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The conductance of a contact, having a radius smaller than the Fermi wave length, on the surface of a thin 
metal film is investigated theoretically. It is shown that quantization of the electron energy spectrum in the film 
leads to a step-like dependence of differential conductance G(V) as a function of applied bias eV. The distance 
between neighboring steps in eV equals the energy level spacing due to size quantization. We demonstrate that a 
study of G(V) for both signs of the voltage maps the spectrum of energy levels above and below Fermi surface in 
scanning tunneling experiments.  
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85.30.Hi Surface barrier, boundary, and point-contact devices; 
73.50.–h Electronic transport phenomena in thin films. 
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1. Introduction 

Today a fairly large number of papers have addressed 
the problem of calculating point-contact conductance for 
use in analyzing and interpreting scanning tunneling mi-
croscopy (STM) experiments (for reviews see, for exam-
ple, [1,2]). The low symmetry of the problem and the wide 
variety of objects under study do not allow developing a 
general theory of STM, and different approaches for spe-
cific problems are used. The theory papers on this subject 
can be divided into two groups: One uses methods taking 
into account the specific atomic structure of the STM tip 
and that of the test specimen. These methods make it poss-
ible to reproduce the crystallographic structure of the sam-
ple surface in the calculated STM images and this is very 
useful for arriving at a correct interpretation of experimen-
tal data. The main deficiency of this approach is the lack of 
analytical formulas for the STM current–voltage characte-
ristics as numerical calculations must be performed for 
every specific case. The other group of works exploit sim-
plified models of noninteracting electrons which allows 
finding relatively simple analytical expressions that de-
scribe the STM current qualitatively. For this reason such 
theoretical results are widely used by experimentalists. 

One of the first free-electron models describing STM 
experiments was proposed by Tersoff and Hamann [3] 
whose theoretical analysis of tunnel current is based on 

Bardeen’s formalism [4], in which a tunneling matrix ele-
ment is expressed by means of independent wave functions 
for the tip and the sample within the barrier region. Using 
the model wave functions the authors [3] showed that the 
conductance of the system is proportional to the local den-
sity of states of the sample at the tip position. In principle it 
is possible to extract information on subsurface objects 
(single defects, clusters, interfaces, etc.) by STM, but this 
requires a more detailed theoretical analysis [5], which 
takes into account the influence of subsurface electron 
scattering on the tunneling current. 

The physical picture of an electron tunneling through a 
classically forbidden region is that the electron flow 
emerging from the barrier is defined by the matching of the 
wave functions of carriers incident on the barrier and those 
that are transmitted. For a three-dimensional STM geome-
try the wave functions for electrons transmitted through the 
vacuum region radically differs from the electron wave 
functions in an isolated sample and they describe the elec-
tron propagation into the bulk from a small region on the 
surface below the STM tip. In contrast, the theory of Ref. 3 
and its modifications (see [1,2] and references therein) uses 
unperturbed wave functions of the surface Bloch states. 
Changes in the wave functions of transmitted electrons due 
to scattering by subsurface objects provide the information 
about such scattering in the STM conductance. 
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In Ref. 6 it was proposed to introduce in the theory of 
STM the model by Kulik et al. [7]. In this model a three-di-
mensional STM tip is replaced by an inhomogeneous barrier 
in an otherwise nonconducting interface that separates the 
two conductors. In Ref. 7 it was shown that under assump-
tion of small transparency of the tunnel barrier the wave 
function (and thus the current–voltage characteristics) can be 
found analytically for an arbitrary size of the tunnel area. 
The results in [6] for the conductance of the tunnel point 
contact were generalized to an arbitrary Fermi surface for 
the charge carriers in Refs. 8, 9. In a series of papers the 
model [7] has been expanded to describe oscillations of the 
STM conductance resulting from electron scattering by sub-
surface defects [6,8–11] (for reviews see [12]). 

Scanning tunneling microscopes have been widely used 
for the study of various small-sized objects: islands, thin 
films deposited on bulk substrates, etc. [13–20]. First, a dis-
crete periodic spatial variation of the STM current originat-
ing from the quantization of electron states was observed in 
the quantum wedge: a nanoscale flat-top Pb island on a 
stepped Si(111) surface [13]. Later these authors showed 
that the lattice structure of an interface buried under a film 
of Pb, whose thickness can be as many as 10 times the Fer-
mi wavelength, can be clearly imaged with STM [14]. They 
concluded that the key to the transparency of a metal lies in 
a highly anisotropic motion of the electrons and the strong 
quantization of their transverse wave function components. 
In the paper [15] the electronic states of thin Ag films grown 
on GaAs(110) surfaces was investigated by STM with sin-
gle-layer thickness resolution, and the quantum-well states 
arising from the confinement geometry of the Ag films have 
been identified. Quantum size effects, manifested in the 
formation of new electronic bound states, were investigated 
by STM on thin Pb islands of varying heights on the 
Si(111)-(7×7) surface in Ref. 16. In experiments [17] it was 
demonstrated that scanning tunneling microscopy and 
spectroscopy of epitaxial Pb islands on Si(111) reveal 
adiabatic lateral modulation of the energy spectra of the 
quantum well, providing remote electronic images of the 
subsurface reflection phase. In Ref. 18 a step structure at 
the buried Pb on Si(111) 6×6-Au interface was determined 
by utilizing the presence of quantum well states. It was 
demonstrated that the spatial step positions as well as the 
step heights can be extracted nondestructively and with 
atomic layer precision by STM. Vertical Friedel oscilla-
tions in interface-induced surface charge modulations of 
Pb islands of a few atomic layers on the incommensurate 
Si(111)–Pb surface have been observed [19]. Thus, de-
tailed experimental results have been obtained, but a mi-
croscopic theory for STM tunneling spectra on samples of 
finite size has not been reported, which provides the moti-
vation for the present work. Current–voltage characteristics 
for size quantization in planar thin film geometries of met-
al–insulator–metal tunneling junctions have been investi-
gated theoretically in Refs. 21, 22. Standing electron wave 

states in thin Pb films have been observed by electron 
tunneling in early experiments by Lutskii et al. [23]. 

In this paper we present the differential conductance 
(G V )  for small contacts, having a radius a  smaller than 

the Fermi wave length = / ,F Fpλ =  where Fp  is the 
Fermi momentum. The contacts are formed on the surface 
of a thin metal film and we analyze the voltage dependence 
of ( )I V  and ( ).G V  We focus on the size quantization ef-
fects of the electron energy spectrum in the film on ( ).G V  

The organization of this paper is as follows. The model 
that we use to describe the contact, and the method for 
obtaining a solution of the three-dimensional Schrödinger 
equation asymptotic in the small radius of the contact, are 
described in Sec. 2. In Sec. 3 the current–voltage characte-
ristics and the differential conductance are found on the 
basis of a calculation of the probability current density 
through the contact. Section 4 presents a physical interpre-
tation of the results obtained. In Sec. 5 we conclude by 
discussing the possibilities for exploiting these theoretical 
results for interpretation of electron energy spectroscopy in 
thin films by STM. In the Appendixes we solve the 
Schrödinger equation for the tunnel point contact in 
framework of our model (Appendix 1) and for a point con-
tact without barrier (Appendix 2) and find the wave func-
tions for electrons transmitted through the contact. These 
solutions are used in Sec. 3 for the calculation of current. 

2. Model and electron wave function of the system 

The model that we consider is illustrated in Fig. 1. Elec-
trons can tunnel through an orifice centered at the point 

= 0r  in an infinitely thin insulating interface at = 0z  
from a conducting half-space (the tip) into a conducting 
sheet of thickness d (Fig. 1,b). The radius a of the contact 
and the thickness d of the film are assumed to be much 
smaller than the shortest mean free path, i.e., we consider a 
purely ballistic problem. The wave function ψ  satisfies 
the Schrödinger equation 

 [ ]2
2

2( ) ( ) ( ) = 0.m U
∗

∇ ψ + ε − ψr r r  (1) 

In Eq. (1) m∗  and ε  are electron effective mass and ener-
gy, respectively. The inhomogeneous potential barrier in 
the plane = 0z  we describe by the function ( ) =U r

0 ( ) ( ),U f z= δρ  where = ( , )x yρ  is a two-dimensional posi-
tion vector in the plane and 1( ) = ( ),f a− Θ −ρρ  with ( )xΘ  
the Heaviside step function. For such model the wave func-
tion ( )ψ r  satisfies the following boundary conditions at the 
interface = 0z  and at the metal sheet surface =z d  

 ( , 0) = ( , 0),ψ + ψ −ρ ρ  (2) 

 0
2

2
( , 0) ( , 0) = ( ) ( ,0),z z

m U
f

∗
′ ′ψ + −ψ − ψ

=
ρ ρ ρ ρ  (3) 

 ( , ) = 0.dψ ρ  (4) 
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Equations (1)–(4) can be solved in the limit of a small con-

tact, 1ka�  ( = 2 /k m∗ε  is the absolute value of the 
electron wave vector ).k  In the zeroth approximation in 
the contact diameter the solutions of Eq. (1) for 0z ≷  are 
independent and satisfy the zero boundary condition 

( ,0) = 0ψ ρ  at the impenetrable interface at = 0.z  The 
quantum states in the conducting half-space ( < 0)z  (the 
tip) are defined by the three components of the electron 
wave vector = ( , ),zkk k&  with k&  a two-dimensional vec-

tor parallel to the interface. In the metal film (0 < )z d<  
the quantum states are characterized by a two-dimensional 
vector κ  perpendicular to the z axis and by the discrete 
quantum number n  ( = 1, 2, ...)n  which results from the 
finite size of the conductor in the z direction. The energy 
eigenvalues and eigenfunctions for the two disconnected 
conductors are given by 

 
2 2 2 2 2( )

= ,
2 2

zk k k
m m∗ ∗

+
ε ≡

= =&  (5) 

 ||
0 ( ) = 2 e sin , < 0,i

zi k z zψ kr ρ  (6) 

and 

 
2 2 2( )

= , = 1, 2,...,
2

znk
n

m∗
κ +

ε
=

 (7) 

 0 ( ) = 2 e sin , 0 < < ,i
zni k z z dψ −r κρ  (8) 

where = / .znk n dπ  In Eqs. (6) and (8) we use a wave 
function normalization with unit amplitude of the wave 
incident to the interface. 

The partial wave for the first order approximation 1( )ψ r  
in the small parameter 1,ka�  which describes the transi-
tion of electrons from one to the other conductor, is given in 
the Appendixes. Appendix 1, Eqs. (A1.5) and (A1.6), gives 
the solution for a tunnel point contact, having a potential 
barrier of small transparency 2

0= / 1t k m U∗ �  at the 
orifice in the plane = 0.z  Appendix 2, Eqs. (A2.6)–(A2.8), 
gives the solutions for a contact without barrier. Figure 2 
illustrates the spacial variation of the square modulus of the 
wave function for electrons transmitted through the contact 
into the film. 

3. Current–voltage characteristic and conductance of a 
point contact 

As has been shown in Ref. 24 for a ballistic point contact 
of small radius ,a  with a  much smaller than the electron 
mean free path ,l  the electrical potential ( )V r  drops over a 

Fig. 1. Schematic representation of a STM experiment on a thin metal film (a) and the model that we employ to represent the contact
between a bulk conductor (tip) and a metallic film (b). The dashed picture of the tip in a illustrates a metallic point contact (STM tip
touches the surface). Electron trajectories in b are shown schematically. 
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Fig. 2. Space distribution of the square modulus of the wave 
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thickness = 15,d  where = 2 / kλ π  is the electron wave length, 
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distance r a∼  from the contact, and in the limit 0a →  the 
potential ( )V r  can be approximated by a step function 

( ).V zΘ −  In this approximation, for the calculation of the 
electrical current we can take the electron distribution func-
tions ( )f ∓  at 0z ≶� as the Fermi functions Ff  with ener-
gies shifted by the applied bias eV  (e is the negative electron 
charge) ,  ( ) = ( ( )).Ff f eV zε − Θ −∓  Figure 3 illustrates the 
occupied energy states in the two conductors for both signs 
of the applied bias .eV  At > 0eV  the electrons flow from 
the bulk conductor (the tip) into the film and, vice-versa, at 

< 0eV  they flow from the film into the massive conductor. 
The total current through the area of the contact can be found 
by integration over the flux ( )J ±  in both directions 

 ( )

=1

1( ) = ( )(1 ( ))
2 F F

n
I V d J f f eV

d

∞ ∞
−

−∞

ε − ε − −
π ∑∫ κ   

 ( )
3

2 ( )(1 ( )).
(2 )

F Fd J f eV f
∞

+

−∞

− ε − − ε
π ∫ k  (9) 

In Eq. (9) we integrate over the wave vector k  in the semi-
infinite conductor for the current in the negative direction 
(second term), and integrate over the two-dimensional 
wave vector κ  and sum over the discrete quantum number 
n  for the opposite direction of the current (first term). 

For simplicity we will take the temperature to be zero. 
In this case the electric current is defined by electrons 
passing the contact in one direction only, depending on the 
sign of the applied bias. The flux ( )J ±  integrated over the 
area of the contact is calculated in the usual way  

2
( )

1 1
= 00 0

= Im ( , ) ( , ) ,
a

z

e
J d d z z

zm

π
± ∗

∗
±

∂⎡ ⎤ρρ ϕ ψ ψ⎢ ⎥∂⎣ ⎦∫ ∫
=

ρ ρ  (10) 

where ( cos , sin ).ρ ϕ ρ ϕ=ρ  The wave function 1( , )zψ ρ  
should be taken as the wave transmitted through the con-
tact, given by Eqs. (A1.5) and (A2.6) with = zkk  for elec-

tron flux from the tip to the sheet, ( ) ,J +  and by Eqs. 
(A1.6) and (A2.7) with = znkk  ( = 1, 2 ...)n  for fluxes 

( )J −  in the opposite direction. The energy shift eV  in the 
region < 0z  should be taken into account, which for our 
choice of the reference point of energy (see Fig. 3) implies 
that the absolute value of the electron wave vector in the 

half-space < 0z  is given by � = 2 ( ) / .k m eV∗ ε − =  
For the tunnel point contact (tpc) the flux can be ex-

pressed in terms of the wave function in the contact plane 
(A1.1), and we obtain 

 
�24 4 5 2

( )
3 3 2

0

cos
( 1)(2 1),

12
tpc

e a k
J N N N

m d U
+

∗

π ϑ
+ +

=
�  (11) 

and 

 
�34 5 2

( )
3 2

0
.

6
zn

tpc
e a k k

J
m U

−
∗

π
−

=
�  (12) 

Here ϑ  is the angle between the vector k  and the z  axis, 
and ( ) = [ / ]N k kd π  with [ ]x  the integer part of .x  

For a metallic point contact (mpc) without barrier the 
expressions for the flux ( )

mpcJ ±  are written by means of 
Eqs. (A2.4), (A2.9)–(A2.11), 

 
�22 6 2
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3
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9
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e a k

J N N N
m d

+
∗

π ϑ
+ +

=
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Fig. 3. Illustration of the occupied energy states at zero temperature in the two conductors for both signs of the applied bias :eV
> 0eV  (a), < 0eV  (b). 
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Substituting Eqs. (11)–(14) into the general expression (9) 
we find the current–voltage characteristic of the system 

 
2

20
23 5 2

2( ) = ( ) ( ), 0
( )

F

F

k

F Fk

I dkk meVI V k S k eV
k d k

−∫
�

=
.   

  (15) 
and 

2
0

23
1 2 1( ) = ( )
5 3 3( )

F
F FF

eV eVI
I V S k

k d

⎧ ⎡ ⎤⎛ ⎞⎪ ⎢ ⎥− + + +⎜ ⎟⎨ ⎢ ⎥ε ε⎝ ⎠⎪ ⎣ ⎦⎩

  

� �
2

3 3 5 5
2( ) ( ) ( ) ( )
3

F FF F
F F

eV
S k S k S k S k

k d
⎛ ⎞π⎡ ⎤ ⎡ ⎤+ − + − ×⎜ ⎟⎣ ⎦ ⎣ ⎦ε⎝ ⎠

 

�
3 5

7 7
F

1 ( ) ( )
5

F F
F F

eV
S k S k

k d k d
⎛ ⎞ ⎛ ⎞π π⎡ ⎤× + − −⎜ ⎟ ⎜ ⎟⎣ ⎦ε⎝ ⎠ ⎝ ⎠

  

� � 2

2
4 8( ) 1 , 0,

5 3 3
F

F
F F F

eV eVkS k eV
k

⎡ ⎤⎛ ⎞⎢ ⎥− + − ⎜ ⎟⎢ ⎥ε ε⎝ ⎠⎣ ⎦
-  (16) 

where 2 2= / 2F Fk m∗ε =  is the Fermi energy, 

 
2 4 5 8

0, 3 2
0

= ,
12

F
tpc

e a k
I

m U∗

π =
 (17) 

 
6 8

0, = ,
9

F
mpc

e a k
I

m∗

=  (18) 

( )mS k  is a finite sum of mth powers of integer numbers 

 
( )

=1
( ) = .

N k
m

m
n

S k n∑  (19) 

Note that ( ) ( ),m mS k H N−≡  where ( )mH n  are generalized 
harmonic numbers. The current is plotted in Fig. 4 as a func-
tion of bias voltage for two choices of the film thickness. 
Differentiating Eqs. (15) and (16) with respect to voltage we 
obtain the differential conductance ( ) = /G V dI dV  for a 
point contact with radius ,Fa λ�  

 
� � 2

1 2 23
1( ) = ( ) ( ) , 0;

2

F

F

k
F

F
F F k

kG V G S k dkk S k eV
k k

⎧ ⎫
⎪ ⎪−⎨ ⎬
⎪ ⎪⎩ ⎭

∫
�

.   

  (20) 

�
1 2 3 3

4( ) = 1 ( ) 4 ( ) ( )
3

FF F
F F F

eV eV
G V G S k S k S k

k d
⎧ ⎡ ⎤ π⎪ ⎡ ⎤+ + − +⎨ ⎢ ⎥ ⎣ ⎦ε ε⎪ ⎣ ⎦⎩  

 

�
3

5 5
4 ( ) ( )
3

F F
F

S k S k
k d

⎛ ⎞π ⎡ ⎤+ − −⎜ ⎟ ⎣ ⎦⎝ ⎠
  

 �
�

2

21 4 8 ( ) , 0.
3

F F
F F F

eV eVk S k eV
k

⎫⎡ ⎤⎛ ⎞ ⎪⎢ ⎥− + − ⎜ ⎟ ⎬⎢ ⎥ε ε⎝ ⎠ ⎪⎣ ⎦ ⎭
-  (21) 

In the limit 0eV →  the zero-bias conductance taken from 
both sides coincides, as it should, 

 1
1 2(0) = ( ) = ( 1)(2 1),

6F F F F
G

G G S k N N N+ +  (22) 

where = ( ),F FN N k  and 1G  is the conductance of the 
contact between the bulk conductor (the tip) and a thin film 
that has only a single energy level available below Fε  for 
the motion along z, 

 
3

1 0 3
3= (0) .

( )F
G G

k d
π  (23) 

0 (0)G  is the conductance of a contact between two con-
ducting unbound half-spaces. For a tunnel point contact 
this is given by [7,12] 

 ( ) ( )
2 422

0,
0

0 = ,
36

FF
tpc

e k ak
G

m U∗
⎛ ⎞
⎜ ⎟⎜ ⎟ π⎝ ⎠

=
=

 (24) 

and for a metallic point contact we have [25] 

 
2 6

0, 3
8 ( )

(0) = .
27

F
mpc

e k a
G

π =
 (25) 

For d →∞  Eqs. (20) and (21) transform into the known 
voltage dependence of the conductance for a point contact 
between unbound conducting half-spaces [27], 

 
3

0 0
1( ) = (0) 1 .
3F F

eV eV
G V G

⎡ ⎤⎛ ⎞⎢ ⎥+ − ⎜ ⎟⎢ ⎥ε ε⎝ ⎠⎣ ⎦
 (26) 

The dependence of the differential conductance ( )G V  
for both signs of applied voltage is illustrated in Fig. 5. For 
comparison the dependence 0 0( ) / (0)G V G  from Eq. (26) 
is also shown. 

Fig. 4. Dependence of the total current, ( ),I V  on the applied bias 
over the point contact for two choices of the thicknesses of the 
metal film. The constant 0I  is given by Eq. (17) or Eq. (18). 
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4. Discussion 

Thus, in the framework of the model illustrated in 
Fig. 1 we have obtained the current–voltage characteristic 
and the differential conductance for a contact on the sur-
face of a thin metal film. Under the assumption that the 
contact radius a is much smaller than the Fermi wave 
length Fλ  we found asymptotically exact formulas for the 
dependence of the total current ( )I V  (Eqs. (15) and (16)) 
and the contact conductance ( )G V  (Eqs. (20), (21)) on the 
applied voltage. In the limit of zero temperature and neg-
lecting scattering processes we have demonstrated that the 

( )I V  dependence has kinks and ( )G V  undergoes jumps at 
the same values of applied bias eV  (see Figs. 4 and 5). 
These events result from the size quantization of the elec-
tron spectrum in the film. 

The results obtained show that even in Ohm’s-law ap-
proximation (22), 0,eV →  the conductance ( )G V  is not 
simply proportional to the electron density of states (DOS) 
in the isolated film, 

 2( ) = .F
f

m N
d

∗
ρ ε

π=
 (27) 

It is remarkable that the dependence of the conductance 
(0)G  (22) on the number of quantum levels FN  is the 

same for, both, tunnel and metallic point contacts. This fact 
shows that such dependence is not sensitive to the model 
taken for the potential barrier, and that it is the result of the 
point-contact geometry. Recently, the relationship between 
the differential conductance and the local density of states 
has been studied in a tight-binding approximation for tun-
nel junctions, where the junction geometry can be varied 
between the limiting cases of a point-contact and a planar 
junction [28]. In the framework of a real-space Keldysh 
formalism the authors of Ref. 28 have shown that the diffe-

rential conductance is not, in general, proportional to the 
sample DOS for planar junctions, although features of the 
DOS may be present. 

From Eqs. (20) and (21) it follows that the conductance 
is nonsymmetric in the applied bias. This asymmetry can 
be explained as follows: Let > 0eV  and electrons tunnel 
from the bulk conductor into the film (Fig. 3,a) in which 

FN  subbands of the size quantization are partially filled. 
If the bias eV  is smaller than the distance Δε  between the 
Fermi level Fε  and the bottom of the next (empty) sub-
band 2 2 2 2

1 = ( 1) / 2 ,N FN m d∗+ε π +=  1= ,N F+Δε ε − ε  
the electron can tunnel into any of the FN  subbands. At 

=eV Δε  tunneling into the ( 1)-thFN +  subband becomes 
possible and the conductance ( )G V  undergoes a positive 
jump. Such jumps are repeated for increasing voltage for 
all higher subbands. For < 0,eV  when electrons tunnel 
from the thin film into bulk metal (Fig. 3,b) the situation is 
somewhat different. If the bias eV  becomes larger than 
distance Δε  between the bottom of the last partially filled 
subband 2 2 2 2= / 2N FN m d∗ε π =  and Fermi energy, 

= ,F NΔε ε − ε  the contribution of the -thFN  subband to 
the tunnel current does not depend on the voltage because 
for any >eV Δε  all electrons of this subband can tunnel 
into the bulk states of the left conductor. For this reason 
the differential conductance drops for values of eV  coin-
ciding with bottoms of subbands of size quantization in the 
film. The distance between neighboring jumps of the con-
ductance on the voltage scale equals the distance between 
energy levels 2 2 2

1= = (2 1) / 2 .N N N FN m d∗+Δε ε − ε π +=  
For < 0eV  the number of conductance jumps is finite and 
equals the number of discrete levels below Fermi surface 

.FN  The asymmetry around = 0V  and the general shape 
of the jumps in the conductance can be recognized in the 
experiments, see, e.g., [15]. In the special case of a 2D 
electron system, which has only one level in the potential 
well, there is a single negative jump of G(V). Such a jump 
has been observed in Ref. 29 by STM investigations of the 
2D electron gas at noble-metal surfaces. For > 0eV  the 
number of conductance jumps formally is not restricted. 
However, for > FeV ε  our approach is no longer applica-
ble and the influence of field emission on the tunnel cur-
rent must be taken into account [30,31]. 

The observation of manifestations of the size quantiza-
tion in the STM conductance requires a few conditions 
which must be fulfilled: The distance between the energy 
levels must be large enough and should satisfy the condi-
tion / , ,N TΔε τ=�  where τ  is the mean scattering time 
of the electrons in the film and T  is the temperature. The 
surfaces of the metal film in the region of the contact must 
be atomically smooth [32]. When a finite lifetime of the 
quantized states becomes relevant, the temperature broa-
dening of the Fermi function, or surface imperfections 
need to be taken into account this will result in a rounding 
of the jumps in the curve ( )G V  presented in Fig. 5 
(Eqs. (20), (21)), which was plotted under assumptions of 

Fig. 5. Dependence of the normalized differential conductance,

0( ) / (0),G V G  on the applied bias over the point contact for two
choices of the thicknesses of the metal film. The voltage depen-
dence for a point contact between two semi-infinite bulk conduc-
tors is shown for comparison (short-dashed curve). 
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perfectly specular surfaces, = 0,T  and .τ → ∞  With these 
restrictions taken into account the current–voltage curves 
in Fig. 4 give a fair qualitative description of the experi-
mental results of Ref. 14. 

It can be easily seen that the results obtained have a 
more wide domain of applicability than that of a rectangu-
lar well for the conducting film. For any model of the po-
tential which restricts the electron motion in one direction 
the differential conductance has a step-like dependence on 
the applied bias with distances between the steps equal to 
the distances between the quantum levels. 

5. Conclusion 

In summary, we have investigated the conductance of 
ultra small contacts, for which the radius is smaller than 
the Fermi wave length, on top of the surface of a thin film. 
The discreteness of the component of the electron momen-
tum transverse to the film surface is taken into account, 
where the distance between the electron energy levels due 
to the size quantization is assumed to be larger than the 
temperature. Both, a contact with a potential barrier of low 
transparency, and a contact without barrier have been con-
sidered. In framework of our model, using a δ-function 
potential barrier, the current–voltage characteristic ( )I V  
of the system and differential conductance ( )G V  have 
been obtained. We predict a sawtooth dependence of 

( )G V  on the applied bias and show that the distance be-
tween neighboring jumps is equal to the distance between 
neighboring energy levels of size quantization, i.e., this 
dependence can be used for spectroscopy of size quantized 
levels. At > 0eV  the jumps in the conductance are posi-
tive and correspond to distances between levels above the 
Fermi surface, while ( )G V  undergoes negative jumps for 

< 0,eV  the distances between which are equal to the dis-
tances between the levels below the Fermi surface. The 
predicted quantization of the conductance can be observed 
in STS experiments, and the shape of the theoretical curves 
agrees well with experiments. 

Appendix 1: Electron tunneling between the tip  
and the thin film 

We search a solution to Eq. (1) at = 0V  in the form of 
a sum 0 1=ψ ψ +ψ  for the incident and backscattered 
waves, and 1=ψ ψ  for the transmitted wave. Here 0ψ , as 
given by Eqs. (6), (8), is the unperturbed wave function 
that does not depend on the barrier amplitude 0 ,U  while 

1 01/ Uψ ∼  gives the first order correction. Substituting 
the wave function into the boundary conditions (2) and (3) 
one should match terms of the same order in 01/ .U  As a 
result the boundary condition (3) becomes [7] 

 
2

1
0

( ,0) = e ( ),ii a
m U∗

ψ − Θ −ρ
=k κρρ  (A1.1) 

where = zkk  when the wave is incident to the contact 
from the tip side, and = znkk  when the wave arrives at the 
contact from the sheet. For 1ka�  we have in the plane of 
the contact 1κ �ρ  and we can neglect the exponent in the 
boundary condition (A1.1). 

The function 1( , )zψ ρ  can be represented as a Fourier 
integral 

 1( , ) = e ( , ).iz d z
∞

′−

−∞

′ ′ψ Ψ∫ κ ρρ κ κ  (A1.2) 

The Fourier components in (A1.2) should satisfy the ze-
ro boundary condition at = ,z d  but are otherwise freely 
propagating along z, 

sin ( )
( , ) = ( ,0) , 0 ,

sin
z

z

k z d
z z d

k d

′ −′ ′Ψ Ψ
′

- -κ κ  (A1.3) 

( , ) = ( ,0) exp ( ), 0,zz ik z z′ ′ ′Ψ Ψ − -κ κ  (A1.4) 

with 2 2= ,zk k′ ′− κ  = 2 / .k m∗ε =  From Eqs. (A1.1), 
(A1.2) it follows that 

2
1

2
0

( )1( ,0) = e ( ,0) = .
(2 ) 2

i J ai ad
m U

∞
′

∗
−∞

′κ′Ψ ψ −
′κπ π∫

=kκ ρκ ρ ρ   

  (A1.5) 

Substituting this into Eq. (A1.2) we find the wave func-
tions for the electrons transmitted through the contact as 

2

1 0 1
0 0

sin ( )
( , ) = ( ) ( ) ,

sin
z

z

k d zi az d J J a
k dm U

∞

∗

′ −′ ′ ′ψ κ κ ρ κ
′∫

k
ρ   

 0 < ,z d-  (A1.6) 

2

1 0 1
0 0

( , ) = ( ) ( ) exp ( ),z
i az d J J a ik z
m U

∞

∗
′ ′ ′ ′ψ κ κ ρ κ −∫

k
ρ   < 0,z  

  (A1.7) 

where ( )nJ x  is the Bessel function of the first kind. 

Appendix 2: Metallic point contact between STM tip 
and metal film 

Here we consider a point contact without potential bar-
rier in the plane of the interface. When the contact radius is 
small, 1,ka�  we can use perturbation theory for the elec-
tron wave function in the limit 0.a →  In zeroth approxi-
mation the wave functions are given by Eqs. (6) and (8). 
The first order correction, 1( ,0),ψ ρ  to the wave function in 
the plane of the contact can be found by the method pro-
posed in [25]. For distances r λ�  from the contact we 
can neglect the second term in the Schrödinger equation 
(1) and it reduces to the Laplace equation. We express the 
wave function in coordinates of an oblate ellipsoid of revo-
lution ( , , ),σ τ ϕ  with 0σ.  and 1 1.− τ- -  As a conse-
quence of the cylindrical symmetry of the problem the 
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wave function 1( , )ψ σ τ  does not depend on .ϕ  The inter-
face corresponds to = 0τ  and the plane of the orifice is at 

= 0.σ  In these coordinates we obtain the equation 

 2 21 1(1 ) (1 ) = 0,
∂ψ ∂ψ∂ ∂⎡ ⎤ ⎡ ⎤+ σ + − τ⎢ ⎥ ⎢ ⎥∂σ ∂σ ∂τ ∂τ⎣ ⎦ ⎣ ⎦

 (A2.1) 

with the boundary condition at the interface 

 1( > 0, = 0) = 0.ψ σ τ  (A2.2) 

The solution of the boundary problem (A2.1), (A2.2) is 

 1 1 2( , ) = [ (1 arctan )],c cψ σ τ τ σ + + σ σ  (A2.3) 

where 1c  and 2c  are constants. For = 0σ  Eq. (A2.3) 
gives the function 1( , )zψ ρ  in the plane of the contact 

= 0,z  aρ-  

 
2

1 2 2( ,0) = 1 .c
a
ρ

ψ −ρ  (A2.4) 

As in Appendix 1, we express 1( , )zψ ρ  as a Fourier 
integral and, using the Eq. (A2.4), we find for the Fourier 
components 

1
1 22

( )1( ,0) = e ( ,0) = ,
(2 )

i j a
d c a

∞
′

−∞

′κ′Ψ ψ
′κπ ∫ κ ρκ ρ ρ  (A2.5) 

where 1( )j x  is the spherical Bessel function of the first 
kind. Substituting Eq. (A2.5) into Eq. (A1.2) and using 
Eqs. (A1.3), (A1.4) we obtain 

2
1 0 1

0

sin ( )
( , ) = ( ) ( ) ,

2 sin
z

z

c a k d z
z d J j a

k d

∞ ′ −′ ′ ′ψ ρ κ κ ρ κ
π ′∫  

 0 < ,z d-  (A2.6) 
and 

 2
1 0 1

0
( , ) = ( ) ( )e ,

2
ikzc a zz d J j a

∞
′−′ ′ ′ψ ρ κ κ ρ κ

π ∫       < 0.z   

  (A2.7) 

The constant 2c  must be found from the boundary condi-
tion (3) at 0 = 0,U  which for this case takes the form 

 1 1( , 0) ( , 0)
2 = 0.i

z z
∂ψ ρ + ∂ψ ρ −

− −
∂ ∂

k  (A2.8) 

The meaning of the symbol k  is explained below 
Eq. (A1.1). Differentiating Eqs. (A2.6) and (A2.7) with 
respect to z  and calculating the integrals in the limit of 
small a  we find 

3
1 2

2 3
= 0

( 1)(2 1) ,
2 2 18z

c a ai N N N
z a d+

⎡ ⎤∂ψ π π
− + + +⎢ ⎥

∂ π ⎢ ⎥⎣ ⎦
�   

  (A2.9) 

 
3

1 2
2

= 0
,

2 92z

c a k ai
z a−

⎛ ⎞∂ψ π π
+⎜ ⎟⎜ ⎟∂ π ⎝ ⎠

�  (A2.10) 

where = [ / ]N kd π  with [ ]x  the integer part of .x  Substi-
tuting Eqs. (A2.9) and (A2.10) into (A2.8) in leading ap-
proximation in ,a  in which only first terms in brackets 
(proportional to 21/ )a  should be taken into account, we 
find for the unknown constant 

 2 2 .c i a� k  (A2.11) 
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