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In paper (Avotina et.al., Phys. Rev. B74, 085411 (2006)) the effect of Fermi surface anisotropy to the

conductance of a tunnel point contact, in the vicinity of which a single point-like defect is situated, has been

investigated theoretically. The oscillatory dependence of the conductance on the distance between the con-

tact and the defect has been found for a general Fermi surface geometry. In this paper we apply the method

developed in (Avotina et.al., Phys. Rev. B74, 085411 (2006)) to the calculation of the conductance of noble

metal contacts. An original algorithm, which enables the computation of the conductance for any

parametrically given Fermi surface, is proposed. On this basis a pattern of the conductance oscillations,

which can be observed by the method of scanning tunneling microscopy, is obtained for different orienta-

tions of the surface for the noble metals.

PACS: 73.23.–b Electronic transport in mesoscopic systems;
72.10.Fk Scattering by point defects, dislocations, surfaces, and other imperfections.

Keywords: Fermi surface, noble metal contacts, tunnel point contact.

The scanning tunneling microscope (STM) method en-

ables to observe and investigate quantum interference

phenomena concerned with electron scattering by single

defects. One of them is Friedel-like oscillations of the dif-

ferential tunneling conductance G measured by STM

around the defect. It is known that electrons of the surface

states on the (111) surfaces of the noble metals Au, Ag,

and Cu form a quasi-two-dimensional electron gas which

is confined at the crystal surface. These electrons are scat-

tered by surface defects, e.g. impurity atoms, adatoms, or

step edges, and the STM conductance exhibits oscillatory

patterns originating from an interference between the

principal wave that is directly transmitted through the

contact and the partial wave that is scattered by the con-

tact and the defect [1–4]. The period of the conductance

oscillations depends on a distance from the contact to the

defect r0 and double the Fermi wave vector 2k F . A simi-

lar dependence can result from the scattering of bulk elec-

tron states by subsurface defects [5–7]. It was found that

the oscillatory pattern obtained by STM reflects the ani-

sotropy of the Fermi surface (FS), i.e. the value of the

vector k F depends on the direction in a plane of the sample

surface, and surface Fermi contours can be determined by

Fourier transform of the STM image [8–10] . Particularly,

in Ref. 10 the countour related to the «neck» of the bulk

FS that for Cu (111) and Au (111) surfaces had been

observed.

In the papers [11–13] the effect of quantum interfer-

ence of electron waves which are scattered by single de-

fects below a metal surface to the conductance of a tunnel

point-contact has been investigated theoretically. It has

been shown [12] that the dependence of G on an applied

voltage measure V can be used for the determination of

defect positions below a metal surface. In Ref. 11 we have

analyzed the conductance of a tunnel point-contact in the

presence of a defect located inside the bulk for metals

with arbitrary FS. In the quasiclassical approximation the

conductance of the contact had been found. The general

formula was illustrated for two non-spherical shapes for

the FS: the ellipsoid and the corrugated cylinder (open

surface). These relatively simple models of FS make it

possible to get analytical expressions for the conductance
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and to analyze the main manifestations of the FS aniso-

tropy: «necks», inflection lines etc. In order to compare

the theoretical results with experiment it is necessary to

calculate the conductance for the real model of the FS of a

specific metal. In this paper we present such calculations

for noble metals.

We consider as a model for our system a nontransparent

interface separating two metal half-spaces, in which there is

an orifice (contact) of radius a F�� � (� F is a characteris-

tic Fermi wave length). The potential barrier in the plane of

the contact is taken to be a delta function with a large am-

plitude U (the transmission coefficient of electron tunnel-

ing through the barrier is small, T v /UF� ��( ) ,�
2 1 vF is a

Fermi velocity). At the distance r F0 �� � from the contact

a point-like defect, which is described by a short range

potential, is placed. The interaction of electrons with the

defect is taken into account in the framework of perturba-

tion theory with the constant of this interaction g. We also

assume the applied bias eV is much smaller than Fermi en-

ergy, �F . The conductance of the contact is calculated in

linear approximation in the transmission coefficient T , the

constant g and the voltage V by the method developed in

Refs. 12,14. Under the listed assumptions a general for-

mula for the conductance derived in Ref. 11:

G G g

s s

s
as

F s
as

F� �
�

	







�

�


�

� �0 0 01 ~ Re ( , ) Im ( , )

,

� �r r� � . (1)

Here G T0 � is the conductance of the tunnel point contact

without defect, ~ *g gm v /F� 2 3
� is a dimensionless con-

stant of electron-impurity interaction (m* is the effective

electron mass). The function � s
as( )r,� defines the asymp-

tote of the wave function �( ) ( )r r� T as� of the electrons

transmitted through the contact at large distances

r F�� � from the contact. For points in momentum space

for which the Gaussian curvature K t( , )� p of the FS

� �( , )p t z Fp � (z is directed along the contact axis, p t and

p z are components of the momentum tangential and per-

pendicular to the interface) is not equal to zero, the func-
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F( )r,� is given by
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where � !p rt , is the phase accumulated over the path

travelled by the electron between the contact and the

point r,

�( , ) ( ( ) )( )
p r p pt t z tp z� � �1

�
" , (3)

p z F t
( )( , )� � p is the root of the equation � ! �p t z Fp, ( )� �

corresponding to a wave with a z-component of the velo-

city v z F t
( )( , )� �� p 0, and cos ( )� �r z/r, � is the angle be-

tween the vector r and the z axis. The momenta p pt t s� ,
( )st

(s �12, ...) are defined by the equation,
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Originally, p pt t s� ,
( )st

are the stationary phase points of

the integral wave function [11]. These projections of the

momentum correspond to the velocities v p r( ) |
st�, |,

( )
t s , i.e.,

at large distances from the contact the electron wave func-

tion for a certain direction r is defined by those points on

the FS for which the electron group velocity is parallel to

r [11,15]. If the curvature of the FS changes sign, Eq. (4)

has more than one solution (s �1 2, ...). It may also occur

that Eq. (4) does not have any solution for given direc-

tions of the vector r, and the electrons cannot propagate

along these directions [16].

At the stationary phase points the curvature K ( , )� p can

be written as
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of the inverse mass matrix m
�1 [17]; ni are components

of the unit vector n r� /r.

For those points at which K 0 0� the amplitude of the

electron wave function in a direction of zero Gaussian

curvature is larger than for other directions. This results

in an enhanced current flow near the cone surface defined

by the condition K 0 0� [15]. If the FS is open, there are

directions along which the electrons cannot move at all.

These properties of the wave function manifest itself in an

oscillatory part of the conductance (1):

1. The amplitude of oscillations is maximal if the di-

rection from the contact to the defect corresponds to the

electron velocity belonging to an inflection line.

2. There are no oscillations of G if this direction be-

long to cones, in which the electron motion is forbidden.

Further calculations requires the information about the

FS, � ! �p � F .We use the parameterization of the FS of the

noble metals copper, silver and gold from [18]
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This parameterization is accurate up to 99%. The value

of the constants are r � 0.0995, and � $/ = 3.63, and a is

different for each metal. For copper, silver and gold a �
0.361, a � 0.408 and a � 0.407 nm, respectively. The

Fermi energy of copper is 7.00 eV, for silver 5.49 eV and

for gold it is 5.53 eV.

The FS (7) has the BCC symmetry. It basically looks

like a sphere with 8 «necks» positioned at the 8 vertices of

a cube (Fig. 1). The central part of the surface «belly» has

a positive curvature K � 0 while the ends near the Bril-

louin zone boundary («necks») have negative curvature.

The size of the «necks» and the curvature of the spherical

areas are slightly different for each noble metal. In the re-

gions of «necks» there are the inflection lines, at which

the curvature K � 0.

In Eq. (7) for the FS, the x, y and z directions corre-

spond to a [100] direction, and the xy interface plane is

therefore a (100) crystal plane. To align the xy plane with

a (110) plane, the FS is rotated by �/ 4 along the x or y

axis. For the (111) orientation, the total rotation consists

of a rotation of �/ 4 along the z-axis, followed by a rota-

tion of arcsin ( / )1 3 along the x or y axis.

A direct way to find solutions p pt t s� ,
( )st

of Eq. (4) nu-

merically for a certain position of the defect r0 and calcu-

late � s
as

F,( )r0 � (2) is not most suitable. Instead, the result

that p pt t s� ,
( )st

corresponds to the direction of the electron

velocity along the direction from the contact to the defect

can be used. We start with a point p on the FS, calculate

the value of � s
as

F,( )r � for every point r v p p|| /� � �� ! in

the real space, and then repeat this for all points on the FS.

Next, it is easy to perform the summation over all points

on the FS, in which r v|| to obtain the conductance. This

idea is shown schematically in Fig. 1.

Strictly speaking, the asymptotic Eq. (1) is correct at

a F�� � , r F0 �� � . However, as it was shown in Ref. 11

from a comparison of the exact result for the ellipsoidal

FS with asymptotic expression (1), Eq. (1) describes the

conductance qualitatively correctly for a F� � and dis-

tances r0 of a few � F .The other point is that at the inflec-

tion lines, which define the classically inaccessible re-

gions, the curvature K � 0.As it was shown in Ref. 11, for

such directions of the vector r0 the amplitude of the con-

ductance oscillations increases remains finite. Below we

restrict ourselves to the condition K % 0 and do not ap-

proach the inflection lines to a distance for which the sec-

ond term in the Eq. (1) becomes of the order of unity.

We present the result of computations for three differ-

ent crystallographic orientations (Fig. 2). The conduc-

tance as a function of the contact position for a defect in a

noble metal at various depths are plotted in Figs. 3–5 for

the (100), (110) and (111) lattice orientations respec-

tively. For each of the lattice orientations, the graphs have

the symmetries of that particular orientation of the FS. In

all figures «dead» regions, in which there are no conduc-

tance oscillations, can be seen. These regions originate

from the «necks» of the FS and their edges are defined by

the inflection lines. In our plots the edges are abrupt. In

reality there is a smooth change from a maximum to a zero

of amplitude of the oscillations in the «dead» regions.

This change cannot be described by Eq. (1), and a nume-

rical solution of the Schr�dinger equation with energy-mo-

mentum relation (7) must be used. However, the problem

becomes much more complicated, while it does not give

any additional physical information. The rings of high
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Fig. 1. The main contributions to the conductance oscillations

caused by a defect at r0 come from the points on the Fermi sur-

face where the normal vector (velocity vector) points in the

same direction as the vector r0.
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Fig. 2. The orientation of the Fermi surface relative to the con-

tact axis for three principal lattice orientations.



amplitude conductance oscillations have already been re-

ported in experiments on Ag and Cu (111) surfaces [6].

From Figs. 3–5 it can be seen that the interference pat-

tern of the conductance oscillations, in particular the size

and appearance of «dead» regions, depend on the depth of

the defect. These characteristics of the part of the conduc-

tance related to the scattering by the defect contains the

information about the position of the defect. For all orien-

tations of the metal surface the defect position in the plane

of the surface corresponds to a center of symmetry. The

depth can be found in the following way: the orientation

of the «neck» axes defines the axes of the cones, in which

there are no scattered electrons. Vertexes of the cones co-

incide with the defect. If the contact is situated at a point

which belongs to a sectional plane of the cones by a sur-

face plane, the conductance of the contact is equal to its

value without the defect (we called these «dead» regions).

A rough estimation of the defect depth can be obtained if

we use the approximation of a cone of revolution with an

opening angle 2&. For example, in Fig. 5 the radius R

of the central «dead» region is defined by the equality

R z� 0 cot & (& � '30 ) [6]. Using a fiting of experimental

results with theoretical calculations in the framework our

method enables one to find the depth of the defect below

metal surface more exactly.

Thus, we have demonstrated the possibility of calcula-

tions of anisotropic conductance oscillation caused by

electron scattering by the defect in noble metals. The de-

veloped algorithm of calculations can be used for any

parametrically given FS. We have shown that the analysis

of interference patterns makes it possible to find the posi-

tion of the defect below metal surface.
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Fig. 3. Conductance G as a function of the contact position for

a defect at the origin at depths 5 �F (a) and 7 �F (b) for a

(100) interface plane. The x and y directions both correspond

to 100 directions. The conductance is plotted in gray scale,

where the color of the «dead» regions corresponds to the con-

ductance value in absence the defect G G� 0, positive addition

to G is white and negative is black.
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Fig. 4. Same as Fig. 3, but for a (110) interface plane. The x

and y directions correspond to [ ]001 and [ ]1 1 0 directions re-

spectively.
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Fig. 5. Same as Fig. 3, but for a (111) interface plane. The x

and y directions correspond to [ ]112 and [ ]1 1 0 directions re-

spectively.
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