Краткие сообщения

## Влияние пластической деформации на низкотемпературный минимум термоэдс меди

## В.Н. Светлов

Физико-технический институт низких температур им. Б.И. Веркина НАН Украины пр. Ленина, 47, г. Харьков, 61103, Украина E-mail: svetlov@ilt.kharkov.ua

Статья поступила в редакцию 23 июня 2011 г., после переработки 7 октября 2011 г.

Изучено влияние пластической деформации на термоэдс и электросопротивление поликристаллической меди при низких температурах. Основное внимание уделено минимуму термоэдс, локализованному вблизи 15 К, и его трансформациям при пластической деформации порядка и меньше 100%. Результаты этих исследований дадут возможность глубже понять механизмы рассеяния электронов в металлах с дефектами.

Вивчено вплив пластичної деформації на термоерс і електроопір полікристалічної міді при низьких температурах. Основну увагу приділено мінімуму термоерс, локалізованому поблизу 15 К, та його трансформаціям при пластичній деформації порядку і менше 100%. Результати цих досліджень дадуть можливість глибше зрозуміти механізми розсіювання електронів в металах з дефектами.

PACS: 72.15.-v Электронная проводимость в металлах и сплавах;

- 72.15.Еb Электрическая и тепловая проводимости в кристаллических металлах и сплавах;
- 62.20.F- Деформация и пластичность.

Ключевые слова: термоэлектродвижущая сила, дислокации, пластическая деформация, электросопротивление.

Известно [1], что при пластической деформации можно сильно измельчить структуру металлов вплоть до микроструктур. Исследование механизмов деформационного зарождения и развития микроструктур особенно актуально в связи с тем, что не существует общепринятой точки зрения на эту проблему [2], которая имеет фундаментальный характер и касается малоизученных механизмов пластического деформирования.

Один из методов исследования пластических деформаций основан на измерении термоэлектродвижущей силы (ТЭДС). В работе [3] наблюдали особенность в поведении ТЭДС меди, которая заключалась в смене знака абсолютной ТЭДС меди при ~ 40 К и резко выраженном минимуме при ~ 10 К. Кроме того, авторы [3] отмечали, что эффект холодной прокатки наиболее существен именно в области этого минимума и мало заметен при более высоких температурах. В настоящей работе изучено влияние холодной прокатки на поведение минимума ТЭДС меди в образцах различной чистоты, при различных степенях деформации при одновременном измерении электросопротивления, которое также зависит от деформационных процессов в образцах.

В экспериментах по измерению ТЭДС использована методика, развитая в работах [4,5]. Измеряемые образцы представляли собой поликристаллическую проволоку диаметром ~1,5 мм. В одних случаях из чистой меди (99,99%) — в дальнейшем условно «чистые» образцы, а в других из обычной электротехнической меди М1 — в дальнейшем условно «грязные», следующего химического состава, %: Cu — 99,9; Bi — 0,001; Sb — 0,002; As — 0,002; Fe — 0,005; Ni — 0,002; Pb — 0,005; Sn — 0,002; S — 0,004; O — 0,055; Zn — 0,004. Образцы прокатывали при комнатной температуре со все увеличивающейся степенью деформации, после



Рис. 1. Зависимости модуля величины минимума абсолютной ТЭДС |S<sub>min</sub>| (▲,■) и положения минимума на температурной шкале T<sub>min</sub> (△,□) от степени деформации є для «чистых» (треугольники) и «грязных» (квадраты) образцов. На вставке — схема измерения ТЭДС.

каждой прокатки отжигали при температуре  $\sim 0.1T_m$  в течение 1 ч для удаления точечных дефектов, а затем в них измеряли ТЭДС и электросопротивление в интервале температур 4,2–300 К.

На вставке рис. 1 приведена схема измерения ТЭДС образца, которая представляет собой дифференциальную термопару. Таким образом измеряли разностную дифференциальную ТЭДС  $S_{AB}(T)$ . Для определения абсолютной ТЭДС образца (участок В) измеряли абсолютную ТЭДС подводящих проводов (участок А). Для этого на участке В использован сверхпроводник (ВТСП керамика с  $T_c = 90$  К). Известно, что абсолютная ТЭДС сверхпроводника равна нулю, таким образом, в данной схеме можно измерить абсолютную



*Рис. 2.* Зависимости удельного электросопротивления после деформации  $\rho_d$ , нормированного на удельное сопротивление недеформированного образца  $\rho$ , измеренные при T = 4.2 К от степени деформации  $\varepsilon$  для «чистых» (треугольники) и «грязных» (квадраты) образцов. На вставке приведена зависимость абсолютной ТЭДС чистой меди при определенной степени деформации.

ТЭДС подводящих проводов  $S_A$  вплоть до температуры ~ 90 К. Поскольку  $S_{AB} = S_B - S_A$ , легко получить абсолютную ТЭДС измеряемых образцов  $S_B$ .

Для примера на вставке рис. 2 представлена зависимость абсолютной ТЭДС чистой меди при определенной степени деформации. Обозначим величину минимума  $S_{\min}$ , а его положение на температурной шкале  $T_{\min}$ . В дальнейшем будем следить за поведением величин  $S_{\min}$  и  $T_{\min}$  в зависимости от степени деформации.

На рис. 1 показана зависимость модуля величины минимума абсолютной ТЭДС  $|S_{\min}|$  и положения минимума на температурной шкале  $T_{\min}$  от степени деформации є как для «чистых», так и для «грязных» образцов. На рис. 2 приведена зависимость удельного электросопротивления после деформации  $\rho_d$ , нормированного на удельное сопротивление недеформированного образца  $\rho$ , измеренные при T = 4,2 К для тех же степеней деформации.

На зависимости  $|S_{\min}|(\varepsilon)$  наблюдаются два четко выраженных кроссовера: при є ~ 40% и є ~ 70%. Таким образом, до ~ 40% деформации |S<sub>min</sub>| плавно увеличивается, выходя на плато в районе от  $\varepsilon \sim 40\%$  до  $\sim 70\%$ , а затем вновь резко увеличивается. Такое поведение характерно как для «чистых», так и для «грязных» образцов. Однако по абсолютной величине |S<sub>min</sub>| в «грязных» образцах меньше вплоть до є ~ 70%. То, что в слаболегированных сплавах величина минимума на ТЭДС меньше по сравнению с чистым исходным материалом, отмечалось и в работе [3]. На рис. 1 видно, что после є ~ 70% поведение «чистых» и «грязных» образцов практически одинаково. Это говорит о том, что влияние дефектов, образующихся при пластической деформации, превышает влияние примеси при слабом легировании и оба образца ведут себя уже как «грязные».

Сравнивая поведение электросопротивления от деформации на рис. 2 с зависимостью  $|S_{\min}|(\varepsilon)$  на рис. 1, можно обнаружить корреляцию в поведении этих величин. Легко увидеть, что наблюдается такой же диапазон до  $\varepsilon \sim 40\%$ , где электросопротивление плавно увеличивается, примерно такой же диапазон, близкий к плато, от  $\varepsilon \sim 40\%$  до  $\sim 70\%$  и затем резкое увеличение сопротивления. Таким образом, величина  $|S_{\min}|$  связана с процессами рассеяния электронов так же, как и электросопротивление.

Давно известно [6] как минимум о трехстадийном характере пластической деформации. Причиной стадийности пластического течения являются изменения в дислокационной структуре. К настоящему времени сложилась определенная классификация типов дислокационных структур (субструктур), наблюдаемых в металлах. Дислокационные субструктуры по мере увеличения деформации возникают не случайным образом, а в определенной последовательности [6]. Каждая субструктура появляется при достижении определенной, критической плотности дислокаций. Переход от одной дислокационной субструктуры к другой приводит к значительному, иногда весьма резкому, изменению механических и электрических свойств металлов.

Как минимум три области, последовательно сменяющие друг друга, можно увидеть и на рис. 1 и 2: до  $\varepsilon \sim 40\%$ ; от  $\varepsilon \sim 40\%$  до  $\sim 70\%$ ; при  $\varepsilon > 70\%$ . Такое поведение, как мы полагаем, вполне может быть связано со стадийностью пластического деформирования и последовательностью дислокационных превращений. Для более убедительного подтверждения этой точки зрения необходимо снять деформационную кривую для данных образцов.

Зависимость поведения  $T_{\min}$  от деформации имеет ярко выраженный периодический характер, который так же коррелирует с нашими тремя областями.

Таким образом, впервые обнаружена корреляция между поведением  $|S_{\min}|$  абсолютной ТЭДС меди при низких температурах и поведением электросопротивления при одних и тех же степенях деформации, что может свидетельствовать об одинаковом влиянии механизмов рассеяния электронов на эти величины.

Впервые также обнаружена периодическая зависимость положения минимума  $S_{\min}$  на температурной шкале  $T_{\min}$ , что связывается нами с эволюцией дислокационных субструктур при пластической деформации. К сожалению, природа взаимосвязи превращений дислокационной субструктуры с другими процессами, происходящими в поликристаллах, изучена недостаточно. И это определяет важность исследования закономерностей эволюции дислокационных подсистем металлических материалов электрофизическими методами. К точному и детальному пониманию этого вопроса должны привести накопление достоверных экспериментальных данных и применение для решения этой задачи методов теоретической физики.

Автор выражает благодарность К.А. Чишко и В.Б. Степанову за полезные обсуждения.

- Р.З. Валиев, И.В. Александров, Наноструктурные материалы, полученные интенсивной пластической деформацией, Логос, Москва (2000).
- M.A. Meyers, A. Mishra, and D.J. Benson, *Progr. Mater.* Sci. 51, 427 (2006).
- 3. R.H. Kropschot and F.J. Blatt, Phys. Rev. 116, 617 (1959).
- В.М. Дмитриев, Н.Н. Пренцлау, В.Н. Светлов, В.Б. Степанов, ФНТ 31, 94 (2005) [Low Temp. Phys. 31, 73 (2005)].
- В.Н. Светлов, В.Б. Степанов, ФНТ 32, 919 (2006) [Low Temp. Phys. 32, 700 (2006)].
- Н.А. Конева, Э.В. Козлов, Изв. высших учебн. заведений. Физика 2, 89 (1990).

The effect of plastic deformation on the behavior of low-temperature minimum of thermopower of copper

## V.N. Svetlov

The effect of plastic deformation on thermopower and electric resistance of polycrystalline copper was investigated at low temperatures. The main attention was concentrated on the thermopower minimum localized at  $T \sim 15$  K and its transformations in the course of plastic deformation of the order of 100% or lower. The results obtained will enable the mechanisms of electron scattering in metals with defects to be understood more fundamentally.

PACS: 72.15.-v Electronic conduction in metals and alloys;
72.15.Eb Electrical and thermal conduction in crystalline metals and alloys;
62.20.F- Deformation and plasticity.

Keywords: termopower, dislocation, plastic deformation, electric resistance.