев, Е.В. Петренко, Л.В. Омельченко

Физико-технический институт низких температур им. Б.И. Веркина НАН Украины пр. Науки, 47, г. Харьков, 61103, Украина E-mail: solovjov@ilt.kharkov.ua

E. Nazarova and K. Buchkov

Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences 72 Tsarigradsko shosse Blvd., Sofia, 1784, Bulgaria

K. Rogacki

W. Trzebiatowski Institute of Low Temperatures and Structure Research, PAS Wroclaw, 1410 PL-50-050, Poland

Статья поступила в редакцию 19 декабря 2019 г., опубликована онлайн 24 марта 2020 г.

Исследована температурная зависимость избыточной проводимости $\sigma'(T)$ в трех поликристаллических образцах сверхпроводника FeSe_{0.94}, приготовленных по различной технологии. Полученные из измерений температурные зависимости параметра $\Delta^*(T)$, который в купратах ассоциируется с псевдощелью, были проанализированы в модели локальных пар. При высоких температурах все три образца демонстрируют высокий узкий максимум $\Delta^{*}(T)$ при $T_{s1} \sim 250$ К, типичный для магнитных сверхпроводников. Ниже $T \approx 225$ К зависимости $\Delta^*(T)$ становятся различными. Практически во всем интервале температур ниже T_{s1} образец S2, приготовленный методом твердотельной реакции и не содержащий примесей, демонстрирует $\Delta^*(T)$, типичную для Fe-пниктидов. Исключение составляет интервал от температуры структурного перехода $T_s = 85$ К до T_c , где $\Delta^*(T)$ обнаруживает нетипичный широкий максимум. Анализ полученной зависимости позволяет говорить об открытии псевдощели в этом образце $FeSe_{0.94}$ ниже T_s . Образцы S1, содержащий 4 мас.% Ад, и S3 с номинальной композицией, но содержащий включения несверхпроводящей гексагональной фазы, приготовленные методом частичного плавления, демонстрируют идентичные $\Delta^*(T)$, но отличные от S2. На них обнаружен ряд особенностей, коррелирующих с температурами, при которых наблюдаются особенности на M(T), и коэффициент Холла $R_H(T)$ несколько раз меняет знак при уменьшении T, указывая на изменение типа носителей заряда в FeSe. На зависимости $\Delta^{*}(T)$ образца S3 ниже T_s практически нет максимума, поскольку несверхпроводящие примеси гексагональной фазы препятствуют образованию спаренных фермионов в S3 вблизи T_c. Как следствие, S3 имеет и минимальную плотность локальных пар $\langle n \uparrow n \downarrow \rangle = 0,26$, определенную сравнением $\Delta^*(T_G)/\Delta_{\text{max}}$ вблизи T_c с теорией Питерса–Бауэра, а зависимость $\Delta^*(T)$ не следует теории. Максимальную $\langle n\uparrow n\downarrow \rangle = 0,47$ имеет S1 предположительно вследствие влияния примесей Ag. V S2, не содержащего примеси, $\langle n \uparrow n \downarrow \rangle \approx 0,3$, такая же как в YBa₂Cu₃O_{7- δ}, и обе зависимости $\Delta^*(T)$ для S1 и S2 следуют теории в широком интервале температур.

Ключевые слова: халькогениды FeSe, магнетизм, избыточная проводимость, псевдощелевое состояние, намагниченность, локальные пары.

1. Введение

Несмотря на исключительно большое количество работ, посвященных исследованию высокотемпературных сверхпроводников (ВТСП), через более чем тридцать лет после их открытия по-прежнему нет ясности в вопросе о механизме сверхпроводящего (СП) спаривания, позволяющем получать куперовские пары при температуре СП перехода $T_c >> 100$ К [1–3]. За последнее время наблюдается заметный всплеск интереса к изучению в ВТСП такого необычного явления, как псевдощель (ПЩ) [4–10], которая открывается в

© А.Л. Соловьев, Е.В. Петренко, Л.В. Омельченко, Е. Nazarova, K. Buchkov, K. Rogacki, 2020

купратных ВТСП (купратах) типа YBa₂Cu₃O_{7- δ} (YBCO) при характеристической температуре $T^* >> T_c$ [3,11]. Считается, что правильное понимание физики ПЩ должно дать ответ и на вопрос о механизме СП спаривания в ВТСП. Однако вопрос о физике ПЩ остается весьма дискуссионным [5–14].

После открытия сверхпроводимости в халькогениде FeSe [15], который обладает наиболее простой структурой среди всех ВТСП [16-18], ожидалось, что ответы на перечисленные выше вопросы вскоре будут получены. Однако очевидно, что FeSe обладает совокупностью таких необычных свойств (см. обзоры [13,18] и ссылки в них), что перечисленные выше вопросы не только не прояснились, но, пожалуй, стали еще менее понятны. Действительно, уже сама зависимость продольного удельного сопротивления $\rho(T)$ в FeSe является необычной с выраженным полупроводниковым ходом в широком интервале температур выше ~ 315 К [19,20]. Однако ниже ~ 300 К $\rho(T)$ демонстрирует металлический ход [19,20] и приобретает форму, характерную для слабодопированных купратов [21,22] и железосодержащих сверхпроводников (Fe-пниктидов) [13,23]. По мере уменьшения температуры FeSe становится сверхпроводником с температурой СП перехода $T_c \approx$ ≈ 10 К при нормальном давлении [18–20,24], причем в очень узком интервале концентраций Se [25]. Было обнаружено, что при приложении давления до 9 ГПа Т_с может возрастать до 38 К [26,27]. Частичная замена атомов Se на S или Te также способствует увеличению *T_c* [24,28,29]. В некоторых случаях комбинация давления и интеркаляции способна обеспечить сверхпроводимость при 48 К [30]. Также сообщается, что в пленках FeSe толщиной всего в одну элементарную ячейку критическая температура может достигать величины порядка 109 К [31-33], указывая на возможность наблюдения новой необычной сверхпроводимости в таких соединениях [34].

В конечном итоге было показано, что наблюдаемый в FeSe выше 300 К максимум на $\rho(T)$ [19,20] не связан ни с электрон-фононным рассеянием или взаимодействием спиновых флуктуаций с носителями заряда [19], ни с их термической активацией [35]. Вероятнее всего, в интервале 350-300 К электронная зонная структура FeSe перестраивается, что может приводить к увеличению плотности носителей заряда nf и, как результат, к наблюдаемому уменьшению $\rho(T)$ при уменьшении T (см. [18,19] и ссылки в них). Следует также отметить, что ничего не сообщается о каком-либо структурном или магнитном переходе при 300 К [19,20]. Слабо выраженный структурный переход обнаружен при $T_{s1} \approx 250$ К [36,37], а хорошо известный структурный переход наблюдается при $T_c \sim 90$ К [24,25,38]. Однако, в отличие от Fe-пниктидов, данный переход не сопровождается соответствующим антиферромагнитным переходом (см. [18,39,40] и ссылки в них). По этой причине

во множестве работ такое поведение в FeSe связывают с нематичностью, наведенной зарядами [16,19,24,41-43]. Такой переход связан со спонтанным нарушением симметрии в направлениях х и у в плоскостях Fe, что понижает групповую симметрию решетки от тетрагональной до орторомбической [18,24,41-43]. Данный факт отражает внутреннюю электронную нестабильность FeSe и сложную эволюцию электронной зонной структуры при понижении температуры, когда происходит изменение типа носителей заряда от электронов к дыркам и наоборот [18,19,36-43]. Это следует из измерений коэффициентов Холла и Зеебека, которые несколько раз меняют знак при понижении температуры от 300 К, подтверждая вывод о том, что FeSe является соединением с двумя типами носителей заряда [24,44,45]. Можно предположить, что соединения FeSe находятся в режиме кроссовера между пределами БКШ и бозеэйнштейновской конденсации (БЭК) [40,43,46,47].

Рассмотренное выше поведение FeSe существенно отличается от того, что наблюдается в купратах, где $\rho(T)$ — линейная функция в широком температурном интервале выше температуры открытия псевдощели $T^* >> T_c$ [11,12,22,48–50]. Ниже T^* зависимость $\rho(T)$ отклоняется от линейной в сторону меньших значений, что приводит к возникновению избыточной проводимости $\sigma'(T)$, определяемой как разность между измеряемой проводимостью $\sigma(T) = 1/\rho(T)$ и экстраполированной линейной проводимостью $\sigma_N(T) = 1/\rho_N(T)$, отвечающей нормальному состоянию образца [11,48,51,52]. В случае ҮВСО в относительно узком интервале температур $\sim 15 \text{ K}$ выше T_c избыточная проводимость хорошо описывается классическими флуктуационными теориями Асламазова-Ларкина (АЛ) [53] и Хиками-Ларкина (XЛ) [54] (вклад Маки-Томпсона (МТ) [11,48,52]). Это область СП флуктуаций, ограниченная сверху температурой T_{01} [11,52], и, соответственно, область флуктуационной проводимости (ФЛП), которая характеризуется ненулевой сверхтекучей плотностью n_s [55–58], обусловленной формированием флуктуационных куперовских пар (ФКП) выше Т_с. В этом температурном интервале ФКП ведут себя во многом подобно СП куперовским парам, но без дальнего порядка [47,58], так называемые "short-range-phase correlations", которые должны в значительной степени подчиняться теории БКШ [47,55–59]. Изучению СП флуктуаций при исследовании купратных ВТСП уделено большое внимание (см. [11,48,52,60] и ссылки в них), поскольку предполагалось, что таким образом удастся выяснить природу псевдощели [11,12,48-50,52].

В отличие от купратов, исследования СП флуктуаций в FeSe практически отсутствуют, главным образом из-за сложности определения нормального состояния. В результате практически нет данных о существовании в таких соединениях ФКП выше T_c и их возможном влиянии на отмеченные выше необычные свойства FeSe. Соответственно и данные о возможной реализации ПЩ состояния в соединениях FeSe, о которых сообщается в ряде работ, также весьма противоречивы [44,61-66]. В нашей предыдущей работе [67] на примере трех поликристаллических образцов FeSe0.94, приготовленных разными методами (S1, S2 и S3), изучены температурные зависимости флуктуационной проводимости σ'(T) вблизи T_c. Было показано, что, как и в купратах, флуктуационные теории 3D-АЛ и 2D-МТ (D — размерность) отлично описывают зависимости σ'(T) в области СП флуктуаций, которая наблюдается до ~ 20 К, что примерно в два раза выше T_c . Этот результат, который однозначно указывает на наличие ФКП в FeSe, как минимум, в указанном интервале температур, находится в согласии с более ранними исследованиями магнитной восприимчивости [46] и микроконтактной спектроскопии в монокристаллах FeSe [68]. Отметим, что на кривых $\rho(T)$ (рис. 1 и ссылки [19,46,63]) вплоть до $T_s \sim 90$ К отсутствуют какиелибо особенности (аномалии), что позволяет говорить о том, что флуктуационные куперовские пары могут существовать в FeSe, как минимум, до T_s [44,61–63]. Тем более что в ряде работ утверждается, что особенности ПЩ должны начинать проявляться непосредственно ниже температуры структурного перехода T_s , где флуктуационные эффекты подавляют плотность состояний (DOS) на уровне Ферми [69,70] путем формирования спаренных электронов выше T_c [63,71], что, по определению, и называется псевдощелью [3,5,11]. В пользу этого свидетельствуют эксперименты по изучению магнитосопротивления в FeSe, где соответствующие зависимости при разных значениях приложенного постоянного магнитного поля не подчиняются закону Келлера ниже T_s , указывая на возможную перестройку поверхности Ферми [45,46,63]. Однако вопрос о том, что происходит с ФКП выше 20 К и реализуется ли в FeSe псевдощелевое состояние, по-прежнему остается дискуссионным.

Для выяснения этого вопроса в данной работе на основе тщательного исследования избыточной проводимости в трех образцах FeSe0,94, приготовленных разными методами (S1, S2 и S3), нами получена информация о величине и температурной зависимости возможной ПЩ, $\Delta^*(T)$. Рассчитанные зависимости $\Delta^*(T)$ оказались типичными для магнитных сверхпроводников [23,72]. Показано, что особенности, возникающие на $\Delta^{*}(T)$, хорошо согласуются с результатами, полученными с помощью других методов исследования (см. [18,24,44,45] и ссылки в них). Сравнением с теорией Питерса-Бауэра [73] оценена плотность локальных пар в исследуемых образцах вблизи Т_с и определена их взаимосвязь со структурными особенностями исследуемых поликристаллов. Детальное рассмотрение полученных результатов приводится ниже.

2. Эксперимент

Три образца FeSe0.94 приготовлены с использованием различной технологии. Процесс синтеза исследуемых в настоящей работе образцов FeSe_{0.94} в деталях рассмотрен в работе [74]. Образцы S1, содержащий 4 мас.% Ag, и S3 без добавок серебра были получены методом частичного плавления (partial melting technique). Образец S2 с номинальным составом FeSe0.94 получали методом твердотельной реакции (solid state reaction (SSR)). Серебро широко используется в качестве допантов или малых добавок для улучшения микроструктуры и сверхпроводящих свойств [75-77]. В наших предыдущих работах было установлено, что небольшое количество серебра, внедренного в гранулы FeSe_{0.94}, улучшает как внутренние, так и межгранульные СП свойства [74,78]. Это заключается в увеличении T_{c} , верхнего критического поля $H_{c2}(0)$, параметра Гинзбурга-Ландау к, критического тока и энергии пиннинга, а также в уменьшении ширины СП резистивного перехода ΔT_c [79].

Измерения рентгеновских спектров проводились методом порошкового рентгеноструктурного (XRD) анализа на дифрактометре Bruker D8 Advance в диапазоне углов 20 от 5,3 до 80° с постоянным шагом 0,02 20 с использованием излучения CuK_a и детектора LynxEye. Исследование состава проводилось на Diffracplus EVA, используя базу данных ICDD-PDF2 [74]. Было обнаружено, что оба недопированных образца S2 и S3 в основном состоят из СП тетрагональной фазы. Однако в образце S3, изготовленном методом частичного плавления, были идентифицированы включения несверхпроводящей гексагональной фазы. В то же время в образце S1, также изготовленном методом частичного плавления, но допированного Ag, никаких следов гексагональгой фазы не наблюдалось. Только небольшое количество Ад идентифицировалось в качестве примеси. Таким образом, по аналогии с добавками Sn в FeSe [80], Ад препятствует образованию несверхпроводящей гексагональной фазы и увеличивает содержание СП тетрагональной фазы в образце. При этом определенные из XRD измерений параметры решетки образцов S1 и S3 оказались одинаковыми: S3 — a = 3,7650 Å, *c* = 5,5180 Å, и S1 — *a* = 3,7671 Å, *c* = 5,5193 Å. Это подтверждает сделанный ранее вывод о том, что Ад, скорее всего, не встраивается в элементарную ячейку [77]. Параметры образца S2 также почти не отличались: *a* = 3,77598 Å, *c* = 5,51800 Å. Элементарная ячейка FeSe представляет собой тетраэдр с ионом Fe в центре и Se в его вершинах, которой соответствует пространственная группа P4/nmm с параметрами a = 3,77 Å (расстояние Fe–Fe) и c = 5.52 Å (межплоскостное расстояние) и высотой ионов Se над плоскостями Fe $z_{Se} = 0,2343$ (~1,45 Å) [19,25,28]. Таким образом, измеренные нами

параметры образцов FeSe_{0,94} соответствуют литературным данным.

Прямоугольные образцы размерами порядка 5×1×1 мм вырезались из прессованных таблеток. Измерения продольного удельного сопротивления р_{xx} с помощью стандартной четырехзондовой схемы выполнялись на автоматизированном комплексе Quantum Design PPMS-14 T. Тонкие подводящие провода с помощью серебряной пасты приклеивались к краям образца для обеспечения равномерного распределения тока в центральной области, где размещались потенциальные зонды шириной менее 0,3 мм. Контактное сопротивление потенциальных зондов было менее 1 Ом. В наших экспериментах мы ожидали обнаружить различие в поведении образцов, обусловленное способом их приготовления, и проанализировать особенности температурной зависимости псевдощелевого параметра $\Delta^*(T)$, полученной из измерений удельного сопротивления и избыточной проводимости.

3. Результаты и их обсуждение

3.1. Резистивные свойства

На рис. 1 показаны температурные зависимости удельного сопротивления $\rho(T) = \rho_{xx}(T)$ для всех трех изучаемых образцов FeSe_{0 94}. Видно, что все зависимости $\rho(T)$ демонстрируют металлическое поведение при уменьшении температуры до Тс. Путем экстраполяции линейной части $\rho(T)$ в области СП перехода к $\rho(T) = 0$ определялась критическая температура $T_c \equiv T_c$ ($\rho = 0$). Так как ширина резистивных переходов, ΔT_c , оказалась достаточно малой, особенно в случае S1 ($\Delta T_c \sim 1 \text{ K}$) [74], этот подход позволяет получать значения T_c с высокой точностью. Как и ожидалось, у образца, допированного серебром (S1), самая высокая $T_c = (9,0 \pm 0,05)$ К и самое низкое $\rho(T = 10 \text{ K}) \approx 270 \text{ мкОм} \cdot \text{см}$ (табл. 1). Кроме того, S1 имеет наибольшее отношение сопротивлений R(300 K)/R(10 K), так называемое "residual resistivity ratio", или RRR = 13,6 [45]. Данное значение RRR значительно выше того, что наблюдается в случае поликристаллических образцов FeSe, полученных методом "self flux", где RRR = 9,3 [44], что подтверждает хорошее качество структуры образца S1.

Соответственно, у образца S3 заметно более низкая $T_c = (7,8 \pm 0,05)$ К и самое высокое $\rho(T = 10 \text{ K}) \approx 1010$ мкОм см (табл. 1). Наиболее вероятно, что это обусловлено наличием включений несверхпроводящей гексагональной фазы, обнаруженных с помощью XRD

Рис. 1. Температурные зависимости удельного сопротивления $\rho(T)$ для трех образцов FeSe_{0,94} (S1, S2 и S3), приготовленных разными методами (см. текст). Пунктирные прямые обозначают $\rho_N(T)$, экстраполированное в область низких температур. Вставка: $(\rho - \rho_0)/aT$ как функция температуры для S1 (точки), определяющая $T^* = 258$ К. Прямая линия проведена для удобства восприятия.

анализа [74], которые могут искажать структуру образца. Соответственно для S3 RRR = 3,8. Интересно, что, несмотря на все отмеченные различия, образцы S1 и S3, полученные путем частичного плавления, имеют очень похожую форму зависимостей $\rho(T)$ (рис. 1). А ниже ~ 150 К обе резистивные кривые идут параллельно друг другу. Самая низкая $T_c = (7,7 \pm 0,05)$ К наблюдается у образца S2, полученного методом твердотельной реакции. Соответственно в данном случае $\rho(T = 10 \text{ K}) \approx$ ≈ 838 мкОм·см, что заметно больше, чем у S1, а RRR = 3,9 (табл. 1), что указывает на особенности структуры образца, обусловленные методом его приготовления. В результате S2 демонстрирует другую форму кривой $\rho(T)$, которая ниже $T_s = 85$ К проходит с заметно меньшим наклоном, чем у образцов S1 и S3. Это подтверждает предположение о том, что свойства поликристаллов FeSe существенно зависят от способа их приготовления [63]. Мы ожидали обнаружить различия, обусловленные особенностями структуры образцов, и при исследовании возможной псевдощели в FeSe.

3.2. Избыточная проводимость и псевдощель

Величина и температурная зависимость псевдощелевого параметра $\Delta^*(T)$ для всех трех образцов стандартным образом рассчитывалась в модели локальных

Образец	ρ(10 К), мкОм∙см	RRR	<i>Т</i> _с , К	$\xi_c(0), \text{\AA}$	<i>T</i> *, K	ϵ_{c0}^{*}	A_4	$\Delta^*(T_G), \mathcal{K}$	T _{pair} , K	$2\Delta^*(T_G)/k_BT_c$
S1	270	13,6	9,0	2,9	258	6,3	13,0	13,3	70	3,0
S2	838	3,9	7,7	2,9	259	10,0	7,4	17,7	53	4,6
S3	1010	3,8	7,8	5,6	273	10,0	7,9	10,2	-	3,0

Таблица 1. Параметры образцов S1–S3 FeSe_{0.94}, полученные из анализа флуктуационной проводимости и $\Delta^*(T)$

Low Temperature Physics/Фізика низьких температур, 2020, т. 46, № 5

пар (ЛП) [11] из измерений избыточной проводимости $\sigma'(T)$. Как отмечено выше, $\sigma'(T)$ определяется уравнением

$$\sigma'(T) = \sigma(T) - \sigma_N(T) = \frac{1}{\rho(T)} - \frac{1}{\rho_N(T)}.$$
 (1)

Отсюда видно, что нахождение нормального состояния ВТСП, которое определяет величину и температурную зависимость сопротивления *р_N(T)*, является исключительно важным для определения $\sigma'(T)$ и, соответственно, $\Delta^{*}(T)$ [11]. В купратах $\rho_{N}(T)$ — линейная функция T в широком интервале температур выше T* [21,22]. Согласно модели NAFL (Nearly antiferromagnetic Fermiliquid model) [51], эта линейная зависимость отвечает нормальному состоянию ВТСП, которая характеризуется стабильностью поверхности Ферми. Ниже $T^* \rho(T)$ отклоняется от линейной зависимости в сторону меньших значений, приводя к возникновению избыточной проводимости, и ВТСП переходит в ПЩ состояние (см. [11,18,48] и ссылки в них). Согласно современным представлениям [4,14,49], ниже Т* возможна перестройка поверхности Ферми, что в значительной степени определяет необычные свойства купратов в ПШ области.

В отличие от купратов нормальное состояние FeSe является достаточно неопределенным. В конечном итоге нормальное состояние было выбрано так, как показано пунктирными прямыми на рис. 1, исходя из соображений, подробно изложенных в нашей предыдущей работе [67]. Здесь хотелось бы отметить лишь несколько моментов. Как уже упоминалось, ниже ~ 300 К заканчивается перестройка зонной структуры и FeSe переходит в новое состояние, которое характеризуется металлическим типом рассеяния носителей заряда [18-20,39]. Было обнаружено, что в этом состоянии коэффициент Холла R_H практически не зависит от температуры [19,26,45], а зависящее от поля магнитосопротивление $MR = [\rho(H) - \rho(0)]/\rho(0)$, измеренное при различных температурах, подчиняется закону Келлера вплоть до $T_s \approx 85$ К [45,81]. Оба результата указывают на стабильность поверхности Ферми в FeSe в этом интервале температур, что, как отмечено выше, является основным признаком нормального состояния любого ВТСП. Более того, в относительно коротком интервале температур ~ 30 К ниже 290 К зависимость $\rho(T)$ всех образцов оказалась линейной. Здесь мы использовали критерий $[\rho(T) - \rho_0]/aT = 1$, полученный трансформацией уравнения прямой $\rho(T) = aT + \rho_0$, где *a* обозначает наклон экстраполированной зависимости $\rho_N(T)$, а ρ_0 определяется ее пересечением с осью У [1,21,52]. В данном случае отклонение $[\rho(T) - \rho_0]/aT$ от 1, как показано на вставке к рис. 1 на примере образца S1, позволяет определять Т* с высокой точностью. Отметим, что этот подход к определению $\rho_N(T)$ позволил получить разумные и самосогласованные результаты и уверенно наблюдать как АЛ, так МТ флуктуационные вклады в $\sigma'(T)$ при анализе флуктуационной проводимости [67]. Однако вопрос о возможной реализации псевдощелевого состояния в FeSe оказался намного сложнее [44,46,61–66].

3.3. Анализ зависимости ∆*(T)

Считается, что избыточная проводимость $\sigma'(T)$ (уравнение (1)) в купратах возникает в результате открытия ПЩ и, следовательно, должна содержать информацию о ее величине и температурной зависимости. Мы также разделяем точку зрения, что ПЩ в купратах возникает за счет формирования локальных пар при *T* < *T** [6–11,47,58,62,82]. Классические флуктуационные теории, как АЛ [53], так и МТ, которая была модифицирована для ВТСП Хиками и Ларкиным (ХЛ) [54], отлично описывают экспериментальную $\sigma'(T)$ в купратах, но лишь в интервале СП флуктуаций $\Delta T_{fl} = T_{01} - T_c^{mf} \approx 15 \text{ K}$ [52]. (Определение T_c^{mf} дано ниже.) Очевидно, что для получения информации о ПЩ необходимо уравнение, которое описывало бы всю экспериментальную кривую от T^* до ~ T_c^{mf} и содержало параметр ПЩ $\Delta^*(T)$ в явном виде. Ввиду отсутствия строгой фундаментальной теории такое уравнение было предложено в работе [82]:

$$\sigma'(T) = \frac{e^2 A_4 (1 - T/T^*) (\exp(-\Delta^*/T))}{16\hbar \xi_c(0) \sqrt{2\varepsilon_{c0}^* \mathrm{sh}(2\varepsilon/\varepsilon_{c0}^*)}},$$
 (2)

где $(1 - T/T^*)$ и ехр $(-\Delta^*/T)$ учитывают соответственно динамику образования ЛП при $T \le T^*$ и их разрушения вблизи T_c , A_4 — численный коэффициент, имеющий смысл *C*-фактора в теории ФЛП, и $\Delta^* = \Delta^*(T_G)$ — значение ПЩ параметра вблизи T_c [11,82–84].

Решая уравнение (2) относительно $\Delta^{*}(T)$, получаем

$$\Delta^{*}(T) = T \ln \frac{e^{2} A_{4} (1 - T/T^{*})}{\sigma'(T) 16 \hbar \xi_{c}(0) \sqrt{2 \varepsilon_{c0}^{*} \mathrm{sh}(2 \varepsilon / \varepsilon_{c0}^{*})}}, \quad (3)$$

где $\sigma'(T)$ — экспериментально измеренная избыточная проводимость во всем температурном интервале от T^* до T_c^{mf} .

Отметим еще раз, что в ВТСП купратах при $T \le T^*$ не только меняются все параметры образцов, но и начинает уменьшаться DOS на уровне Ферми [69,70], т.е. открывается псевдощель [3–11]. Предполагается, что при этом также происходит перестройка поверхности Ферми [4,14,49,51], которая ниже T^* распадается на ферми-арки [4,70]. Считается, что правильное понимание физики ПЩ должно ответить и на вопрос о механизме СП спаривания в ВТСП, который по-прежнему остается весьма дискуссионным [4,11,47,49,58,62,73]. Однако нам не известно, чтобы подобные измерения DOS проводились в FeSe. Поэтому вопрос о возникновении ПЩ в таких ВТСП остается открытым. За неимением других теорий проведем анализ $\sigma'(T)$ и $\Delta^*(T)$ в FeSe в рамках нашей модели локальных пар, используя уравнения (2) и (3). При этом традиционно обозначаем температуру отклонения $\rho_N(T)$ от линейности при 258 К как T^* , хотя нет веских доказательств того, что ПЩ открывается в FeSe именно при этой температуре. По этой же причине не называем параметр $\Delta^*(T)$, который находим из анализа избыточной проводимости во всем интервале от T^* до T_c , псевдощелью.

Уравнения (2) и (3) содержат ряд параметров, которые, что важно, могут быть определены из эксперимента [11,52,82]. Так, Т*, длина когерентности вдоль оси с, $ξ_c(0)$, и приведенная температура $ε = (T - T_c^{mf}) / T_c^{mf}$ onределяются из анализа удельного сопротивления и ФЛП [52,67,72]. Здесь T_c^{mf} — критическая температура в приближении среднего поля, которая отделяет область ФЛП от области критических флуктуаций или флуктуаций СП параметра порядка Δ непосредственно вблизи T_c , не учтенных в теории [85,86]. Для нахождения T_c^{mf} используется тот факт [11,21,23,52], что вблизи T_c во всех ВТСП $\sigma'(T)$ всегда описывается 3D уравнением теории АЛ [53], в котором $\sigma'_{AL3D} \sim \epsilon^{-1/2} \sim (T - T_c^{mf})^{-1/2}$. Соответственно, T_c^{mf} определяется линейной экстраполяцией в области 3D флуктуаций зависимости σ'^{-2} от *T* до ее пересечения с осью температур, поскольку $\sigma'^{-2} = 0$, когда $T \to T_c^{mf}$ [84]. Отметим, что всегда $T_c^{mf} > T_c$. Еще одна характеристическая температура — температура Гинзбурга $T_G > T_c^{mf}$, до которой работают флуктуационные теории. Эта температура обычно определяется критерием Гинзбурга, который относится к случаю, когда теория среднего поля перестает работать при описании СП перехода [87,88]. Важно, что и все остальные параметры, такие как теоретический параметр ε_{c0}^* [89], коэффициент A_4 и $\Delta^*(T_G)$, также могут быть определены из эксперимента в рамках нашей модели локальных пар.

На рис. 2 приведена зависимость $\ln \sigma'$ от $\ln \varepsilon$ для образца S2 во всем интервале температур от T^* до T_c^{mf} , которая показывает, что в интервале температур от $T_{c01} = 24,9$ К до $T_{c02} = 94,9$ К, обозначенной на рисунке стрелками при $\ln \varepsilon_{c01} = 0,69$ и $\ln \varepsilon_{c02} = 2,34$, $\sigma'^{-1} \sim \exp \varepsilon$ [89]. Эта особенность оказывается одним из основных свойств большей части ВТСП [11,52,82,90]. В результате в интервале $\varepsilon_{c01} < \varepsilon < \varepsilon_{c02}$ (вставка на рис. 2) $\ln \sigma'^{-1}$ — линейная функция є с наклоном $\alpha^* = 0, 10,$ который определяет параметр $\varepsilon_{c0}^* = 1/\alpha^* \approx 10$ [89] (табл. 1). Этот подход позволяет получать достоверные значения ε_{c0}^* и для всех остальных образцов, которые также приведенные в табл. 1, и, как установлено [11,52,82], заметно влияют на вид теоретических кривых, показанных на рис. 2 и 3 при $T >> T_{01}$, т.е. заметно выше области СП флуктуаций.

Для определения коэффициента A_4 необходимо также знать значение $\Delta^*(T_G)$, используемое в уравнении (2), которое находится путем совмещения теории с экспериментальными точками, построенными как $\ln \sigma'$

Рис. 2. Зависимость $\ln \sigma'$ от $\ln \varepsilon$ образца S2 (треугольники) во всем температурном интервале от T^* до T_c^{mf} . Кривая — экстраполяция эксперимента с помощью уравнения (2). Вставка: зависимость $\ln \sigma'^{-1}$ от ε . Прямая обозначает область линейной зависимости в интервале от ε_{c01} до ε_{c02} . Наклон α^* определяет параметр $\varepsilon_{c0}^* = 1/\alpha^*$ (см. текст).

от 1/T (см. рис. 3). Как показано, например, в работах [21,52,82], в этих координатах форма теоретической кривой оказалась очень чувствительной к величине $\Delta^*(T_G)$. Кроме того, предполагается, что $\Delta^*(T_G) = \Delta(0)$, где Δ — СП щель [57,91]. Подчеркнем, что именно величина $\Delta^*(T_G)$ определяет истинное значение ПЩ и используется для оценки величины соотношения БКШ $2\Delta(0)/k_BT_c = 2\Delta^*(T_G)/k_BT_c$ в конкретном ВТСП образце [21,52,82]. Лучшая аппроксимация зависимости In σ' от 1/T уравнением (2) для образца S2 достигается при $2\Delta^*(T_c)/k_BT_c = 4,6 \pm 0,2$, что несколько превышает предел теории БКШ для *d*-волновых сверхпроводников ($2\Delta/k_BT_c \approx 4,28$) [92,93].

Рис. 3. $\ln \sigma'$ как функция 1/T образца S2 (треугольники) в интервале температур от T^* до T_c^{mf} . Кривая — экстраполяция эксперимента с помощью уравнения (2). На вставке показана структура FeSe, отвечающая проводящей тетрагональной фазе [106].

Как известно ([94] и ссылки в ней), в купратах наблюдается аномально большая величина энергетической щели $\Delta(0) = \Delta_0$, поэтому соотношение $2\Delta/k_BT_c \sim 5-7$ заметно больше, чем дает теория БКШ для *d*-волновых сверхпроводников [92,93]. Среди теорий, объясняющих большие значения $2\Delta/k_BT_c$ в пределе сильной связи [95-97], наиболее популярна модель, в которой куперовское спаривание в ВТСП реализуется в результате взаимодействия электронов со спиновыми флуктуациями [98-100]. Однако недавние результаты, полученные методами фотоэмиссионной спектроскопии с высоким угловым разрешением (ARPES) [101], а также сканирующей туннельной спектроскопии [102–104], показали, что механизм спаривания в ВТСП может иметь слабосвязанный характер, поскольку критическая температура T_c определяется параметром Δ_{SC} , существенно меньшим Δ_0 . В результате соотношение $2\Delta_{SC}/k_BT_c \sim 4.3$, что соответствует теории БКШ для *d*-волнового сверхпроводника [92,93]. В таком случае низкочастотные спиновые возбуждения, положенные в основу спин-флуктуационной модели, решающей роли не играют. Кроме того, существуют и другие модели [3-11,73], поэтому вопрос о величине соотношения $2\Delta/k_BT_c$ в ВТСП остается открытым.

Механизм реализации СП состояния в FeSe, судя по всему, еще более сложный. В ряде работ сообщается о существовании двух [105,106] и даже трех [107] энергетических щелей в FeSe, что является следствием сложной зонной структуры таких соединений. Соответствующие расчеты показывают, что поверхность Ферми (ПФ), например в FeSe_{0.85} [106], является квазидвумерной и состоит из дырочно-подобных листов вокруг точки Г и электрон-подобных листов вокруг точки М зоны Бриллюэна [108]. Соответственно, можно предположить, что две различные щели открываются на различных листах ПФ. Полученные в указанных работах значения соотношения 2Δ/k_BT_c для большей щели лежат в интервале от 4,3 до 4,6 и от 1 до 2 для меньшей щели. Более того, из анализа глубины проникновения магнитного поля в плоскости ab, λ_{ab} , с помощью изучения вращения мюонных спинов (muonspin rotation (µSR)) оказалось, что величина $2\Delta/k_BT_c$ существенно зависит от модели, выбранной для интерпретации полученных результатов. Убедительно показано, что наилучшее согласие экспериментальных данных с теорией достигается в рамках двущелевой s+sволновой модели, и соотношение $2\Delta/k_BT_c$ равно 4,49 и 1,07 соответственно для большей (Δ_1) и меньшей (Δ_2) щелей (см. [106] и ссылки в ней). При этом подчеркивается, что сверхпроводящая щель в FeSe не содержит нулей, что также отмечается в работе [105]. Таким образом, полученное нами для S2 значение $2\Delta^*/k_BT_c =$ = 4,6 ± 0,2 находится в полном согласии с результатами работ [105-107] для большей щели, что, в частности, подтверждает правильность выбранного нами

подхода к анализу избыточной проводимости в FeSe. Зависимости ln σ' от 1/*T*, аналогичные показанной на рис. 3, были получены и для образцов S1 и S3. В обоих случаях лучшая аппроксимация зависимости ln σ' от 1/*T* уравнением (2) достигается при $2\Delta^*(T_c)/k_BT_c = 3,0 \pm 0,2$. Это меньше, чем у образца S2, но заметно больше, чем получено в работах [105–107] для меньшей щели, где $2\Delta_2/k_BT_c = 1,07 \pm 0,3$ [106,107]. Таким образом, в экспериментах мы измеряем большую щель в FeSe. В образцах S1 и S3 она существенно меньше, чем в S2, наиболее вероятно, за счет изменения ПФ под влиянием примесей в виде Ag (S1) или включений несверхпроводящей фазы (S3).

Теперь, когда ε_{c0}^* и $\Delta^*(T_G)$ известны, можно вернуться к нашему анализу и найти коэффициент А4. Для его определения рассчитываем $\sigma'(\varepsilon)$ по уравнению (2) и, подбирая А4, совмещаем теорию с экспериментом в области 3D AL флуктуаций вблизи T_c , где $\ln \sigma'(\ln \varepsilon)$ линейная функция приведенной температуры є с наклоном $\lambda = -1/2$ [11,82,83] (рис. 2). Как видно на рисунке, уравнение (2) с $A_4 = 7,4$, $\varepsilon_{c0}^* = 10$ и $\Delta^*(T_G)/k_B = 2,3T_c =$ = 17,7 К, как и ожидалось, хорошо описывает эксперимент в интервале температур от T* до T_G. Исключение составляет интервал температур от T₀ до T_{c01} $(\ln \varepsilon_{c01} = 0.69$ на рис. 2), где, в отличие от купратов, предполагается усиленное влияние магнетизма на 2D флуктуации [67], не учтенные в нашей модели. Тот факт, что $\sigma'(T)$ хорошо описывается уравнением (2) (рис. 2), позволяет предположить, что уравнение (3) даст надежные величину и температурную зависимость параметра Δ^* . Рисунок 4 отображает результат анализа $\Delta^*(T)$ по уравнению (3) для образца S2 с использованием следующих параметров, определенных из эксперимента: $T^* = 259$ К, $\xi_c(0) = 2.9$ Å, $\varepsilon_{c0}^* = 10$,

Рис. 4. Температурные зависимости параметра $\Delta^{*}(T)/k_B$ образцов S1 (точки), S2 (треугольники) и S3 (квадраты). Сплошные тонкие кривые приведены для удобства восприятия. На вставке те же зависимости $\Delta^{*}(T)/k_B$ в области СП флуктуаций вблизи T_c .

 $A_4 = 7,4$ и $\Delta^*(T_G)/k_B = 17,7$ К. Также показаны зависимости $\Delta^*(T)$, построенные для образцов S1 и S3 с аналогичным набором параметров, значения которых приведены в табл. 1. Мы предполагали, что температурные зависимости $\Delta^*(T)$ могут дать ответ на часть обозначенных выше вопросов.

Полученные зависимости с узким максимумом при $T_{\rm max} = T_{s1} \approx 250 \ {\rm K}$ являются типичными для магнитных ВТСП, таких как EuFeAsO_{0,85}F_{0,15} [23], Dy_{0.6}Y_{0.4}Rh_{3.85}Ru_{0.15}B₄ [72] и SmFeAsO_{0.15} [109], и существенно отличаются от аналогичных зависимостей $\Delta^*(T)$ для немагнитных купратов [11,82,90]. Ниже T_{s1} (рис. 4) $\Delta^{*}(T)$ всех образцов быстро уменьшается и наблюдается минимум при температуре $T_s \approx 85$ K. В соединениях FeSe этот минимум отвечает структурному фазовому переходу из тетрагональной в орторомбическую фазу при T_s (см. [18,24,45,63] и ссылки в них). Ниже T_s параметр $\Delta^*(T)$ незначительно возрастает, демонстрируя максимум при T_{max}, за которым следует минимум при T_G. Почему это минимум, поясняет вставка на рис. 4, где показаны зависимости $\Delta^*(T)$ для всех образцов в области СП флуктуаций вблизи Тс. Зависимости $\Delta^*(T)$ для S1 и S2 типичны для исследованных нами ВТСП, включая купраты и Fe-пниктиды ([52] и ссылки в ней). При $T \sim T_{01}$, которая ограничивает сверху область СП флуктуаций, всегда наблюдается минимум. Затем следует максимум вблизи температуры T_0 , при которой наблюдается кроссовер от 2D MT флуктуаций к 3D АЛ флуктуациям [52,67]. И наконец, имеется минимум при $T = T_G$. Как видим, исключение составляет только образец S3, поведение которого выпадает из общей картины, наиболее вероятно, за счет влияния несверхпроводящих включений гексагональной фазы.

Наиболее четко отмеченные особенности при T_s и T_{max} наблюдаются на зависимости $\Delta^*(T)$ образца S2, не содержащего никаких допантов. Образцы S1 и S3 демонстрируют ряд дополнительных особенностей, которые особенно хорошо видны на рис. 5, где $\Delta^*(T)$ построена в единицах Δ^*/Δ^*_{max} . Интересно, что эти особенности коррелируют с особенностями на температурных зависимостях намагниченности, M(T), измеренных для S1 (точки) и S2 (треугольники). Как уже отмечалось, ниже Т* наблюдается выраженный максимум при $T_{s1} \approx 250$ К. В ряде работ отмечается возможность дополнительного, слабо изученного структурного перехода в FeSe при этой температуре [36,37]. Видно, что при $T = T_{s1}$ имеется особенность на обеих зависимостях M(T), что указывает на возможность перестройки магнитной подсистемы $FeSe_{0.94}$ при $T_{s1} \sim 250$ K. Подчеркнем, что этот экспериментальный факт является еще одним аргументом в пользу правильности выбора нормального состояния в исследуемых образцах FeSe_{0.94} (см. разд. 3.2). В интервале температур от T_{s1} до ~ 225 К зависимости $\Delta^*(T)$ всех трех образцов явля-

Рис. 5. Температурные зависимости $\Delta^{*/\Delta_{\text{max}}}$ для S1 (точки), S2 (треугольники) и S3 (квадраты), а также M(T) для S1 (точки) и S2 (треугольники) (символы меньшего размера). Сплошные тонкие кривые проведены для удобства восприятия. Вертикальные пунктирные линии без стрелок обозначают структурные переходы при T_{s1} и T_s , а пунктиры с двумя стрелками соответствуют температурам, при которых меняется тип носителей заряда (см. текст).

ются спадающими линейными функциями Т (рис. 5). Необходимо отметить, что очень похожая линейная зависимость $\Delta^*(T)$ наблюдалась в текстурированном поликристалле EuFeAsO_{0.85}F_{0.15} с близкой $T_c = 11,0$ К [23]. Существенно, что в Fe-пниктидах эта линейная зависимость наблюдается четко в интервале между температурой структурного перехода T_s и температурой перехода в режим волн спиновой плотности (spin-density waves (SDW)), *T_{SDW}* ~ 130 К [23,109]. Таким образом, обнаружена определенная аналогия в поведении $\Delta^*(T)$ в FeSe и Fe-пниктидах. В обоих случаях линейная зависимость $\Delta^*(T)$ начинается при температуре структурного перехода. Есть ли в FeSe переход в SDW режим ниже ~ 225 К, строго говоря, не ясно, поскольку нет особенностей на M(T), и этот вопрос остается открытым. На рис. 5 видно, что ниже $T \approx 225$ К зависимости $\Delta^*(T)$ образцов S1, S3 и S2 расходятся. Подчеркнем, что ниже этой температуры формы зависимостей $\Delta^*(T)$ образцов S1 и S3, полученных методом парциального плавления, за исключением области СП флуктуаций (вставка на рис. 4), фактически идентичны. В то же время они заметно отличаются от $\Delta^*(T)$ образца S2, полученного методом твердотельной реакции и не содержащего примеси.

Так, в районе ~ 190 К на $\Delta^*(T)$ образцов S1 и S3 наблюдается минимум, который отсутствует у образца S2, где $\Delta^*(T)$ продолжает монотонно уменьшаться. Можно предположить, что при $T \sim 225$ К в FeSe начинается трансформация типа носителей заряда от дырочно-подобных к электронно-подобным, которая заканчивается изменением знака коэффициента Холла, $R_H(T)$, при ${}^1T_{h\to e} \sim 190$ К, отмеченной на рисунке вертикальным пунктиром ([24,45] и ссылки в них). При ${}^{2}T_{e \to h} \sim 120$ К на $\Delta^{*}(T)$ образцов S1 и S3 имеет место выраженный максимум, который наблюдается и на M(T) для S1. При этом $\Delta^*(T)$ для S2 продолжает так же монотонно уменьшаться, приближаясь к минимуму. Но есть особенность на M(T) образца S2. Отметим, что при этой температуре $R_H(T)$ в FeSe, а следовательно, и носители заряда опять меняют знак, но на этот раз от электронов к дыркам [24,45]. При $T_s \sim 85$ К в FeSe происходит уменьшение ротационной симметрии от четырехкратной (С4) к двукратной (С2) в результате перехода кристаллической структуры из тетрагональной в орторомбическую фазу [110]. При этом предполагается, что параметр порядка, ответственный за этот переход, имеет электронный характер [111]. Соответственно при $T_s \sim 85$ К есть минимум на $\Delta^*(T)$ всех трех образцов, но нет явных особенностей на зависимостях M(T) (рис. 5). Последний результат согласуется с представлениями о нематическом характере структурного перехода в FeSe при *T_s* [16,18,24,41–46].

При дальнейшем уменьшении температуры S1 демонстрирует специфический несимметричный максимум $\Delta^*(T)$ при температуре ${}^{3}T_{h\to e} = 70$ K, обозначенной пунктиром на рисунке, ниже которого $\Delta^*(T)$ быстро уменьшается фактически по линейному закону вплоть до T_{01} (см. вставку на рис. 4). S3 демонстрирует похожую зависимость $\Delta^*(T)$ ниже T_s , но все особенности выражены намного слабее. В то же время никаких особенностей при ${}^{3}T_{h \rightarrow e} = 70$ К на $\Delta^{*}(T)$ образца S2 нет. Однако при этой температуре наклон М(Т) обоих образцов S1 и S2 меняется и ниже ${}^{3}T_{h \rightarrow e} = 70$ К начинается практически линейный рост М(Т), который продолжается вплоть до СП перехода. Интересно отметить, что в FeSe при температуре ${}^{3}T_{h \rightarrow e} \sim 70$ К $R_{H}(T)$ опять становится отрицательным и окончательно происходит переход носителей заряда из дырок в электроны [24,45]. Не исключено, что при этом каким-то образом трансформируется магнитная и спиновая подсистемы, что и приводит к наблюдаемому линейному росту M(T). Особенности в поведении FeSe при температуре ${}^{5}T_{h \rightarrow e} \sim$ ~ 70 К наблюдались при измерении магнитной восприимчивости [112], магнитосопротивления [112], эффекта Холла [45,112] и времени релаксации $1/(T_1T)$, измеряемом в экспериментах по ядерному магнитному резонансу [113]. Поскольку во всех этих экспериментах используется магнитное поле, наиболее вероятно, что наблюдаемые особенности обусловлены трансформацией спиновой подсистемы. Поэтому ${}^{3}T_{h \rightarrow e} \sim 70$ К может рассматриваться как температура, при которой усиливаются анизотропные спиновые флуктуации, которые приводят к зависящей от импульса анизотропии рассеяния носителей заряда на поверхности Ферми [63]. Такое поведение можно рассматривать как некую трансформацию поверхности Ферми, что, как отмечено выше, характерно для псевдощелевого состояния [4,14,49].

Отметим еще раз, что какие-либо особенности на зависимости $\Delta^*(T)$ образца S2 при температуре усиления анизотропных спиновых флуктуаций ${}^{3}T_{h \rightarrow e} = 70 \text{ K}$ отсутствуют (рис. 5). Этот результат согласуется с выводами работы [63] о том, что особенности при ${}^{3}T_{h \rightarrow e} \approx$ \approx 70 К наблюдаются в образцах FeSe с большими значениями RRR (= 13,6 для S1), но отсутствуют в образцах с малыми RRR (=3,9 для S2) (табл. 1). На рис. 5 видно, что ниже T_s параметр $\Delta^*(T)$ образца S2 возрастает, демонстрируя широкий максимум при $T_{\text{max}} \approx 53$ K, за которым следуют минимум при $T_{01} \approx 15$ K, максимум при $T_0 \approx 8,9$ К и небольшой минимум при $T_G \approx 8,4$ К (см. вставку на рис. 4). Это также хорошо видно на рис. 6, где зависимость $\Delta^*(T)$ показана в меньшем масштабе. Такая форма $\Delta^*(T)$ полностью соответствует температурной зависимости ПЩ для купратов [52,82,90]. Таким образом, полученная зависимость $\Delta^{*}(T)$ указывает на возможность реализации ПЩ состояния в FeSe в интервале $T_s > T > T_c^{mf}$, наиболее вероятно, за счет спиновых флуктуаций, которые, как отмечено выше, могут способствовать формированию спаренных фермионов выше T_c. Такая возможность также отмечается в ряде работ [24,45,46,51,63]. Как показано в нашей предыдущей работе [67], в FeSe0.94 вблизи T_c есть область СП флуктуаций, $\Delta T_{\rm fl} = T_{01} - T_G$, где ФКП ведут себя как СП куперовские пары, но без дальнего порядка, причем T_{01} примерно в два раза выше T_c . То есть $T_{01} \approx 20-30$ К, что согласуется с результатами работ [46,68]. Отметим, что при этом на R(T) нет никаких особенностей вплоть до T_s. Другими словами, если ФКП есть ниже T_{01} , то они должны существовать и выше по температуре вплоть до T_s. Исходя из этих соображений, можно предположить, что в FeSe ниже $T_s \sim 85$ К начинают формироваться ФКП, которые, как и в купратах, подавляют DOS на уровне Ферми [46,68,82,112] и способствуют реализации ПЩ (см. [63] и ссылки в ней).

Рис. 6. Температурная зависимость параметра $\Delta^*(T)/k_B$ образца S2 в интервале от T_c^{mf} до T_s . Стрелками отмечены соответствующие характеристические температуры (см. текст).

На зависимости $\Delta^*(T)$ образца S1 ниже T_s также имеется максимум, специфическая форма которого, как уже упоминалось, наиболее вероятно, обусловлена влиянием добавок Ад. Логично предположить, что ниже T_s в образце S1 также открывается ПЩ, поскольку при дальнейшем уменьшении температуры ниже T₀₁ S1 демонстрирует зависимость $\Delta^*(T)$, типичную для ПЩ, наблюдаемой в ВТСП в области СП флуктуаций (см. вставку на рис. 4). В свою очередь на $\Delta^*(T)$ образца S3, который, как и S2, формально тоже не содержит допантов, если и есть признаки ПЩ поведения ниже T_s, то они выражены очень слабо (рис. 5). Наиболее вероятно, что имеющиеся в S3 включения несверхпроводящей гексагональной фазы подавляют возможность формирования ФКП ниже T_s. Это же касается и области СП флуктуаций ниже T₀₁, где, как уже отмечалось, зависимость $\Delta^*(T)$ образца S3 сильно отличается от зависимости, типичной для большинства ВТСП (см. вставку на рис. 4). Также интересно отметить, что никакого максимума $\Delta^*(T)$, а соответственно, и ПЩ в этой области температур не наблюдается у Fe-пниктида EuFeAsO_{0.85}F_{0.15} (см. рис. 6 в [23]), поскольку в этом случае ПЩ открывается при Т* = 171 К. Этот результат подчеркивает заметную разницу в реализации ПЩ состояния в FeSe и Fe-пниктидах.

Таким образом, наиболее вероятно, что формирующиеся ниже T_s ФКП как раз и определяют механизм перехода FeSe в СП состояние. Действительно, при $T > T_s$ магнитное поле никак не влияет на $\rho(T)$. Тогда как ниже Т_s магнитное поле заметно увеличивает сопротивление образцов FeSe ([45,46] и ссылки в них). Этот результат легко объяснить, полагая, что магнитное поле разрушает ФКП, сформированные ниже T_s . Кроме того, именно ниже T_s нарушается закон Келлера, указывая на возможную перестройку поверхности Ферми [45,63], что, как отмечено выше, является основным признаком ПЩ состояния в ВТСП. Интересно, что скэйлинговое поведение магнитосопротивления, которое следует из закона Келлера, восстанавливается ниже $T \approx 25$ К $\approx T_{01}$ [45,63], т.е. в области СП флуктуаций [67]. Таким образом, можно прийти к заключению, что перед СП переходом происходит стабилизация ПФ, что представляется разумным.

На рис. 7 приведено сравнение зависимостей $\Delta^*(T)/\Delta_{\max}^*$ образцов S1, S2 и S3 вблизи T_c (см. вставку на рис. 4) с температурными зависимостями плотности локальных пар в ВТСП $\langle n_{\uparrow}n_{\downarrow} \rangle$, рассчитанными в теории Питерса–Бауэра (ПБ) [73] в рамках трехмерной модели Хаббарда с притяжением для различных значений температуры T/W, взаимодействия U/W и фактора заполнения, где W — ширина зоны. Это позволяет оценить величину $\langle n_{\uparrow}n_{\downarrow} \rangle$ во всех трех образцах FeSe при T_G . Для этого совмещаем измеренные значения Δ^*/Δ_{\max}^* для образца S2 при T_G с минимумом, а при T_0 — с максимумом каждой теоретической кривой, рассчитанной

Рис. 7. Зависимости Δ^*/Δ^*_{max} от T/T^* для образцов FeSe_{0,94} S1 (точки), S2 (треугольники) и S3 (квадраты) в сравнении с теоретическими зависимостями $\langle n_{\uparrow}n_{\downarrow} \rangle$ от T/W при соответствующих значениях взаимодействия U/W: 0,2 (1); 0,4 (2); 0,7 (3); 1,2 (4). Стрелками показаны температуры T_0 и T_G .

при различных значениях U/W, добиваясь наилучшего согласия эксперимента с теорией в максимально широком интервале температур. Важно, что найденные для S2 коэффициенты подгонки использовались и для двух других образцов. Результаты подгонки для трех значений U/W показаны на рис. 7. Образец S2 (треугольники) демонстрирует отличное согласие с теорией при U/W = 0,2 (кривая *l*) практически во всем интервале СП флуктуаций. Найденное значение $\langle n_{\uparrow}n_{\downarrow} \rangle (T_G) \approx 0.29$ практически такое же, как и в ҮВСО. Видно, что максимальное значение $\langle n_{\uparrow}n_{\downarrow} \rangle (T_G) \approx 0,47$ демонстрирует образец S1, допированный Ag. При этом экспериментальные значения $\Delta^*(T)$ (точки) совпадают с теорией при U/W = 1,2 (кривая 4) в широком интервале температур выше T_c . Отметим, что $< n_{\uparrow}n_{\downarrow} > (T_G) \approx 0,47$ заметно больше, чем $\langle n_{\uparrow}n_{\downarrow} \rangle (T_G) \approx 0,3$, полученное нами для оптимально допированных монокристаллов YBaCuO [114]. Этот несколько неожиданный результат можно рассматривать как следствие влияния примеси Ag, которая улучшает как внутренние, так и межгранульные СП свойства FeSe [74,78,79]. В свою очередь зависимость $\Delta^*(T)$ образца S3 (квадраты) не совпадает с теорией ПБ. Соответственно и плотность локальных пар в S3, $\langle n_{\uparrow}n_{\downarrow} \rangle \langle T_G \rangle \approx 0.26$, как и ожидалось, оказалась наименьшей из изученных образцов. Таким образом, полученные в работе результаты показывают, что различные дефектные ансамбли, возникающие в поликристаллах FeSe_{0 94} при различных способах изготовления, существенным образом влияют на свойства образцов.

Заключение

Впервые изучена температурная зависимость избыточной проводимости $\sigma'(T)$ в трех поликристаллических образцах сверхпроводника FeSe_{0.94}, S1, S2 и S3, приготовленных по различной технологии. Из полученных данных в модели локальных пар рассчитанные температурные зависимости параметра $\Delta^*(T)$, который в купратах ассоциируется с псевдощелью, оказались очень информативными. Полученные из этих расчетов значения соотношения $2\Delta^*/k_BT_c = 4,6 \pm 0,2$ для образца S2 находятся в полном согласии с результатами работ по измерению теплоемкости [107], андреевской спектроскопии [105] и вращению мюонных спинов [106]. Причем сравнением с результатами последней работы показано, что СП энергетическая щель в FeSe_{0,94} соответствует двухщелевой s+s модели и, наиболее вероятно, не содержит нулей.

Показано, что при высоких температурах $\Delta^*(T)$ трех образцов имеет форму, характерную для магнитных сверхпроводников (Fe-пниктидов), с узким максимумом при T_{s1} ~ 250 К и длинным линейным участком, спадающим до $T \approx 225$ К (рис. 5). Существенно, что при T_{s1} на намагниченности M(T) образцов S1 и S2 видны четкие особенности, указывающие на то, что при этой температуре, скорее всего, заканчивается перестройка магнитной подсистемы в FeSe0.94. Ниже ~ 225 К зависимости $\Delta^{*}(T)$ образцов сильно различаются. На $\Delta^{*}(T)$ образцов S1 (4 мас.% Ag) и S3 (содержит включения несверхпроводящей гексагональной фазы), приготовленных методом частичного плавления, обнаружен ряд особенностей в виде минимумов и максимумов, которые коррелируют с температурами, при которых наблюдаются особенности на M(T), и коэффициент Холла $R_H(T)$ несколько раз меняет знак при уменьшении T, указывая на изменение типа носителей заряда в FeSe [24,44,45]. В то же время эти особенности полностью отсутствуют на зависимости $\Delta^*(T)$ образца S2, приготовленного методом твердотельной реакции и не содержащего примеси. До температуры структурного перехода $T_s = 85 \text{ K} \text{ S2}$ демонстрирует гладкую кривую $\Delta^*(T)$, типичную для Fe-пниктида EuFeAsO_{0.85}F_{0.15} с близкой $T_c = 11,6$ К [23]. При $T_s = 85$ К есть минимум на $\Delta^*(T)$ всех образцов, но нет особенностей на M(T), что согласуется с представлениями о нематическом характере структурного перехода в FeSe при T_s [3,16,18,24,41-46].

Ниже T_s образец S2 обнаруживает нетипичный для Fe-пниктидов широкий максимум $\Delta^*(T)$. Анализ полученной зависимости позволяет говорить о возможном открытии псевдощели в этом образце FeSe в интервале $T < T_s$, как предполагается в ряде работ [24,45,46,63,82]. Высказано предположение, что в FeSe ниже T_s начинают формироваться флуктуационные куперовские пары (ФКП), наличие которых объясняет наблюдаемое в этом интервале температур увеличение сопротивления образцов FeSe магнитным полем [45,46]. Кроме того, именно ниже T_s нарушается закон Келлера [45,63,81], указывая на возможную перестройку поверхности Ферми, что является основным признаком ПЩ состояния в ВТСП [4,49,82]. Следует отметить, что скэйлинговое поведение магнитосопротивления, которое следует из закона Келлера, восстанавливается ниже $T \approx 25$ К $\approx T_{01}$ [45,63], т.е. в области СП флуктуаций [67]. На основании этого результата можно предположить, что перед СП переходом происходит стабилизация ПФ, что представляется разумным.

Ниже T_s образец S1 также демонстрирует форму $\Delta^*(T)$, напоминающую псевдощель, но измененную влиянием примесей Ag. При ${}^{3}T_{h \rightarrow e} \sim 70$ К имеется несимметричный максимум, ниже которого $\Delta^*(T)$ линейно убывает с температурой вплоть до T_{01} (рис. 5). В то же время никаких особенностей при $T \sim 70$ К на $\Delta^*(T)$ образца S2 нет. Этот результат согласуется с выводами работы [63] о том, что особенности при ${}^{3}T_{h \rightarrow e} \approx 70$ К наблюдаются в образцах FeSe с большими значениями RRR (= 13,6 для S1), но отсутствуют в образцах с малыми RRR (= 3,9 для S2) (табл. 1). Ниже T ~ 70 К начинается практически линейный рост М(Т) обоих образцов S1 и S2, который продолжается вплоть до СП перехода. Интересно отметить, что в FeSe при температуре ${}^{5}T_{h \to e} \sim 70$ К, обозначенной пунктиром на рис. 5, $R_{H}(T)$ опять становится отрицательным, и окончательно происходит изменение типа носителей заряда от дырок к электронам [24,45]. Не исключено, что при этом трансформируется спиновая подсистема ([63] и ссылки в ней), что и приводит к наблюдаемому линейному росту M(T). На зависимости $\Delta^*(T)$ образца S3 ниже T_s практически нет максимума, что позволяет предположить, что несверхпроводящие примеси гексагональной фазы препятствуют образованию спаренных фермионов в S3 вблизи T_c . Также интересно отметить, что никакого максимума $\Delta^*(T)$, а соответственно, и открытия псевдощели в этой области температур у Fe-пниктида EuFeAsO_{0.85}F_{0.15} не наблюдается (см. рис. 6 в [23]), поскольку в этом случае ПЩ открывается при $T^* =$ = 171 К. Этот результат подчеркивает заметную разницу между реализацией ПЩ состояния в FeSe и в Feпниктидах.

Сравнением $\Delta^{*}(T)$ вблизи T_{c} с теорией Питерса-Бауэра [73] определена плотность локальных пар <n↑n↓> всех образцов (рис. 7). Для образцов S1 и S2 экспериментальные значения $\Delta^*(T)$ совпадают с теорией при U/W = 1,2 (S1) и 0,2 (S2) в широком интервале температур выше Т_с, что свидетельствует о хорошей структуре образцов. Максимальное $\langle n_{\uparrow}n_{\downarrow} \rangle (T_G) \approx 0,47$ получено для образца S1. Это заметно больше, чем $< n_{\uparrow}n_{\downarrow} > (T_G) \approx 0.3$, полученное нами для оптимально допированных монокристаллов YBCO [114]. Этот несколько неожиданный результат можно рассматривать как следствие влияния примесей Ад [74,76,77]. Найденное для S2, не содержащего примесей, значение $< n_{\uparrow}n_{\downarrow} > (T_G) \approx 0,29$ практически такое же, как и в YBCO. Этот результат позволяет говорить об общности механизма формирования ФКП вблизи Т_с в различных ВТСП, не содержащих допанты. Зависимость $\Delta^*(T)$ образца S3 не совпадает с теорией ПБ, вероятно, вследствие искажений кристаллической решетки за счет примесей несверхпроводящей гексагональной фазы. Как следствие, плотность локальных пар, $\langle n_{\uparrow}n_{\downarrow} \rangle (T_G) \approx 0,26$, как и ожидалось, оказалась наименьшей из всех трех изученных образцов. Таким образом, все полученные в работе результаты показывают, что различные дефектные ансамбли, возникающие в поликристаллах FeSe_{0,94} при различных способах изготовления, существенным образом влияют на свойства образцов.

Авторы благодарны С.И. Бондаренко и В.П. Гнездилову за полезные обсуждения. Работа частично выполнена в рамках научно-исследовательских проектов между Украинской и Польской, а также Польской и Болгарской Академиями наук.

- E.V.L. de Mello, M.T.D. Orlando, J.L. Gonzalez, E.S. Caixeiro, and E. Baggio-Saitovich, *Phys. Rev. B* 66, 092504 (2002).
- L.J. Shen, C.C. Lam, J.Q. Li, J. Feng, Y.S. Chen, and H.M. Shao, Supercond. Sci. Technol. 11, 1277 (1998).
- 3. V.M. Loktev, R.M. Quick, and S.G. Sharapov, *Phys. Rep.* **349**, 1 (2001).
- Y.Y. Peng, R. Fumagalli, Y. Ding, M. Minola, S. Caprara, D. Betto, M. Bluschke, G.M. De Luca, K. Kummer, E. Lefrançois, M. Salluzzo, H. Suzuki, M. Le Tacon, X.J. Zhou, N.B. Brookes, B. Keimer, L. Braicovich, M. Grilli, and G. Ghiringhelli, *Nat. Mater.* **17**, 697 (2018).
- J. Gao, J.W. Park, K. Kim, S.K. Song, F. Chen, X. Luo, Y. Sun, and H.W. Yeom, *arXiv*:1904.04508 (2019).
- 6. J.L. Tallon, J.G. Storey, J.R. Cooper, and J.W. Loram, *arXiv:1907.12018v1* (2019).
- 7. M. Grandadam, D. Chakraborty, and C. Pepin, *arXiv:1909.06657v1* (2019).
- I. Esterlis, S.A. Kivelson, and D.J. Scalapino, *Phys. Rev. B* 99, 174516 (2019).
- G. Yu, D.-D. Xia, D. Pelc, R.-H. He, N.-H. Kaneko, T. Sasagawa, Y. Li, X. Zhao, N. Barišić, A. Shekhter, and M. Greven, *Phys. Rev. B* 99, 214502 (2019).
- 10. X. Wang, Q Chen, and K. Levin, arXiv:1907.06121v1 (2019).
- A.L. Solovjov, *Pseudogap and Local Pairs in High-T_c* Superconductors, in: Superconductors — Materials, Properties and Applications, A. Gabovich (ed.), Chapter 7, InTech, Rijeka (2012), p. 137.
- 12. T. Timusk and B. Statt, *Rep. Prog. Phys.* **62**, 161 (1999) *arXiv:cond-mat/9905219*.
- 13. M.V. Sadovskii, *Physics-Uspekhi* 51, 1201 (2008).
- S. Badoux, W. Tabis, F. Laliberte, G. Grissonnanche, B. Vignolle, D. Vignolles, J. Beard, D.A. Bonn, W.N. Hardy, R. Liang, N. Doiron-Leyraud, L. Taillefer, and C. Proust, *Nature (London)* 531, 210 (2016).
- Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).

- Z.A. Ren, J. Yang, W. Lu, W. Yi, X.L. Shen, Z.C. Li, G.C. Che, X.L. Dong, L.L. Sun, F. Zhou, and Z.X. Zhao, *Europhys. Lett.* 82, 57002 (2008).
- C. Wang, L.J. Li, S. Chi, Z.W. Zhu, Z. Ren, Y.K. Li, Y.T. Wang, X. Lin, Y.K. Luo, S.A. Jiang, X.F. Xu, G.H. Cao, and Z.A. Xu, *Europhys. Lett.* 83, 67006 (2008).
- Yu.V. Pustovit and A.A. Kordyuk, *Fiz. Nizk. Temp.* 42, 1268 (2016) [*Low Temp. Phys.* 42, 995 (2016)].
- S. Karlsson, P. Strobel, A. Sulpice, C. Marcenat, M. Legendre, F. Gay, S. Pairis, O. Leynaud, and P. Toulemonde, *Supercond. Sci. Technol.* 28, 105009 (2015).
- C.-J. Liu, A. Bhaskar, H.-J. Huang, and F.-H. Lin, *Appl. Phys. Lett.* **104**, 252602 (2014).
- A.L. Solovjov, L.V. Omelchenko, R.V. Vovk, O.V. Dobrovolskiy, Z.F. Nazyrov, S.N. Kamchatnaya, and D.M. Sergeyev, *Physica B* 493, 58 (2016).
- Y. Ando, S. Komiya, K. Segawa, S. Ono, and Y. Kurita, *Phys. Rev. Lett.* 93, 267001 (2004).
- A.L. Solovjov, L.V. Omelchenko, A.V. Terekhov, K. Rogacki, R.V. Vovk, E.P. Khlybov, and A. Chroneos, *Mater. Res. Express* 3, 076001 (2016).
- Y. Sun, S. Pyon, T. Tamegai, R. Kobayashi, T. Watashige, S. Kasahara, Y. Matsuda, and T. Shibauchi, *Phys. Rev. B* 92, 144509 (2015).
- 25. E. Pomjakushina, K. Conder, V. Pomjakushin, M. Bendele, and R. Khasanov, *Phys. Rev. B* **80**, 024517 (2009).
- Y. Mizuguchi, F. Tomioka, S. Tsuda, T. Yamaguchi, and Y. Takano, *Appl. Phys. Lett.* 93, 152505 (2008).
- S. Medvedev, T.M. McQueen, I.A. Troyan, T. Palasyuk, M.I. Eremets, R.J. Cava, S. Naghavi, F. Casper, V. Ksenofontov, G. Wortmann, and C. Felse, *Nat. Mater.* 8, 630 (2009).
- Y. Mizuguchi and Y. Takano, J. Phys. Soc. Jpn. 79, 102001 (2010).
- M.H. Fang, H.M. Pham, B. Qian, T.J. Liu, E.K. Vehstedt, Y. Liu, L. Spinu, and Z.Q. Mao, *Phys. Rev. B* 78, 224503 (2008).
- L. Sun, X.-J. Chen, J. Guo, P. Gao, Q.-Z. Huang, H. Wang, M. Fang, X. Chen, G. Chen, Q. Wu, C. Zhang, D. Gu, X. Dong, L. Wang, Ke Yang, A. Li, X. Dai, Ho-kwang Mao, and Z. Zhao, *Nature* 483, 67 (2012).
- J.-F. Ge, Z.-L. Liu, C. Liu, C.-L. Gao, D. Qian, Q.-K. Xue, Y. Liu, and J.-F. Jia, *Nat. Mater.* 14, 285 (2015).
- Q.-Y. Wang, Z. Li, W.-H. Zhang, Z.-C. Zhang, J.-S. Zhang, W. Li, H. Ding, Y.-B. Ou, P. Deng, and K. Chang, *Chin. Phys. Lett.* 29, 037402 (2012).
- D. Liu, W. Zhang, D. Mou, J. He, Y.-B. Ou, Q.-Y. Wang, Z. Li, L. Wang, L. Zhao, S. He, Y. Peng, X. Liu, C. Chen, L. Yu, G. Liu, X. Dong, J. Zhang, C. Chen, Z. Xu, J. Hu, X. Chen, X. Ma, Q. Xue, and X. J. Zhou, *Nat. Commun.* 3, 931 (2012).
- 34. I. Bozovic and C. Ahn, Nat. Phys. 10, 892 (2014).
- P.L. Bach, S.R. Saha, K. Kirshenbaum, J. Paglione, and R.L. Greene, *Phys. Rev. B* 83, 212506 (2011).
- C.W. Luo, I.H.Wu, P.C. Cheng, J.-Y. Lin, K.H.Wu, T.M. Uen, J.Y. Juang, T. Kobayashi, D.A. Chareev, O.S. Volkova, and A.N. Vasiliev, *Phys. Rev. Lett.* **108**, 257006 (2012).

- V. Gnezdilov, Yu.G. Pashkevich, P. Lemmens, D. Wulferding, T. Shevtsova, A. Gusev, D. Chareev, and A. Vasiliev, *Phys. Rev. B* 87, 144508 (2013).
- S. Margadonna, Y. Takabayashi, M.T. McDonald, K. Kasperkiewicz, Y. Mizuguchi, Y. Takano, A.N. Fitch, E. Suard, and K. Prassides, *Chem. Commun. (Cambridge)* 43, 5607 (2008).
- A.I. Coldea and M.D. Watson, *Annu. Rev. Condens. Matter Phys.* 9, 125 (2018).
- I.A. Nekrasov, N.S. Pavlova, M.V. Sadovskii, and A.A. Slobodchikova, *Fiz. Nizk. Temp.* 42, 1137 (2016) [*Low Temp. Phys.* 42, 891 (2016)].
- J.P. Sun, G.Z. Ye, P. Shahi, J.-Q. Yan, K. Matsuura, H. Kontani, G.M. Zhang, Q. Zhou, B.C. Sales, T. Shibauchi, Y. Uwatoko, D.J. Singh, and J.-G. Cheng, *Phys. Rev. Lett.* 118, 147004 (2017).
- P. Massat, D. Farina, I. Paul, S. Karlsson, P. Strobel, P. Toulemonde, M.-A. Measson, M. Cazayous, A. Sacuto, S. Kasahara, T. Shibauchi, Y. Matsuda, and Y. Gallais, *PNAS* 113, 9177 (2016).
- M.D. Watson, T.K. Kim, A.A. Haghighirad, N.R. Davies, A. McCollam, A. Narayanan, S.F. Blake, Y.L. Chen, S. Ghannadzadeh, A.J. Schoeld, M. Hoesch, C. Meingast, T. Wolf, and A.I. Coldea, *Phys. Rev. B* **91**, 155106 (2015).
- Y.J. Song, J.B. Hong, B.H. Min, K.J. Lee, M.H. Jung, J.-S. Rhyee, and Y.S. Kwon, *J. Korean Phys. Soc.* 59, 312 (2011).
- 45. Y. Sun, S. Pyon, and T. Tamegai, *Phys. Rev. B* **93**, 104502 (2016).
- S. Kasahara, T. Yamashita, A. Shi, R. Kobayashi, Y. Shimoyama, T. Watashige, K. Ishida, T. Terashima, T. Wolf, F. Hardy, C. Meingast, H. v. Löhneysen, A. Levchenko, T. Shibauchi, and Y. Matsuda, *Nat. Commun.* 7, 12843 (2016).
- 47. M. Randeria, Nat. Phys. 6, 561 (2010).
- W. Lang, G. Heine, P. Schwab, X.Z. Wang, and D. Bauerle, *Phys. Rev. B* 49, 4209 (1994).
- 49. L. Taillefer, Annu. Rev. Condens. Matter Phys. 1, 51 (2010).
- S. Dzhumanov, E.X. Karimboev, U.T. Kurbanov, O.K. Ganiev, and Sh.S. Djumanov, *Superlattices and Microstructures* (Elsevier) 68, 6 (2014).
- 51. B.P. Stojkovic and D. Pines, *Phys. Rev. B* 55, 8576 (1997).
- A.L. Solovjov, L.V. Omelchenko, V.B. Stepanov, R.V. Vovk, H.-U. Habermeier, H. Lochmajer, P. Przysłupski, and K. Rogacki, *Phys. Rev. B* 94, 224505 (2016).
- 53. L.G. Aslamazov and A.L. Larkin, Phys. Lett. A 26, 238 (1968).
- 54. S. Hikami and A.I. Larkin, Mod. Phys. Lett. B 2, 693 (1988).
- J. Corson, R. Mallozzi, J. Orenstein, J.N. Eckstein, and I. Bozovic, *Nature (London)* 398, 221 (1999).
- K. Kawabata, S. Tsukui, Y. Shono, O. Michikami, H. Sasakura, K. Yoshiara, Y. Kakehi, and T. Yotsuya, *Phys. Rev. B* 58, 2458 (1998).
- Y. Yamada, K. Anagawa, T. Shibauchi, T. Fujii, T. Watanabe, A. Matsuda, and M. Suzuki, *Phys. Rev. B* 68, 054533 (2003).
- 58. V.J. Emery and S.A. Kivelson, *Nature (London)* 374, 434 (1995).
- P.G. DeGennes, Superconductivity of Metals and Alloys, W.A. Benjamin Inc., New York, Amsterdam (1996), p. 280.
- M.S. Grbic, M. Pozek, D. Paar, V. Hinkov, M. Raichle, D. Haug, B. Keimer, N. Baricic, and A. Dulcic, *Phys. Rev. B* 83, 144508 (2011).

- I. Pallecchi, M. Tropeano, C. Ferdeghini, G. Lamura, A. Martinelli, A. Palenzona, and M. Putti, *J. Supercond. Nov. Magn.* 24, 1751 (2011).
- P. Mishra, H. Lohani, R.A. Zargar, V.P.S. Awana, and B.R. Sekhar, *AIP Conf. Proc.* 1665, 130015 (2015).
- S. Rößler, C.-L. Huang, L. Jiao, C. Koz, U. Schwarz, and S. Wirth, *Phys. Rev. B* 97, 094503 (2018).
- L. Craco, M.S. Laad, and S. Leoni, J. Phys.: Conf. Ser. 487, 012017 (2014).
- A. Yamasaki, Y. Matsui, S. Imada, K. Takase, H. Azuma, T. Muro, Y. Kato, A. Higashiya, A. Sekiyama, S. Suga, M. Yabashi, K. Tamasaku, T. Ishikawa, K. Terashima, H. Kobori, A. Sugimura, N. Umeyama, H. Sato, Y. Hara, N. Miyagawa, and S.I. Ikeda, *Phys. Rev. B* 82, 184511 (2010).
- R. Yoshida, T. Wakita, H. Okazaki, Y. Mizuguchi, S. Tsuda, Y. Takano, H. Takeya, K. Hirata, T. Muro, M. Okawa, K. Ishizaka, S. Shin, H. Harima, M. Hirai, Y. Muraoka, and T. Yokoya, *J. Phys. Soc. Jpn.* 78, 034708 (2009).
- A.L. Solovjov, E.V. Petrenko, V.B. Stepanov, E. Nazarova, K. Buchkov, and K. Rogacki, submitted to *Phys. Rev. B.*
- Yu.G. Naidyuk, N.V. Gamayunova, O.E. Kvitnitskaya, G. Fuchs, D.A. Chareev, and A.N. Vasiliev, *Fiz. Nizk. Temp.* 42, 42 (2016) [*Low Temp. Phys.* 42, 31 (2016)].
- H. Alloul, T. Ohno, and P. Mendels, *Phys. Rev. Lett.* 63, 1700 (1989).
- T. Kondo, A.D. Palczewski, Y. Hamaya, T. Takeuchi, J.S. Wen, Z.J. Xu, G. Gu, and A. Kaminski, *Phys. Rev. Lett.* 111, 157003 (2013).
- A. Shi, T. Arai, S. Kitagawa, T. Yamanaka, K. Ishida, A.E. Bohmer, C. Meingast, T. Wolf, M. Hirata, and T. Sasaki, *J. Phys. Soc. Jpn.* 87, 013704 (2018).
- А.Л. Соловьев, А.В. Терехов, Е.В. Петренко, Л.В. Омельченко, Zhang Cuiping, ΦΗΤ 45, 1403 (2019) [Low Temp. Phys. 45, 1193 (2019)].
- 73. R. Peters and J. Bauer, Phys. Rev. B 92, 014511 (2015).
- E. Nazarova, N. Balchev, K. Nenkov, K. Buchkov, D. Kovacheva, A. Zahariev, and G. Fuchs, *Supercond. Sci. Technol.* 28, 025013 (2015).
- 75. P. Rani, A. Pal, and V.P.S. Awana, *Physica C* 497, 19 (2014).
- R. Mawassi, S. Marhaba, M. Roumié, R. Awad, M. Korek, and I. Hassan, J. Supercond. Nov. Magn. 27, 1131 (2014).
- K. Fabitha, M.S. Ramachandra Rao, M. Muralidhar, K. Furutani, and M. Murakami, *J. Supercond. Nov. Magn.* 30, 3117 (2017).
- A. Galluzzi, M. Polichetti, K. Buchkov, E. Nazarova, D. Mancusi, and S. Pace, *Supercond. Sci. Technol.* **30**, 025013 (2017).
- E. Nazarova, K. Buchkov, S. Terzieva, K. Nenkov, A. Zahariev, D. Kovacheva, N. Balchev, and G. Fuchs, *J. Supercond. Nov. Magn.* 28, 1135 (2015).
- N. Chen, Z. Ma, Y. Liu, X. Li, Q. Cai, H. Li and L. Yu, J. Alloys Compd. 588, 418 (2014).
- E. Nazarova, N. Balchev, K. Buchkov, K. Nenkov, D. Kovacheva, D. Gajda, and G. Fuchs, in: *High-Temperature Superconductors: Occurrence, Synthesis and Applications*, M. Miryala and M.R. Koblischka (eds.), Nova Science Publishers (2018), Chap. 8, p. 195.

- А.Л. Соловьев, В.М. Дмитериев, ФНТ 32, 139 (2006) [Low Temp. Phys. 32, 99 (2006)].
- Α.Л. Соловьев, Н.-U. Habermeier, Τ. Haage, ΦΗΤ 28, 24 (2002) [Low Temp. Phys. 28, 17 (2002)].
- B. Oh, K. Char, A.D. Kent, M. Naito, M.R. Beasley, T.H. Geballe, R.H. Hammond, A. Kapitulnik, and J.M. Graybeal, *Phys. Rev. B* 37, 7861 (1988).
- 85. V.L. Ginzburg and L.D. Landau, JETP 20, 1064 (1950).
- E.M. Lifshitz and L.P. Pitaevski, *Statistical Physics*, vol. 2, Nauka, Moscow (1978).
- A. Kapitulnik, M.R. Beasley, C. Castellani, and C. Di Castro, *Phys. Rev. B* 37, 537 (1988).
- T. Schneider and J.M. Singer, *Phase Transition Approach to High-Temperature Superconductivity: Universal Properties of Cuprate Superconductors*, Imperial College Press, London (2000).
- B. Leridon, A. Defossez, J. Dumont, J. Lesueur, and J.P. Contour, *Phys. Rev. Lett.* 87, 197007 (2001).
- А.Л. Соловьев, В.М. Дмитриев, ФНТ 35, 227 (2009) [Low Temp. Phys. 35, 169 (2009)].
- J. Stajic, A. Iyengar, K. Levin, B.R. Boyce, and T.R. Lemberger, *Phys. Rev. B* 68, 024520 (2003).
- D.S. Inosov, J.T. Park, A. Charnukha, Yuan Li, A.V. Boris, B. Keimer, and V. Hinkov, *Phys. Rev. B* 83, 214520 (2011).
- Ø. Fischer, M. Kugler, I. Maggio-Aprile, and C. Berthod, *Rev. Mod. Phys.* 79, 353 (2007).
- A.I. D'yachenko and V.Yu. Tarenkov, *Phys. Technnol. High Press.* 24, 24 (2014).
- J.P. Carbotte, T. Timusk, and J. Hwang, *Rep. Prog. Phys.* 74, 066501 (2011).
- E.G. Maksimov, M.L. Kulić, and O.V. Dolgov, *Adv. Condens. Matter. Phys.* (2010), Article ID 423725 (2010).
- 97. Guo-meng Zhao, Physica Scripta 83, 038302 (2011).
- M.R. Norman, in: *Novel Superfluids*, vol. 2, K.H. Bennemann and J.B. Ketterson (eds.), Oxford University Press (2013).
- 99. D.J. Scalapino, Rev. Mod. Phys. 84, 1383 (2012).
- C. Berthod, Y. Fasano, I. Maggio-Aprile, A. Piriou, E. Giannini, G. Levy de Castro, and Ø. Fischer, *Phys. Rev. B* 88, 014528 (2013).
- 101. S. Ideta, T. Yoshida, A. Fujimori, H. Anzai, T. Fujita, A. Ino, M. Arita, H. Namatame, M. Taniguchi, Z.-X. Shen, K. Takashima, K. Kojima, and S. Uchida, *Phys. Rev. B* 85, 104515 (2012).
- 102. J.W. Alldredge, K. Fujita, H. Eisaki, S. Uchida, and K. McElroy, *Phys. Rev. B* 87, 104520 (2013).
- 103. T. Kurosawa, T. Yoneyama, Y. Takano, M. Hagiwara, R. Inoue, N. Hagiwara, K. Kurusu, K. Takeyama, N. Momono, M. Oda, and M. Ido, *Phys. Rev. B* 81, 094519 (2010).
- 104. A. Pushp, C.V. Parker, A.N. Pasupathy, K.K. Gomes, S. Ono, J. Wen, Z. Xu, G. Gu, and A. Yazdani, *Science* **324**, 1689 (2009).
- 105. Ya.G. Ponomarev, S.A. Kuzmichev, M.G. Mikheev, M.V. Sudakova, S.N. Tchesnokov, T.E. Shanygina, O.S. Volkova, A.N. Vasiliev, and Th. Wolf, *JETP* 113, 459 (2011).
- R. Khasanov, K. Conder, E. Pomjakushina, A. Amato, C. Baines, Z. Bukowski, J. Karpinski, S. Katrych, H.-H. Klauss, H. Luetkens, A. Shengelaya, and N. D. Zhigadlo, *Phys. Rev. B* 78, 220510(R) (2008).

- 107. Y. Sun, S. Kittaka, S. Nakamura, T. Sakakibara, K. Irie, T. Nomoto, K. Machida, J. Chen, and T. Tamegai, *Phys. Rev. B* 96, 220505(R) (2017).
- A. Subedi, L. Zhang, D.J. Singh, and M.H. Du, *Phys. Rev. B* 78, 134514 (2008).
- A.L. Solovjov, V.N. Svetlov, V.B. Stepanov, S.L. Sidorov, V.Yu. Tarenkov, A.I. Dyachenko, and A.B. Agafonov, *Fiz. Nizk. Temp.* 37, 703 (2011) [Low Temp. Phys. 37, 557 (2011)].
- T.M. McQueen, A.J. Williams, P.W. Stephens, J. Tao, Y. Zhu, V. Ksenofontov, F. Casper, C. Felser, and R.J. Cava, *Phys. Rev. Lett.* 103, 057002 (2009).
- R.M. Fernandes, A.V. Chubukov, and J. Schmalian, *Nat. Phys.* 10, 97 (2014).
- 112. S. Rößler, C. Koz, L. Jiao, U.K. Rößler, F. Steglich, U. Schwarz, and S. Wirth, *Phys. Rev. B* 92, 060505(R) (2015).
- 113. T. Imai, K. Ahilan, F.L. Ning, T.M. McQueen, and R.J. Cava, *Phys. Rev. Lett.* **102**, 177005 (2009).
- A.L. Solovjov, E.V. Petrenko, L.V. Omelchenko, R.V. Vovk,
 I.L. Goulatis, and A. Chroneos, *Sci. Rep.* 9, 9274 (2019).
- Особливості надлишкової провідності та можлива псевдощілина у надпровідниках FeSe

А.Л. Соловйов, Є.В. Петренко, Л.В. Омельченко, E. Nazarova, K. Buchkov, K. Rogacki

Досліджено температурну залежність надлишкової провідності б'(Т) в трьох полікристалічних зразках надпровідника FeSe0.94, які виготовлено за різною технологією. Отримані з вимірювань температурні залежності параметра $\Delta^*(T)$, який в купратах асоціюється з псевдощілиною, проаналізовано в моделі локальних пар. При високих температурах усі три зразки демонструють високий вузький максимум $\Delta^*(T)$ при $T_{s1} \sim 250$ К, який є типовим для магнітних надпровідників. Нижче $T \approx 225$ К залежності $\Delta^*(T)$ відрізняються. Практично в усьому інтервалі температур нижче T_{s1} зразок S2, який був виготовлений методом твердотільної реакції й не містить домішок, демонструє $\Delta^*(T)$, типову для Fe-пниктидів. Виняток становить інтервал від температури структурного переходу $T_s = 85$ К до T_c , де $\Delta^*(T)$ має нетиповий широкий максимум. Аналіз отриманої залежності дає змогу говорити про відкриття псевдощілини в цьому зразку FeSe_{0.94} нижче T_s. Виготовлені методом часткового плавлення зразки S1, який містить 4 мас.% Ag, та S3, який має номінальну композицію, але містить включення ненадпровідної гексагональної фази, демонструють ідентичні $\Delta^*(T)$, проте відмінні від S2. На них виявлено ряд особливостей, які корелюють з температурами, при яких спостерігаються особливості на M(T), і коефіцієнт Хола $R_H(T)$ декілька разів змінює знак при зменшенні T, вказуючи на зміну типу носіїв заряду в FeSe. Нижче T_s зразок S1 також демонструє форму $\Delta^*(T)$, яка нагадує псевдощілину, але спотворену впливом домішок Ag. На залежності $\Delta^*(T)$ зразка S3 нижче T_s практично немає максимуму, оскільки ненадпровідні домішки гексагональної фази перешкоджають утворенню спарених ферміонів у S3 поблизу T_c . Як наслідок, S3 має й мінімальну густину локальних пар $\langle n_{\uparrow}n_{\downarrow} \rangle = 0,26$, яка була визначена шляхом порівняння $\Delta^*(T_G)/\Delta_{\text{max}}$ поблизу T_c з теорією Пітерса–Бауера, а залежність $\Delta^*(T)$ не узгоджується з теорією. Максимальну $\langle n_{\uparrow}n_{\downarrow} \rangle = 0,47$ має S1 імовірно внаслідок впливу домішок Ag. Зразок S2, що не містить домішок, має $\langle n_{\uparrow}n_{\downarrow} \rangle \approx 0,3$, таку ж, як і в YBa₂Cu₃O_{7-δ}, й обидві залежності $\Delta^*(T)$ для S1 та S2 узгоджуються з теорією в широкому інтервалі температур.

Ключові слова: халькогеніди FeSe, магнетизм, надлишкова провідність, псевдощільовий стан, намагніченість, локальні пари.

Features of excess conductivity and a possible pseudogap in FeSe superconductors

A.L. Solovjov, E.V. Petrenko, L.V. Omelchenko, E. Nazarova, K. Buchkov, and K. Rogacki

The temperature dependence of the excess conductivity $\sigma'(T)$ in three polycrystalline samples of the FeSe_{0.94} superconductor prepared by various technologies was studied. Obtained from the measurements, the temperature dependences of the parameter $\Delta^*(T)$ which in cuprates is associated with a pseudogap, were analyzed in the model of local pairs. At high temperatures, all three samples exhibit a high narrow maximum $\Delta^*(T)$ at $T_{s1} \sim 250$ K, typical of magnetic superconductors. Below $T \approx 225$ K, the dependences $\Delta^*(T)$ become different. In almost the entire temperature range below T_{s1} , sample S2, prepared by the solid-state reaction method and not containing impurities, shows $\Delta^*(T)$ typical of Fe pnictides. An exception is an interval from the temperature of the structural transition $T_s = 85$ K to T_c , where $\Delta^*(T)$ exhibits an atypical broad maximum. An analysis of the obtained dependence suggests the discovery of a pseudogap in this $FeSe_{0.94}$ sample below T_s . Samples S1 containing 4 wt% Ag and S3, with nominal composition, but containing nonsuperconducting inclusions of the hexagonal phase, both obtained by partial melting, show identical $\Delta^*(T)$, but different from S2. They reveal a number of features that correlate with temperatures at which features are observed on M(T) and the Hall coefficient $R_{H}(T)$ changes sign several times with decreasing T, indicating a change in the type of charge carriers in FeSe. The dependence $\Delta^*(T)$ of sample S3 below T_s has practically no maximum, since non-superconducting impurities of the hexagonal phase prevent the formation of paired fermions in S3 near T_c . As a consequence, S3 has a minimum density of local pairs $\langle n_{\uparrow}n_{\downarrow} \rangle = 0.26$, determined by comparing $\Delta^*(T_G)/\Delta_{max}$ near T_c with the Peters-Bauer theory, and the dependence $\Delta^*(T)$ does not follow the theory. S1 has a maximal $\langle n_{\uparrow}n_{\downarrow} \rangle = 0.47$, most likely due to the influence of Ag impurities. S2 does not contain impurities, and found $< n_{\uparrow}n_{\downarrow} > \approx 0.3$ is the same as in YBa₂Cu₃O_{7- δ}. Importantly, both dependences $\Delta^*(T)$ for S1 and S2 follow the theory in a wide temperature range.

Keywords: FeSe chalcogenides, magnetism, excess conductivity, pseudogap state, magnetization, local pairs.