УДК 538.9:537.312.6:537.312.7:537.312.8

ВЛИЯНИЕ КОМПОЗИЦИОННОГО БЕСПОРЯДКА В СИСТЕМЕ СВЕРХПРОВОДЯЩИХ ГРАНУЛ НА СВЕРХПРОВОДЯЩИЕ СВОЙСТВА КЕРАМИЧЕСКИХ ОБРАЗЦОВ La_{2 – x}Sr_xCuO₄

© 2018 г. Н. В. Далакова^{1, *}, Е. Ю. Беляев¹, Ю. А. Савина¹, О. И. Юзефович^{1, 2}, С. В. Бенгус^{1, 2}, Н. П. Бобрышева³

¹Физико-технический институт низких температур им. Б.И. Веркина НАН Украины, Харьков, Украина ²International Laboratory of High Magnetic Fields and Low Temperatures, Wroclaw, Poland ³Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет", химический факультет, Санкт-Петербург *E-mail: dalakova@ilt.kharkov.ua

Рассмотрено влияние степени допирования стронцием на сверхпроводящие свойства гранулированного сверхпроводника $La_{2-x}Sr_xCuO_4$. Установлено, что понижение концентрации стронция в условиях композиционного беспорядка приводит к уширению сверхпроводящего перехода выше температуры установления межгранульной джозефсоновской связи и к повышению температуры завершения сверхпроводящего перехода.

DOI: 10.1134/S0367676518070165

особенности Исследованы резистивного сверхпроводящего перехода трех образцов купрата $La_{2-x}Sr_{x}CuO_{4}$, полученных стандартным методом твердофазного синтеза. Цель работы – изучение влияния степени композиционного беспорядка на сверхпроводимость керамических образцов La_{2} __Sr_xCuO₄. Содержание стронция составляло x == 0.15, 0.10, 0.05, 3начение x = 0.05 соответствует минимальной концентрации, при которой сложный оксид La_{2-r}Sr_rCuO₄ переходит в сверхпроводящее состояние. Концентрация x = 0.15 соответствует оптимальному уровню допирования [1]. На стадии приготовления все образцы были протестированы посредством рентгеновских, магнитных и электронномикроскопических исследований. Микроструктуру, элементный состав образцов и состав отдельных фаз определяли методами сканирующей электронной микроскопии на сканирующем электронном микроскопе Cam Scan. Содержание меди и лантана определяли на EDS спектрометре LINK AN-10000. Содержание стронция определяли на высокочувствительном WDS спектрометре МІКROSPEC в пяти участках образца. Соотношение элементов в образце отвечало химической формуле. Размер зерна керамики составлял $\approx (1-3)$ мкм.

Керамические образцы ВТСП-купратов с размером зерна несколько мкм можно описать как ансамбль сверхпроводящих гранул сверхпроводника II рода. В работе [2] было рассмотрено влияние гранулярности на сверхпроводящие свойства керамического образца La_{1.85}Sr_{0.15}CuO₄. Показано, что поликристаллические образцы La_{1.85}Sr_{0.15}CuO₄ представляют собой неоднородную систему, в которой сверхпроводящая фазовая когерентность при температуре $T < T_{cl}$ устанавливается посредством джозефсоновской связи между сверхпроводящими гранулами. В работе [3] было установлено, что в антиферромагнитных (АФМ) образцах $La_{2-x}Sr_xCuO_4$ степень композиционного (и структурного) беспорядка увеличивается с понижением содержания стронция, что приводит к размытию АФМ-перехода при достаточном уменьшении концентрации примеси. Ожидается, что в системе сверхпроводящих гранул $La_{2-x}Sr_xCuO_4$ усиление структурного беспорядка при уменьшении степени допирования может привести к соответствующим изменениям сверхпроводящего фазового перехода.

Одно из проявлений композиционного беспорядка – структурный беспорядок, природа которого связана с примесями и вакансиями, случайным образом разбросанными по кристаллической решетке (универсальный беспорядок), а также со скоплениями примесей и выделениями другой фазы (не универсальный беспорядок) [4]. Рассмотрим влияние уменьшение уровня допирования примесями Sr на сверхпроводящий фазовый переход.

Кривые температурной зависимости магнитной восприимчивости трех исследованных образцов были сняты с использованием СКВИД-магнитометра MPMS-XL5. Температуры сверхпроводящего перехода T_{c01} , определенные по наличию сигнала диамагнитного отклика (рис. 1), приведены в табл. 1. Температура T_{c01} уменьшается с уменьшением содержания стронция. Для образца с минимальной концентрацией стронция (x = 0.05) сверхпроводимость подавляется при H = 1 Тл. Для этого образца диамагнитный отклик был обнаружен только в небольшом поле H = 10 Э.

Температурные зависимости сопротивления образцов 1 и 2 демонстрируют двухступенчатый

Рис. 1. Температурные зависимости магнитной восприимчивости образцов La_{2 – x}Sr_xCuO₄: (*a*) охлаждение в поле 10⁴ Э; (*б*) увеличенный масштаб зависимости $\chi(T)$ для x = 0.05; (*e*) – зависимость $\chi(T)$ для x =0.05, записанная в режиме нагрева при H = 10 Э после охлаждения в нулевом поле.

Рис. 2. Температурные зависимости сопротивления образцов $La_{2-x}Sr_xCuO_4$: (*a*) сверхпроводящие переходы образцов $La_{1.85}Sr_{0.15}CuO_4$ и $La_{1.9}Sr_{0.1}CuO_4$, записанные при токе 3.0 мА; (*б*) температурные зависимости сопротивления образца $La_{1.95}Sr_{0.05}CuO_4$, записанные при разных токах.

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 82 № 7 2018

Тя	б	ш	ш	a	1
1 a	υ,	11	ц	a	

Образец	x	χ , эме · г ⁻¹ $H = 10^4$ Э, $T = 5$ К	χ , эме · г ⁻¹ H = 10 Э, $T = 5$ К	T_{c01}, \mathbf{K} $H = 10^4 \mathfrak{B}$	T_{c01}, \mathbf{K} $H = 10 \ \Im$
1	0.15	$-1.9 \cdot 10^{-5}$		36.0	39.0
2	0.10	$-9.2 \cdot 10^{-6}$	-0.0013	31.5	36.2
3	0.05	$3.3 \cdot 10^{-7}$	$-6.2 \cdot 10^{-5}$	_	8.6

Таблица 2. T_c , – температура сверхпроводящего перехода, $\Delta T_1 = T_{c0} - T_{cj}$, $\Delta T_2 = T_{cj} - T_c$

J, мк A	<i>T_{c0}</i> , K	<i>T_{cj}</i> , K	<i>T_c</i> , K	ΔT_1 , K	ΔT_2 , K	<i>T_{c0}</i> , K	<i>T_{cj}</i> , K	<i>T_c</i> , K	ΔT_1 , K	ΔT_2 , K
	Образец 1				Образец 2					
100	46.8	40	21	6.8	19	43.6	32	22	11.6	10
300	45.5	39	20	6.5	19	43.6	30	20.6	13.6	9.4
3000	44.35	39	12	5.35	27	40.6	28.6	16.2	12	12.4
10000	36	31	—	5	—	32	20	4.4*	12	15.6

* *T_c* = 4.4 K – условная температура сверхпроводящего перехода (см. текст).

характер перехода (рис. 2), характерный для неоднородных сверхпроводников. Такого типа переходы были подробно рассмотрены в работе [5]. Температура T_{c0} , полученная из условия $d\rho/dT = 0$, соответствует началу перехода в сверхпроводящее состояние отдельных гранул. Неметаллическое поведение $\rho(T)$ при $T > T_{c0} (d\rho/dT < 0) - следствие$ слабой межгранульной связи $E_j \ll T_{c0}$, где E_j – джозефсоновская энергия. Температура T_{cj} отвечает переходу системы в состояние глобальной сверхпроводимости ($E_i \gg T_{ci}$) при установлении фазовой когерентности между отдельными гранулами. Сверхпроводящий переход в макроскопической системе завершается тогда, когда сильновзаимодействующие между собой гранулы образуют бесконечный сверхпроводящий кластер [2]. Температуры завершения сверхпроводящего перехода \bar{T}_c , соответствующие разным измерительным токам, указаны в табл. 2. Для образца 3 резистивный сверхпроводящий переход при токах $J \ge 1$ мА не обнаружен. Однако при минимальном токе J = 1 мА на рис. 26 можно наблюдать начало сверхпроводящего перехода при $T_{c0} = 10.36$ K.

Сопоставление результатов измерения T_{c01} и T_{cj} , представленных в табл. 1 и 2, показывает, что диамагнитный отклик появляется только в момент образования достаточно большого объема сверхпроводящей фазы и при наличии фазовой когерентности между сверхпроводящими гранулами.

Зависимости $\rho(T)$, измеренные при разных значениях измерительного тока (в интервале 10 мкА– 10 мА для x = 0.15 и 100 мкА–40 мА для x = 0.10), демонстрировали довольно сильную зависимость резистивного сверхпроводящего перехода от величины *J*. Как показано в работе [2], для концентрации x = 0.15 увеличение тока приводит к заметному уширению сверхпроводящего перехода в области T < T_{cJ}, начиная с некоторого критического значения $J_c = 3$ мА при незначительном уменьшении T_{c0} (на ≈ 0.5 K). При дальнейшем увеличении тока некоторые из самых слабых звеньев в перколяционных цепочках с наименьшим критическим током переходили в резистивное состояние, увеличивая общее сопротивление системы, и температура начала перехода T_{c0} заметно понижалась при J = 10 мА. Аналогичное изменение характера перехода с ростом Ј наблюдали для образца 2 с концентрацией стронция x = 0.10 (см. табл. 2). Необходимо отметить, что для этого образца температуру $T_c = 4.4$ К при токе J = 10 мА (табл. 2) следует считать условной, так как сверхпроводящий переход при этой минимальной температуре еще не завершается. Таким образом, сравнительно слабый электрический ток сначала разрушает фазовую когерентность между отдельными гранулами, в результате чего сопротивление резко увеличивается в области $T < T_{cJ}$ при J = 3 мА и сверхпроводящий переход заметно уширяется (увеличивается ΔT_2). При дальнейшем увеличении тока происходит разрушение внутригранульной сверхпроводимости и температура начала сверхпроводящего перехода T_{c0} понижается. Аналогичное действие оказывает магнитное поле (рис. 3). Из представленных на рис. 2, рис. 3 и в табл. 2 данных следует, что критические поля и токи для сверхпроводящих гранул намного превышают критические поля и токи межгранульной срелы.

Для образца 1 (x = 0.15) имеет место довольно резкий сверхпроводящий переход при H = 0.005 Тл

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 82 № 7 2018

Рис. 3. Температурные зависимости сопротивления образцов La_{2 – x}Sr_xCuO₄, записанные в разных магнитных полях $\vec{H} \perp \vec{J}$; (*a*) H = 50 Э, 100 Э, 800 Э, $2 \cdot 10^3$ Э, 10^4 Э, $5 \cdot 10^4$ Э, 10^5 Э, $1.4 \cdot 10^5$ Э; (*б*) H = 20 Э, $2 \cdot 10^4$ Э, $5 \cdot 10^4$ Э, $1.4 \cdot 10^5$ Э; (*б*) H = 20 Э, $2 \cdot 10^4$ Э, $5 \cdot 10^4$ Э, $1.4 \cdot 10^5$ Э. На вставках на рис. За и Зб показаны магниторезистивные эффекты, записанные при $T < T_{cj}$, при токах J = 1.5 мА (*a*) и J = 150 мкА (*б*).

с небольшим плечом ниже T_{cj} (рис. 3*a*). Уширение перехода при $T \le T_{cj}$ наблюдали в поле 0.01 Тл, и только в поле H > 1 Тл происходит заметное понижение температуры T_{c0} (на ≈3.6 К при H = 14 Тл). Для образца 2 (x = 0.10) уширение перехода при $T \le$ $\le T_{cj}$ наблюдали в более низких полях H = 0.002 Тл, и с увеличением поля происходит существенно более сильное уменьшение T_{c0} , чем для образца 1 (на ≈9 К в поле 14 Тл).

Магниторезистивный эффект на вставках к рис. За и 36 соответствует поведению неоднородной системы, которая описывается на основе двухуровневой модели критического состояния [6]. Имеет место гистерезис по часовой стрелке.

Согласно данным табл. 2, рис. 2*а* и рис. 3 наблюдаются следующие изменения сверхпроводящих параметров при уменьшении концентрации стронция:

1. При всех значениях тока J уменьшение концентрации стронция приводит к более сильному размытию перехода выше T_{cj} : ΔT_1 (x = 0.15) $< \Delta T_1$ (x = 0.10), что может быть связано с зависимостью энергии E_j от расстояния d между сверхпроводящими гранулами ($E_j \propto d^{-1}$), которое неизбежно увеличивается при уменьшении содержания стронция.

2. При установлении джозефсоновской связи между сверхпроводящими гранулами ($T < T_{cj}$) ширина перехода уменьшается с понижением концентрации *x*.

3. Уменьшение концентрации стронция приводит к повышению температуры перехода T_c .

Работа выполнена при частичной поддержке целевой комплексной программы фундаментальных исследований НАН Украины "Фундаментальные проблемы наноструктурных систем, наноматериалов, нанотехнологий" (грант № 26/13-Н).

СПИСОК ЛИТЕРАТУРЫ

- Migaku O., Naoki M., Masayuki I. // J. Phys. and Chem. Sol. 2004. V. 65. P. 1381.
- Далакова Н.В., Белевцев Б.И., Беляев Е.Ю. и др. // Изв. РАН. Сер. физ. 2014. Т. 78. № 4. С. 486; Dalakova N.V., Belevtsev B.I., Beliayev E.Yu. et al. // Bull. Russ. Acad. Sci.: Physics. 2014. V. 78. № 4. Р. 337.
- 3. Далакова Н.В., Белевцев Б.И., Беляев Е.Ю. // Физика низких температур. 2014. Т. 40. С. 513.
- 4. Варламов А.А., Ларкин А.И. Теория флуктуации в сверхпроводниках. М.: Добросвет, 2007. 557 с.
- 5. Дмитренко И.М. // Физика низких температур. 1986. Т. 14. С. 1045.
- Ji.L., Rzchowski M. S., Anand N, Tinkham M. // Phys. Rev. B 1993. V. 47. P. 470.

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 82 № 7 2018