Квантовые эффекты в германиевой квантовой яме со сверхвысокой подвижностью носителей заряда

И.Б. Беркутов^{1,2,3}, В.В. Андриевский¹, Ю.А. Колесниченко¹, О.А. Миронов^{2,4}

¹ Физико-технический институт низких температур им. Б.И. Веркина НАН Украины пр. Науки, 47, г. Харьков, 61103, Украина

²Institute of Low Temperature and Structure Research, Polish Academy of Sciences ul. Okólna 2, 50-422, Wrocław, Poland

³Department of Physics, North Carolina State University, Raleigh, NC 27695, USA

⁴Department of Physics, University of Warwick, Coventry CV4 7AL, UK E-mail: ibercutov@gmail.com

Статья поступила в редакцию 3 июля 2019 г., опубликована онлайн 27 сентября 2019 г.

Проведено комплексное исследование квантовых эффектов в дырочной гетероструктуре $Si_{0,2}Ge_{0,8}/Ge/Si_{0,2}Ge_{0,8}$ с экстремально высокой подвижностью носителей заряда $\mu_H = 1367000 \text{ сm}^2/(B \cdot c)$. Из анализа магнитоквантовых осцилляций Шубникова–де Гааза получены значение эффективной массы носителей заряда, оказавшееся очень низким, $m^* = 0,062m_0$, а также величина флуктуаций концентрации дырок вдоль канала $\delta p = 3,5 \cdot 10^9 \text{ сm}^{-2}$. В сильных магнитных полях обнаружен дробный эффект Холла (с числами заполнения 8/3, 7/3, 5/3, 4/3), наблюдавшийся при температурах вплоть до 5 К. Исследования квантовых интерференционных эффектов слабой локализации и электрон-электронного взаимодействия носителей заряда, проведенные в такой высокоподвижной системе впервые, позволили рассчитать значение спинового расщепления $\Delta = 1,07$ мэВ и константы ферми-жидкостного взаимодействия $F_0^{\sigma} = -0,12$, которые согласуются с полученными ранее результатами.

Ключевые слова: двумерный проводник, эффект Шубникова-де Гааза, квантовые интерференционные эффекты, дробный эффект Холла, магнитосопротивление.

1. Ведение

Изучение вклада квантовых эффектов в зависимости электропроводности квазидвумерных проводящих систем от температуры и внешнего магнитного поля имеет фундаментальное значение, позволяя получить информацию о знаке, эффективной массе и концентрации носителей заряда, а также временах их упругой, неупругой и спиновой релаксации [1,2]. Эти исследования важны и для практических применений в силу использования двумерных проводников в элементах современной наноэлектроники [3,4].

Наличие беспорядка, связанного с процессами рассеяния, приводит к появлению квантовых поправок в проводимости, которые обусловлены слабой локализацией электронов (weak localization, WL) [5,6] и электрон-электронным взаимодействием (electron-electron interaction, EEI) [7–9]. В результате в области низких температур электрическое сопротивление двумерной системы имеет специфический отклик на изменения температуры и магнитного поля. Существующая теория хорошо описывает как диффузионный режим релаксации [4–10], так и случаи баллистического и переходного режимов релаксации [11,12]. Она позволяет адекватно трактовать аномальное поведение низкотемпературного сопротивления в двумерных электронных системах и получить информацию о фазовой и спиновой релаксации электронов, а также параметрах их взаимодействия. Объектами экспериментальных исследований, в которых наблюдаются квантовые интерференционные эффекты WL и EEI, являются тонкие металлические пленки [13,14], инверсионные слои [15,16], δ -слои [17,18], гетероструктуры в полупроводниках [19,20] и др.

В слабых магнитных полях зависимость проводимости от магнитного поля *В* связана с разрушением слабой локализации, а в сильных магнитных полях возникают осцилляции Шубникова–де Гааза (ШдГ). Исследование магнитосопротивления двумерных проводящих систем позволяет получить информацию о ряде важных харак-

© И.Б. Беркутов, В.В. Андриевский, Ю.А. Колесниченко, О.А. Миронов, 2019

теристик носителей заряда (концентрации, эффективной массе, временах релаксации и т.д.).

Создание разнообразных двумерных проводящих систем с высокоподвижными свободными носителями заряда стимулировало проведение новых экспериментальных исследований магнитоосцилляционных и квантовых интерференционных эффектов [21,22]. Дело в том, что для проявления квантовых интерференционных эффектов требуется определенная степень разупорядочения в объектах исследований, а объекты, в которых эти эффекты проявляются наиболее ярко, обычно имеют небольшую подвижность электронов. В то же время в высокоподвижных системах, отличающихся высокой чистотой, возникает возможность исследовать более тонкие эффекты, неразличимые в «грязных» системах. В данной работе представлены исследования квантовых эффектов в системе, обладающей сверхвысокой подвижностью носителей заряда дырочного типа. Получены значения эффективной массы дырок, оказавшиеся очень низкими, а также величина флуктуаций концентрации носителей вдоль канала. В сильных магнитных полях обнаружен дробный эффект Холла с числами заполнения 8/3, 7/3, 5/3, 4/3, наблюдавшийся при температурах вплоть до 5 К. Впервые в SiGe системах с высокой подвижностью носителей заряда исследованы квантовые интерференционные эффекты: слабая локализация и эффекты взаимодействия носителей заряда. Рассчитаны значения времен релаксации, спинового расщепления и константы ферми-жидкостного взаимодействия.

2. Объект исследования

Исследована гетероструктура, созданная на основе SiGe с квантовой ямой из чистого германия, обладающая дырочным типом проводимости. Она представляла собой слой предельно напряженного чистого германия толщиной (20 ± 1) нм, расположенного между двумя ненапряженными слоями состава Si_{0,2}Ge_{0,8}. Слой такого же состава, допированный бором с концентрацией 1,4·10¹⁸ см⁻³, располагался над германиевым каналом на расстоянии (26 ± 1) нм и благодаря туннелированию обеспечивал заполнение этого канала свободными но-сителями заряда. Более подробно многослойная структура образца описана в работах [23,24].

Измерения диагональной R_{xx} и недиагональной R_{xy} компонент сопротивления как функции температуры и напряженности магнитного поля выполнены с использованием стандартной look-in методики в магнитных полях до 12 Тл в интервале температур 1,45–10 К.

3. Магнитоквантовые эффекты

На рис. 1 представлены экспериментальные зависимости $\rho_{xx}(B)$ и $\rho_{xy}(B)$ при низкой температуре (ρ — сопротивление квадратного участка двумерной электронной системы).

Рис. 1. Магнитополевые зависимости сопротивления ρ_{xx} и ρ_{xy} при T = 1,28 К.

Как указывалось ранее, экспериментальное исследование осцилляций ШдГ проводящей системы дает возможность определить значение эффективной массы свободных носителей заряда. В данной работе проделаны расчеты, аналогичные описанным в работах [25,26]. Наиболее подробно экспериментально исследован участок магнитных полей в диапазоне 1,2-2,5 Тл. В области слабых магнитный полей существенно влияние квантовых интерференционных эффектов (которые будут описаны ниже). В более сильных магнитных полях проявляется зеемановское расщепление осцилляций ШдГ, что заметно усложняет анализ. В основу указанных расчетов положена теоретическая модель [27], согласно которой изменение сопротивления двумерной проводящей системы в условиях выраженных магнитоквантовых эффектов и в случае однородного уширения уровней Ландау описывается формулой

$$\rho_{xx} = \frac{1}{\sigma_0} \left[1 + 4 \sum_{s=1}^{\infty} \left(\frac{\Psi s}{\operatorname{sh} \Psi s} \right) \exp\left(-\frac{\pi s}{\omega_c \tau_q} \right) \cos\left(\frac{2\pi s \varepsilon_F}{\hbar \omega_c} - \Phi \right) \right],\tag{1}$$

где $\Psi = 2\pi^2 k_B T / (\hbar \omega_c)$ определяет температурную и магнитополевую зависимости амплитуды осцилляций, $\omega_c = eB / m^*$ — циклотронная частота, τ_q — квантовое время релаксации носителей заряда, характеризующее уширение уровней Ландау, Φ — фаза, ε_F — энергия Ферми. В расчетах и необходимых построениях используется полный набор экспериментальных данных о сопротивлении образца в зависимости как от температуры, так и от величины магнитного поля.

Для определения эффективной массы свободных носителей заряда используется построение в коорди-

натах $\ln\left[\frac{\Delta R}{R_0}\frac{\operatorname{sh}\Psi}{\Psi}\right]$ от $\frac{1}{\omega_c \tau}$ или $\frac{1}{\mu B}$, где μ — подвиж-

ность носителей заряда (величина в показателе экспоненты в осциллирующем слагаемом формулы (1) преобразуется в $-\pi\alpha/(\omega_c \tau)$, где $\alpha = \tau/\tau_q$, τ транспортное время релаксации). На основании выражения (1) определена величина эффективной массы $m^* = 0.062m_0$ (рис. 2(а), сплошная линия), где m_0 масса свободного электрона и $\alpha = 72$ (рис. 2(б)).

Аналогичные расчеты были проведены в работах [23,24], однако, как показал более детальный анализ, в слабых магнитных полях (рис. 2(а)) наблюдается отклонение экспериментальных значений от теоретической зависимости (1). В работе [28] отмечалось, что

Рис. 2. Результаты численного расчета параметров *m*^{*} и α, выполненного с использованием теоретической модели [27]. Сплошная линия (а) построена в соответствии с соотношением (1), штриховая — с учетом экспоненциального множителя, учитывающего «неоднородное уширение» уровней Ландау [28]. Сплошная линия (б) соответствует наклону 45°.

нелинейность в указанных выше координатах может быть обусловлена изменением концентрации свободных носителей заряда и их энергии Ферми вследствие естественной локальной неоднородности ширины квантового проводящего канала. Эта неоднородность может приводить к тому, что экстремумы осцилляций в разных областях канала на шкале магнитных полей не будут совпадать. Суммарная амплитуда осцилляций при этом уменьшится по сравнению с ее значением в квантовом канале постоянной ширины. Это соответствует дополнительному эффективному уширению уровней Ландау, называемому «неоднородным уширением». Для численного описания такого уширения в выражении для амплитуды осцилляций (1) необходимо добавить дополнительный член с показателем $-(\pi \delta \varepsilon_F / \hbar \omega_c)^2$, тогда экспоненциальный сомножитель в формуле (1) приобретает вид [28]

$$\exp\left[-\frac{\pi}{\omega_c \tau_q} - \left(\frac{\pi^2 \hbar \delta n}{m^* \omega_c}\right)^2\right].$$
 (2)

Результаты проведенных расчетов с учетом выражения (2) представлены пунктирной линией на рис. 2(а).

Численные оценки позволили найти величину флуктуации концентрации $\delta p = 3,5 \cdot 10^9$ см⁻², которая составляет ~ 1,25% средней концентрации носителей $p_H =$ $= 2,8 \cdot 10^{11}$ см⁻², полученной из измерений коэффициента Холла. Следует отметить также, что подобные расчеты с использованием поправки (2) были проделаны в работе [28] для серии образцов InP/In0.53Ga0.57As с концентрацией электронов в пределах $p_H = (1,7-2,16) \cdot 10^{11} \text{ см}^{-2}$ и подвижностью $\mu_H = 38100 - 83800 \text{ см}^2/(\text{B}\cdot\text{c})$, а в работах [25,29], для образцов (Si_{0.3}Ge_{0.7}/Ge/Si_{0.3}Ge_{0.7} и Si/Si_{0,87}Ge_{0,13}/Si), с дырочным типом проводимости с концентрациями носителей заряда $p_H = 5,81 \cdot 10^{11} \text{ см}^{-2}$ и $p_H = 1,89 \cdot 10^{11} \text{ см}^{-2}$, и подвижностями $\mu_H = 46800$ и 11700 см²/(В·с) соответственно. Полученные в работе [28] значения флуктуации концентрации δp = $= (9,5-9) \cdot 10^9$ см⁻² составляли 5,6-4,2% общей концентрации носителей заряда, а в работах [25,29] значения $\delta p = 2.7 \cdot 10^9$ см⁻² составляли 6.5 и 2.1% соответственно. Как следует из выражения (2), влияние второго слагаемого в экспоненциальном множителе уменьшается в области сильных магнитных полей. Полученное значение флуктуации концентрации порядка 1% (от общей концентрации дырок) свидетельствует об исключительной чистоте квантового канала в исследованной нами системе, и наблюдение «неоднородного уширения» уровней Ландау стало возможным только благодаря рекордно высокой подвижности зарядов: $\mu_H = 1367000 \text{ cm}^2/(\text{B}\cdot\text{c}).$

Интересным результатом проведенных исследований оказалось также обнаружение на кривых магнитосопротивления исследованного образца минимумов, связанных с проявлением в системе дробного эффекта

Рис. 3. Магнитополевые зависимости сопротивлений ρ_{xx} и ρ_{xy} . Пунктирные стрелки обозначают положения экстремумов с дробными значениями фактора заполнения.

Холла (рис. 3(а)). Следует отметить, что в работе [30] уже сообщалось об обнаружении данного эффекта в аналогичной системе, однако в настоящем исследовании указанный эффект обнаружен при более низких магнитных полях и существенно более высоких температурах (рис. 3(б)).

4. Квантовые интерференционные эффекты

Эксперименты показали, что в слабых магнитных полях зависимость магнитосопротивления исследованного образца от поля представляет собой кривую с максимумом (рис. 4(а)), что свидетельствует о проявлении квантовых интерференционных эффектов WL и EEI. Следует учитывать, что эффекты WL наблюдаются в основном в диффузионном режиме взаимодействия носителей заряда ($k_BT\tau/\hbar < 1$). Эффекты же EEI могут проявиться как в диффузионном, так и в переходном и даже в баллистическом ($k_BT\tau/\hbar > 1$) режимах [11].

Рис. 4. Магнитополевые зависимости сопротивления ρ_{xx} .

Для описания экспериментальных результатов в ультраслабых магнитных полях (*B* < 0,05 Тл) была использована методика, предложенная в работе [31], в основе которой лежит теоретическая модель [32]. Данная модель рассматривает недеформированные и деформированные объемные полупроводники р-типа, а также структуры с квантовыми ямами на их основе. При этом учитывается то обстоятельство, что в полупроводниках А^ШВ^V, Si, Ge и гетероструктурах на их основе валентная зона формируется за счет сильного спин-орбитального взаимодействия, и полный момент оказывается связанным с квазиимпульсом частицы. В результате времена спиновой и импульсной релаксации одного порядка. Кроме того, для гетероструктур, характеризующихся наличием внутреннего градиента потенциала, спин-орбитальные процессы в направлениях перпендикулярном и параллельном гетеропереходу происходят по-разному. Согласно этой теоретической модели, поправка к проводимости двумерной дырочной системы, обусловленная влиянием эффекта WL, описывается следующим выражением:

$$\delta \sigma_{xx}^{WL}(B) = \frac{D_i^0}{D_a^0} \frac{e^2}{4\pi^2 \hbar} \left[2f_2 \left(\frac{4eDB}{\hbar} \frac{\tau_{\varphi} \tau_{\parallel}}{\tau_{\varphi} + \tau_{\parallel}} \right) + f_2 \left(\frac{4eDB}{\hbar} \frac{\tau_{\varphi} \tau_{\perp}}{\tau_{\varphi} + \tau_{\perp}} \right) - f_2 \left(\frac{4eDB}{\hbar} \tau_{\varphi} \right) \right], \quad (3)$$

 $_4 \vdash (a)$

где $f_2(x) = \ln(x) + \Psi\left(\frac{1}{2} + \frac{1}{x}\right)$ (здесь Ψ — дигамма функция), τ_{0} — время фазовой релаксации, τ_{\parallel} и τ_{\perp} времена продольной и поперечной спиновой релаксации соответственно, а роль выделенной оси играет нормаль к плоскости квантовой ямы, $D = v_F^2 \tau / 2$ коэффициент диффузии. Значение отношения D_i^0 / D_a^0 , характеризующее степень напряженности структуры и используемое в качестве одного из подгоночных параметров, оказалось для исследованного образца равным 200. На рис. 5 показаны результаты численного описания экспериментальных данных с помощью уравнения (3) с использованием $\tau_{\phi},\,\tau_{\parallel}$ и τ_{\perp} в качестве подгоночных параметров. Найденное значение времени фазовой релаксации τ_φ может быть аппроксимировано зависимостью $\tau_{\phi} \simeq 8, 7 \cdot 10^{-14} T^{-0,4} c$, аналогичной полученной для гетероструктур с составами Si_{0.2}Ge_{0.8} и Si_{0.05}Ge_{0.95}. имеющих квантовую яму [33]. Времена продольной и поперечной спиновой релаксации не зависят от температуры и равны соответственно $\tau_{\parallel} = 2 \cdot 10^{-14}$ с и $\tau_{\perp} = 3, 2 \cdot 10^{-14} \text{ c}.$

Снятие спинового вырождения в полупроводниках и гетеропереходах приводит к возникновению двух электронных спиновых подсистем с близкими параметрами. Причинами снятия спинового вырождения может быть асимметричное кристаллическое поле, существующее в полупроводниковом кристалле без центра инверсии (модель Дрессельхауза [34]), либо влияние неоднородного возмущающего потенциала, связанного с возникновением асимметричной потенциальной ямы при образовании гетероструктуры (модель Рашбы [35,36]). В изученной системе спиновое расщепление определяется механизмом Рашбы, поскольку Si и Ge — центросимметричные кристаллы.

В системах с расщепленными спиновыми состояниями основным механизмом спин-орбитальной релаксации является механизм Дьяконова–Переля [37]. Спиновое расщепление Δ эквивалентно магнитному полю, действующему на спин, в результате чего спин прецессирует с частотой Ω_0 . Изменение направления импульса электрона при рассеянии приводит к повороту оси прецессии. В условиях, когда

$$\Omega_0 \tau \ll 1, \tag{4}$$

спиновая релаксация определяется соотношением

$$\tau_{\perp}^{-1} \approx \Omega_0^2 \tau, \tag{5}$$

где частота прецессии $\Omega_0 = \Delta / 2\hbar$. Из уравнения (5) получена величина спинового расщепления $\Delta = 1,07$ мэВ, соизмеримая со значением, полученным в работе [38].

Эффекты электрон-электронного взаимодействия в исследованной системе рассчитывались в соответствии

Рис. 5. Зависимость величины $\Delta \sigma_{\chi\chi}$ от магнитного поля при температурах 1,42 (а), 2 (б), 3 (в), 4,2 (г) К. Сплошные линии соответствуют теоретической модели [11].

Low Temperature Physics/Фізика низьких температур, 2019, т. 45, № 11

с теоретической моделью [11,12] согласно процедуре, описанной в работе [31]. В частности, монотонная составляющая магнитосопротивления (рис. 4(б)), как показано в работах [39,40], может быть описана выражением

$$\rho_{xx}(B,T) = \frac{1}{\sigma_0} - \frac{1}{\sigma_0^2} \left[1 - \left(\omega_c \tau \right)^2 \right] \Delta \sigma_{xx}^{EEI}(T), \quad (6)$$

которое при условии $\omega_c \tau >> 1$ (здесь ω_c — циклотронная частота) переходит в соотношение (в исследованном образце условие $\omega_c \tau = 1$ выполняется и в магнитном поле B = 0,00726 Тл)

$$\frac{\rho_{xx}(B,T) - \rho_0}{\rho_0} = \frac{1}{\sigma_0} \mu^2 B^2 \Delta \sigma_{xx}^{EEI}(T).$$
(7)

Описание монотонной составляющей магнитосопротивления в слабых магнитных полях выражением (7) позволяет выделить поправку, связанную с электрон-электронным взаимодействием $\Delta \sigma_{xx}^{EEI}(T)$ (см. рис. 6(а)). Расчет этой поправки производился, как и в работе [31], для случая кулоновского взаимодействия

Рис. 6. (а) Пример выделения поправки взаимодействия к проводимости: 1,42 (1), 1,8 (2), 2,2 (3), 2,7 (4), 4,3 (5) К. Сплошные линии проведены согласно соотношению (7). (б) Изменение поправки взаимодействия с ростом температуры. Сплошная линия — расчет согласно выражению (9).

дырок с рассеивающими центрами. Сама квантовая яма в гетероструктуре не содержит примесных атомов, так как акцепторные атомы бора сосредоточены в слое, отделенном от квантовой ямы. Для исследованного случая отношение $k/k_F = 0,03$ является малым. Согласно [11], относительное изменение сопротивления в магнитном поле описывается соотношением

$$\frac{\Delta\rho(B)}{\rho_0} = -\frac{(\omega_c \tau)^2}{\pi k_F l} \Big[G_F \left(k_B T \tau / \hbar \right) - G_H \left(k_B T \tau / \hbar; F_0^{\sigma} \right) \Big].$$
(8)

Аналитический вид функций $G_F(k_B T \tau / \hbar)$ $G_H(k_B T \tau/\hbar, F_0^{\sigma})$ приведен в работах [11,12]. Проведено сравнение теоретической кривой, построенной согласно уравнению (8), с экспериментальными данными. Оптимальное описание экспериментальных данных (см. рис. 6(б)) получено при значении $F_0^{\sigma} = -0,12$, однако при этом значения поправки, рассчитанные согласно уравнению (6), пришлось увеличить в 40 раз. Отметим, что такая особенность уже наблюдалась ранее. Так, в работе [12] при расчете поправки взаимодействия в баллистическом режиме для гетероструктуры Si/SiGe *n*-типа показано, что рассчитанное значение $\Delta \sigma_{xx}^{EEI}(T)$ в 5 раз больше предсказанного теоретически в работе [11] для случая $\omega_c \tau \gg 1$. По-видимому, исследуемый случай, как и рассмотренный в работе [41], более соответствует случаю «смешанного беспорядка», описанному в работе [12]. Дело в том, что ионизированные примеси бора, которые могут выступать в качестве точечных рассеивающих центров, удалены от квантовой ямы, а это, в свою очередь, существенно уменьшает рассеяние на этих примесях свободных носителей, сосредоточенных в квантовом канале. Однако уже само их присутствие обусловливает возможность влияния дальнодействующего рассеивающего потенциала на проводимость системы. На проводимость оказывает влияние и рассеяние на короткодействующем потенциале рассеивающих центров в проводящем канале, а также шероховатость границ квантовой ямы.

В работе [12] «смешанный беспорядок» характеризуется случайным потенциалом «белого шума» с характерным временем τ_{wn} , а также случайным гладким потенциалом с транспортным временем релаксации τ_{sm} и условием $(k_F d)^2 >> 1$ (для исследованной системы $(k_F d)^2 = 16, 2$). При рассеянии на точечных дефектах теория [12] предсказывает поправку к сопротивлению вида

 $\frac{\Delta \rho_{xx}}{\rho_0} = \frac{\left(\omega_c \tau\right)^2}{\pi k_T l} v V_0 G_0^{\text{mix}} \left(\frac{k_B T \tau}{\hbar}, \frac{\tau_{sm}}{\tau}\right). \tag{9}$

где

$$vV_0 = 6\left(\frac{F_0^{\sigma}}{1+F_0^{\sigma}} + \frac{1}{2}\right), \ G_0^{\text{mix}}(x) = c_0 4\left(\frac{\tau_{sm}/\tau}{x}\right)^{1/2}, \ x >> 1.$$

Low Temperature Physics/Фізика низьких температур, 2019, т. 45, № 11

Здесь F_0^{σ} — константа ферми-жидкостного взаимодействия, $c_0 = 0,276$.

Результаты проведенных расчетов представлены на рис. 6(б). Значения τ_{sm} / τ и F_0^{σ} использовались в качестве подгоночных параметров. Оптимального соответствия между расчетной кривой и экспериментальными данными удается добиться при значениях $\tau_{sm} / \tau = 3$, $F_0^{\sigma} = -0, 12$.

5. Заключение

В представленной работе проведено комплексное исследование квантовых эффектов в проводимости дырочной гетероструктуры, созданной на основе SiGe с чистым проводящим германиевым каналом. Исследование магнитоквантовых эффектов ШдГ позволило рассчитать эффективную массу свободных носителей заряда, равную $m^* = 0,062m_0$, обладающих рекордно высокой подвижностью ($\mu_H = 1367000 \text{ сm}^2/(\text{B} \cdot \text{c})$), а также оценить величину флуктуаций их концентрации вдоль канала $\delta p = 3,5 \cdot 10^9 \text{ сm}^{-2}$, что составляет ~ 1,25% их средней концентрации $p_H = 2,8 \cdot 10^{11} \text{ сm}^{-2}$. В сильных магнитных полях удалось наблюдать дробный эффект Холла с числами заполнения 8/3, 7/3, 5/3 и 4/3 при повышении температуры вплоть до 5 К.

В слабых магнитных полях исследовано влияние на проводимость системы квантовых интерференционных эффектов. В частности, анализ эффектов слабой локализации позволил рассчитать времена фазовой и спиновой релаксации, а на основе последнего получить значение спинового расщепления в исследованной системе $\Delta = 1,07$ мэВ, которое оказалось соизмеримым с полученными ранее результатами [38]. Эффекты взаимодействия носителей заряда в исследованной системе рассчитывались в соответствии с моделью «смешанного беспорядка» в теории [12], что дало возможность успешно описать экспериментальные результаты и получить значение константы ферми-жидкостного взаимодействия $F_0^{\sigma} = -0, 12$. Следует отметить, что использованным в работе методом проявление данного типа взаимодействия обнаружено впервые.

- Yuri M. Galperin, *Quantum Transport*, Lund University press (1998).
- R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems, Springer-Verlag, New York (2003).
- J.-B. Waldner, *Nanocomputers and Swarm Intelligence*, ISTE, London (2007).
- 4. *Nanoelectronics Devices, Circuits and Systems*, Series Editor Brajesh Kumar Kaushik, Elsevier (2018).
- P.W. Anderson, E. Adrahams, and T.V. Ramakrishnan, *Phys. Rev. Lett.* 43, 718 (1979).
- B.L. Altshuler, D.E. Khmel'nitskii, A.I. Larkin, and P.A. Lee, *Phys. Rev. B* 22, 5142 (1980).

- B.L. Altshuler, A.G. Aronov, and P.A. Lee, *Phys. Rev. Lett.* 44, 1288 (1980).
- B.L. Altshuler, A.G. Aronov, A.I. Larkin, and D.E. Khmel'nitskii, *ZhETF* 81, 768 (1981).
- B.L. Altshuler and A.G. Aronov, in: *Electron-Electron* Interactions in Disordered Systems Modern Problems of in Condensed Matter Science, A.L. Efros and M. Pollak (eds.), Amsterdam, North-Holland (1985).
- P.A. Lee and T.V. Ramakrishnan, *Rev. Mod. Phys.* 53, 287 (1985).
- 11. I.V. Gornyi and A.D. Mirlin, Phys. Rev. Lett. 90, 076801 (2003).
- 12. I.V. Gornyi and A.D. Mirlin, Phys. Rev. B 69, 045313 (2004).
- B.L. Altshuler, A.G. Aronov, M.E. Gershenson, and Yu.V. Sharvin, *Quantum Effects in Disordered Metal Films*, Sov. Sci. Rev., A9, Schur, Switzerland, Harwood Academic Publisher Gmbh (1987), p. 223.
- D.J. Bichop, R.C. Dynes, and D.C. Tsui, *Phys. Rev. B* 26, 773 (1982).
- 15. Chuncheng Wan and Ping Sheng, *Phys. Rev. B* **66**, 075309 (2002).
- A. Shimkunas, Ph. Mauger, G.F. Rempfer, L. Almaraz, T. Dixon, N. Katan, and H. Walitzki, *J. Vac. Sci. Technol. B* 24, 1413 (2006).
- В.Ю. Каширин, Ю.Ф. Комник, Вит.Б. Красовицкий, О.А. Миронов, О.Н. Макаровский, Ч.Дж. Эмелеус, Т.Э. Волл, ФНТ 22, 1166 (1996) [Low Temp. Phys. 22, 891 (1996)].
- В.Ю. Каширин, Ю.Ф. Комник, О.А. Миронов, Ч.Дж. Эмелеус, Т.Э. Волл, ФНТ 22, 1174 (1996) [Low Temp. Phys. 22, 897 (1996)].
- 19. P.T. Coleridge, R. Stoner, and Fletcher, *Phys. Rev. B* **39**, 1120 (1989).
- G. Stöger, G. Brunthaler, G. Bauer, K. Ismail, B.S. Meyerson, J. Lutz, and F Kuchar, *Semicond. Sci. Technol.* 9, 765 (1994).
- T. Zhou, J. Zhang, Y. Xue, B. Zhao, H. Zhang, H. Jiang, and Zh. Yang, *Phys. Rev. B* 94, 235449 (2016).
- L. Wang, M. Yin, A. Khan, S. Muhtadi, F. Asif, E.S. Choi, and T. Datta, *Phys. Rev. Appl.* 9, 024006 (2018).
- O.A. Mironov, A.H.A. Hassan, M. Uhlarz, S. Kiatgamolchai, A. Dobbie, R.J.H. Morris, J.E. Halpin, S.D. Rhead, P. Allred, M. Myronov, S. Gabani, I.B. Berkutov, and D.R. Leadley, *Phys. Status Solidi C* 11, 61 (2014).
- O.A. Mironov, A.H.A. Hassan, R.J.H. Morris, A. Dobbie, M. Uhlarz, D. Chrastina, J.P. Hague, S. Kiatgamolchai, R. Beanland, S. Gabani, I.B. Berkutov, M. Helmi, O. Drachenko, M. Myronov, and D.R. Leadley, *Thin Solid Films* 557, 329 (2014).
- Ю.Ф. Комник, И.Б. Беркутов, В.В. Андриевский, ФНТ
 32, 109 (2006) [Low Temp. Phys. 32, 82 (2006)].
- I.B. Berkutov, V.V. Andrievskii, Yu.F. Komnik, Yu.A. Kolesnichenko, R.J.H. Morris, D.R. Leadley, and O.A. Mironov, *Fiz. Nizk. Temp.* 38, 1455 (2012) [Low Temp. Phys. 38, 1145 (2012)].
- 27. A. Isihara and L. Smrčka, J. Phys. C 19, 6777 (1986).

- S.D. Bystrov, A.M. Kreshchuk, Le Tuan, S.V. Novikov, T.A. Polyanskaya, I.G. Savel'ev, and A.Ya. Shik, *Semiconductors* 28, 55 (1994).
- И.Б. Беркутов, В.В. Андриевский, Ю.Ф. Комник, О.А. Миронов, М. Миронов, Д. Ледли, ФНТ 35, 188 (2009) [Low Temp. Phys. 35, 141 (2009)].
- O.A. Mironov, N. d'Ambrumenil, A. Dobbie, D.R. Leadley, A.V. Suslov, and E. Green, *Phys. Rev. Lett.* 116, 176802 (2016).
- И.Б. Беркутов, Ю.Ф. Комник, В.В. Андриевский, О.А. Mironov, M. Myronov, and D.R. Leadley, *ФНТ* 32, 896 (2006) [*Low Temp. Phys.* 32, 683 (2006)].
- N.S. Averkiev, L.E. Golub, and G.E. Pikus, *Pis'ma Zh. Eksp. Teor. Fiz.* **113**, 1429 (1998) [*JETP* **86**, 780 (1998)].
- D.R. Leadley, V.V. Andrievskii, I.B. Berkutov, Y.F. Komnik, T. Hackbarth, and O.A. Mironov, *J. Low Temp. Phys.* 159, 230 (2010).
- 34. G. Dresselhaus, Phys. Rev. B 100, 580 (1955).
- E.I. Rashba and V.I. Sheka, *Solid State Physic*, Akad. Nauk SSSR, 2, 162 (1959) (in Russian).
- Yu.A. Bychkov and E.I. Rashba, *Pis'ma Zh. Eksp. Teor. Fiz.* 46, 66 (1984) [*JETP Lett.* 39, 78 (1984)].
- M.I. Dyakonov and V.I. Perrel, *Zh. Eksp. Teor. Fiz.* **60**, 1954 (1971) [*Sov. Phys. JETP* **33**, 1053 (1971)].
- V.V. Andrievskii, I.B. Berkutov, T. Hackbarth, Yu.F. Komnik, O.A. Mironov, M. Myronov, V.I. Litvinov, and T.E. Whall, in: *Molecular Nanowires and Other Quantum Objects*, Kluwer Academic Publishers B.V. NATO Science Series, II: *Mathematics, Physics and Chemistry* 148, 319 (2004).
- K.K. Choi, D.C. Tsui, and S.C. Palmateer, *Phys. Rev. B* 33, 8216 (1986).
- G.M. Minkov, O.E. Rut, A.V. Germanenko, A.A. Sherstobitov, V.I. Shashkin, O.I. Khrykin, and V.M. Daniltsev, *Phys. Rev. B* 64, 235327 (2001).
- E.B. Olshanetsky, V. Renard, Z.D. Kvon, J.C. Portal, N.J. Woods, J. Zhang, and J.J. Harris, *Phys. Rev. B* 68, 085304 (2003).

Квантові ефекти в германієвій квантовій ямі з надвисокою рухливістю носіїв заряду

I.Б. Беркутов, В.В. Андрієвський, Ю.О. Колесніченко, О.А. Миронов

Проведено комплексне дослідження квантових ефектів у дірковій гетероструктурі Si_{0.2}Ge_{0.8}/Ge/Si_{0.2}Ge_{0.8}, що має дуже високу рухливість вільних носіїв заряду: $\mu_H =$ = 1367000 см²/(В·с). На підставі аналізу магнітоквантових осциляцій Шубнікова-де Гааза визначено ефективну масу носіїв заряду, яка виявилася дуже малою ($m^* = 0.062m_0$), а також величину флуктуації концентрації дірок уздовж каналу $\delta p = 3.5 \cdot 10^9$ см⁻². У сильних магнітних полях виявлено прояв дробового ефекту Холла (з числами заповнення 8/3, 7/3, 5/3, 4/3), який спостерігався при температурах майже до 5 К. Дослідження квантових інтерференційних ефектів слабкої локалізації та електрон-електронної взаємодії носіїв заряду, що проведено у такій високорухливій системі вперше, дозволив розрахувати значення спінового розщеплення $\Delta = 1.07$ мєВ та константи взаємодії $F_0^{\sigma} = -0,12$, які є узгодженими з отриманими раніш результатами.

Ключові слова: двовимірний провідник, ефект Шубніковаде Гааза, квантові інтерференційні ефекти, дробовий ефект Холла, магнітоопір.

Quantum effects in a germanium quantum well with ultrahigh carrier mobility

I.B. Berkutov, V.V. Andrievsky, Yu.A. Kolesnichenko, and O.A. Mironov

A complex study of quantum effects in the p-type Si_{0.2}Ge_{0.8}/Ge/Si_{0.2}Ge_{0.8} heterostructure with extremely high carrier mobility $\mu_H = 1367000 \text{ cm}^2/(\text{V} \cdot \text{s})$ has been carried out. The analysis of the Shubnikov-de Haas magneto-quantum oscillations made it possible to calculate the effective mass of charge carriers, which appear be very low, $m^* = 0.062m_0$, as well as the value of fluctuations of hole concentration along the channel, $\delta p =$ $= 3.5 \cdot 10^9 \text{ cm}^{-2}$. In stronger magnetic fields, the manifestation of the fractional Hall effect with filling numbers of 8/3, 7/3, 5/3, 4/3, which occur at temperatures up to 5 K, was found. The studies of the quantum interference effects of weak localization and electron-electron interaction of charge carriers, that were carried out in such a highly mobile system for the first time, allowed us to calculate the spin splitting value $\Delta = 1.07$ meV and the values of the electron-electron interaction constant $F_0^{\sigma} = -0.12$, which are comparable with the previously obtained results.

Keywords: two-dimensional conductor, Shubnikov-de Haas effect, quantum interference effects, fractional Hall effect, magnetoresistance.