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We have investigated theoretically the conductance of a normal–superconductor point contact in the tun-

nel limit and analyzed the quantum interference effects originating from the scattering of quasi-particles by

point-like defects. Analytical expressions for the oscillatory dependence of the conductance on the position

of the defect are obtained for the defect situated either in the normal metal, or in the superconductor. It is

found that the amplitude of oscillations significantly increases when the applied bias approaches the gap en-

ergy of the superconductor. The spatial distribution of the order parameter near the surface in the presence of

a defect is also obtained.

PACS: 73.23.-b Electronic transport in mesoscopic systems;
72.10.Fk Scattering by point defects, dislocations, surfaces, and other imperfections (including
Kondo effect).
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1. Introduction

Electron scatter ing by single surface [1] and

subsurface [2] defects results in an oscillatory depend-

ence of the Scanning Tunnelling Microscope (STM) con-

ductance G on the distance, r0, between the contact and

the defect. These oscillations originate from the interfer-

ence of electron waves, which are scattered by the defect

and reflected back by the contact. They have the same pe-

riod (G k rF∼ +sin ( )2 0 δ , k F is the Fermi wave vector) as

the Friedel oscillations [3] of the local electron density of

states in the vicinity of a scatterer. For subsurface

point-like defects, the oscillatory dependence of the con-

ductance in a STM-like geometry has been investigated

theoretically in Refs. 4–8.

Although defects below a metal surface can be «visi-

ble» in STM data for up to ten interatomic distances

[9,10], the amplitude of the quantum oscillations in the

conductance becomes very small with increasing defect

depth. An effective way to enhance the STM sensitivity to

such oscillation effects is to use a superconducting tip

[11]. In Ref. 12, using a low-temperature STM with nor-

mal metal tungsten tips and superconducting niobium

tips, the formation of electron standing waves near sur-

face defects and step edges on a Au (111) surface have

been observed. It was demonstrated that the amplitude of

conductance oscillations is significantly enhanced when a

superconducting tip is used, and when the applied bias

| |eV is close to the gap energy Δ 0 of the superconductor.

The investigation of various defects in superconduc-

tors with STM is of interest by itself. For example, in

Ref. 13 a bound state near a magnetic Mn adatom on the

surface of superconducting Nb was observed by STM.

The effect of single Zn defects on the superconductivity

in high-Tc superconductors was investigated in Ref. 14,

and the manifestation of d-wave symmetry of the order

parameter was observed in the quasibound state near the

defect.

The listed reasons define the interest of theoretical in-

vestigations on the conductance of normal metal–super-

conductor (NS) tunnel contacts of small lateral size, in the

vicinity of which a single defect is placed. The authors of

Ref. 15 considered the conductance of a NS contact of fi-

nite size at low temperatures and for voltages | |eV < Δ 0

using the tunnelling Hamiltonian approximation. They
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found that, when the radius a of the contact is smaller then

the Fermi wave length λ F , the conductance of a NS point

contact becomes G h e G ans nn= ∼( / )2 2 2 8, where Gnn is

the conductance of the contact in the normal state [15].

This dependence is fundamentally different from the re-

sult of a quasiclassical theory [16], valid for a F>> λ .

The conductivity of large (a F>> λ ) ballistic NS con-

tacts in the presence of a «planar defect» was investigated

theoretically in several papers [21–24]. In these papers a

planar NS structure and a δ-functional potential barrier,

playing the role of the defect, have been considered, from

which «geometrical» resonances resulted due to com-

bined Andreev and normal reflections.

In order to describe the effect of isolated point-like de-

fects in a superconductor on the STM conductance usu-

ally calculations of the local density of states n( )r are used

(for a review, see [25]), where it is assumed that the con-

ductance of the small tunnel contact is proportional to the

local density of electron states. While for subsurface de-

fects this assumption remains qualitatively valid, it does

not permit a correct description of the details of the con-

ductance oscillations because the bulk electron density of

states around the defect is modified by reflection from the

interface, r ∈�, and in the limit of zero tunnelling proba-

bility we have n( ) .r ∈ =� 0 In this case, the problem of

electron transmission through the small NS tunnel junc-

tion in the presence of the defect should be considered.

In this paper we present the results of a theoretical in-

vestigation of the conductance of a NS point contact (with

a F<< λ ) in the tunnelling limit and we analyze the quan-

tum interference effects originating from the scattering of

quasiparticles by a point-like defect. Analytical expres-

sions are obtained for the dependence of the conductance

on the position of the defect and on the applied voltage,

for the defect situated in the normal metal or in the

superconductor.

2. Model and basic equations

Our model is presented in the Fig. 1. The normal and

superconducting half-spaces are separated by an infi-

nitely thin dielectric interface, which has an orifice of ra-

dius a.The potential barrier in the plane of interface z = 0

is taken to be a δ-function, U U f z( ) ( ) ( ),r = 0 ρ δ where ρ is

the value of the radius vector ρ in the plane z = 0. The

function f ( )ρ → ∞ in all points of the plane except in the

contact (ρ < a) , where f ( )ρ = 1. In the point r0 a nonmag-

netic defect described by a spherically symmetric poten-

tial D(| | )r – r0 is placed. A voltage V is applied between

the two sides of the contact. We assume that the transmis-

sion probability | |t of electrons through the barrier in the

orifice is small (| | / *t k m UF≈ <<�
2

0 1 , m* is effective

electron mass). In that case the applied voltage drops en-

tirely over the barrier and the electric potential can be de-

scribed by a step function, V z V z( ) ( )= −Θ with V a con-

stant. Based on the same reasoning we use a step function

for the superconducting order parameter Δ Δ Θ( ) ( ) ( )r r= z .

We consider the case of low temperatures and in the cal-

culations take T = 0. At zero temperature a tunnel current

flows through the contact for | |eV > Δ. The applied bias is

assumed to be small on the scale of the Debye frequency

ωD and the Fermi energy εF , | |eV D F<< <<�ω ε .

For definiteness we consider electron tunnelling from

the normal half-space ( )z < 0 to the superconducting half-

space ( )z > 0 , i.e. eV > 0. In order to evaluate the total cur-

rent through the contact, I V( ), and the differential con-

ductance, G V dI V dV( ) ( ) /= , we should find the current

density j rk ( ) of quasiparticles with momentum k at z > 0,

formed by electrons transmitted through the contact. The

current density j rk ( ) can be expressed in terms of the co-

efficients u k r( ) and vk r( ) of the canonical Bogoliubov

transformation [17,18]

j r r r

r r

k k k k

k k

( )
*

Im [ ( ) ( ) ( )

( ) ( ) (

*

*

= ∇ −
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e
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u u f E

v v f E

F

F

�

k )] , (1)

where f EF ( ) is the Fermi function, which at T = 0 is sim-

ply the unit step-function, f E EF ( ) ( ).= Θ The functions

u k r( ) and vk r( ) satisfy to the Bogoliubov–de Gennes

(BdG) equations [19]
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Fig. 1. Model of the contact. The point-like defect is situated

in the normal half-space. The electron trajectories in the nor-

mal metal and the trajectories of «electron-like» and

«hole-like» excitations in the superconductor are shown sche-

matically.



Eqs. (2) may be interpreted as wave equations for a two-

component «wave function»,

�ψ k
k

k

= ⎛
⎝⎜

⎞
⎠⎟

u

v
, (3)

of quasiparticles with energy Ek . The conditions, which

connect the vector �ψ k in the normal metal ( � )ψ nk and in

the superconductor ( � )ψ sk at the interface z = 0 are

� ( , ) � ( , ) � ( , )ψ ρ ψ ρ ψ ρn sk k k0 0 0= = , (4)

∂
∂

− ∂
∂

=
z z

m
U fs n� ( , ) � ( , )

*
( ) � ( , )ψ ρ ψ ρ ρ ψ ρk k k0 0

2
0

2 0
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The order parameter in the superconductor should be

determined from the self-consistently condition

Δ( ) ( ) ( )[ ( )],*
r r rk

k,

k k

k

= −
<
∑γ

ω

u v f E

E

F

D�

1 2 (6)

Δ Δ( )z → +∞ → 0 , (7)

where the constant Δ 0 can be chosen real; γ is the pair po-

tential constant. It can be easily shown [17] that Eq. (1)

combined with the self-consistently condition (6) auto-

matically satisfies to the continuity equation

div j rk

k

∑ =( ) .0 (8)

The current-voltage characteristic I V( ) of the contact

in the presence of a defect can be found by means of inte-

gration of the current density j rk ( ) over the momentum k

(within the energy interval Δ 0 ≤ ≤E eVk ) and over a sur-

face overlapping the contact in the superconducting half-

space. For this surface we choose a half-sphere of large

radius r r>> 0 0, ξ (ξ 0 is the coherence length of the super-

conductor) centered at the contact r = 0. On this half-

sphere we assume Δ( ) Δr = 0 and hence Ek k= +ξ 2
0
2Δ ,

where ξ εk = −�
2 2 2k m F/ * is the kinetic energy mea-

sured from the Fermi level. The conductance G V( ) of the

contact (at T = 0 ) is given by

G V re N

d
z d

d
k z

( ) ( )

( ) ( )( ( )

= ×

× ∫ ∫ ∫
−∞

∞

4 0

4 4

2π

π
ξ

π
Ω Θ

Ω
Θk

k
krj r ) ( ) ,δ E eVk − (9)

where dΩ and dΩ k are elements of solid angle in the real

and momentum spaces, respectively, N ( )0 is the density

of states for one direction of spin.

3. Solution of the Bogoliubov–de Gennes equation

Generally, a self-consistent solution of Eqs. (2) can be

found only numerically. Such solution must fulfil the con-

dition of conservation of the total current I through any

surface overlapping the contact, in spite of the spatial de-

pendence of the order parameter. In order to simplify the

task we will exploit the condition of a small barrier trans-

parency and find an analytical solution of Eqs. (2) using

the approximation of a constant order parameter

Δ Δ Θ( ) ( )r = 0 z . By means of this solution the coordinate

dependence of Δ( )r can be found (see Appendix).

In this Section we generalize the method developed in

the papers [4,20]. We search the solutions of Eqs. (2) as

an expansion into a series over the small transmission

probability | | /t U∼ 1 0,

� ( ) � ( ) � ( )ψ ψ ψk k kr r r= + +…0 1 , (10)

where � ( )ψ k r0 satisfies the zero-boundary condition at

z = 0, and � ( ) / .ψ k r1 01∼ U For the calculation of the cur-

rent in leading approximation in the transmission coeffi-

cient ( / )I U∼ 1 0
2 it is enough to find the first correction

� ( )ψ k r1 . Substituting the expansion (10) into the boundary

conditions (4), (5) we find that the function � ( )ψ k r1 satis-

fies the condition of continuity at z = 0, and its value at

z = +0 (in the superconducting half-space) is given by the

relations

u
m U f z

u vs nk k sk1

2

0
0 10

2
0 0 0( , )

* ( )
( , ); ( , ) .ρ

ρ
ρ ρ= ∂

∂
=�

(11)

The boundary condition does not contain Andreev reflec-

tions, which appear in the next approximation in 1 0/ U

[30]. Thus, we will not consider Andreev resonances,

which were analyzed in Refs. 21–24 for a one-dimen-

sional model.

The quasiparticle scattering by the defect will be taken

into account by perturbation theory in the strength of the

interaction with the defect. First, we find the solution of

Eqs. (2) for the contact without defect.

Let us consider an electron with energy Ek > Δ 0,

which moves towards the interface from the normal me-

tal. When D( )r = 0 (the defect is absent) and1 00/ U = (the

interface is impenetrable for electrons), in the normal

half-space we have

u vn
i ik z ik z

n
z z

k kr r0 0 0( ) ( ) , ( ) ,= − =−
e e e�ρ (12)

where k = ,( ),� k z k kz = ϑcos ( ), ϑ is the angle between

the vector k and the z axis, and � is the component of the

wave vector parallel to the interface.

Making use of the Fourier transform of the � ( )ψ k r com-

ponents over the coordinate ρ in the plane parallel to the

interface,

� ( , ) � ( , )ψ ρ ρ
k k1 1z d z i= ′ ′

−∞

∞
′∫ � �

�Ψ e , (13)

and finding � ( , )Ψk1 0� ′ from the simplified boundary con-

dition (11), we find the solution of Eqs. (2) in the super-

conducting half-space
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t k k im Uz z( ) / *= �
2

0 is the amplitude of electron wave af-

ter tunnelling through the homogeneous barrier with a large

U 0.The functions u k r1( ) and vk r1( ) contain the sum of two

solutions ϕ
0
( )

( )
±

r of Eqs. (2), which correspond to «elec-

tron-like» ( * ( / *))( )k k m mz zF F
+ > = −1

2 22 2

�
�ε � and

«hole-like» ( )( )k kz zF
− < quasiparticles having a positive

z-component of the group velocity v kkg dE d= / � .

For a small radius of the contact (in the limit a → 0) the

function (16) takes the form [8]

ϕ
θ

0

2

1
1

2

( )
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( ) ( )( , )
( ) cos

( ) ,
±

±
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2
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Here, h x
1
1( )

( ) is the spherical Hankel function of the first

kind.

In the presence of the defect the functions u k r1( ) and

vk r1( ) can be found in first approximation in the potential

D(| | )r r− 0 of electron-impurity interaction by means of

the Eqs. (2).

1. If the defect is situated in the normal half-space the

functions u k r1( ) and vk r1( ) in the superconductor have

the same form as Eqs. (14), (15) in which the amplitude

t k z( ) must be replaced by the value

~
( ) ( )

*
( ) ( ) ( ) ,

( )
t k t k

m k
gt k u h krz z n= + 4 2

2 0 0 1
1

0
π

�
k r (21)

where g is the constant of the electron interaction with the

defect

g d D= −∫ r r r(| | ) .0
(22)

In order to obtain Eq. (21) we assume that the characteris-

tic radius of the scattering potential is much smaller than

the Fermi wave length λ F (point defect). This condition

permits taking the functions u nk r0( ) and h kr
1
1( )

( ) outside

the integral at the point r r= 0. The variations in the ampli-

tudes of the «wave functions» u k r1( ) and vk r1( ) result

from the fact that the wave incident to the contact is a su-

perposition of a plane wave and a spherical wave that co-

mes from the scattering by the defect.

2. If the defect is situated inside the superconductor,

the additions Δu k r1( ) and Δvk r1( ) to the functions (14),

(15) due to the defect scattering take the form

Δu
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v u
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It is known that the order parameter Δ( )r displays

Friedel-like oscillations near a defect [26,27] or a surface

[28,29]. The current through the tunnel contact I is de-

fined by the average value of Δ( )r , which coincides with

Δ 0. In the Appendix we analyze the spatial dependence of

Δ( )r near the surface of the superconductor, in the vicinity

of which a non-magnetic defect is placed (at the distance

less than the coherence length ξ 0). Figure 2 illustrates the

results of these calculations. An inhomogeneous spatial

distribution of the order parameter is visible. We removed
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from the plot the region of radius � F (black circle) near

the defect where Eq. (A.9) is not valid.

4. Conductance of the contact

By means of the solutions of the BdG equations, which

have been obtained in previous section, we calculated the

conductance G of the NS tunnel point contact. In linear

approximation in the electron-defect interaction constant

g the conductance G can be presented as the sum of two

terms,

G V r G V G V r eVns( , ) ( ) ( , ), .0 0 0 0= + >Δ Δosc (25)

The first term, G Vns0 ( ), in Eq. (25) is the conductance of

the NS tunnel point contact in the absence of the defect

G V G
eV

eV

G
e a m

U
ns nn nn

F
0 0

2
0
2

0

2 4 3

3
0
2

2

9
( )

( )

;
*

,=
−

=
Δ

ε

π�

(26)

where G nn0 is the conductance of a contact between nor-

mal metals, which is multiplied by the normalized density

of states of the superconductor at E eV= in Eq. (26). The

second term describes the oscillatory dependence of the

conductance on the distance between the contact and the

defect.

If the defect is situated in the normal metal half-space

ΔG V rosc ( , )0 is given by

ΔG V r

G V g
r

k z j k rns
F

F F

osc ( , )

( ) ~ ( ) (

0

0
0

2

0
2

1
12

=

= − ⎛
⎝
⎜

⎞
⎠
⎟π

�
0 1 0) ( ) ,y k rF (27)

where

~ *
g

m k
gF=

2

2

π

�

(28)

is the dimensionless electron–defect interaction constant,

j xl ( ) and y xl ( ) are the spherical Bessel functions of the

first and the second kind [31], and � F Fm= � / *2 ε . In

Fig. 3 dependencies of ΔG V rosc ( , )0 on the distance ρ0 are

shown for two values of the bias eV , one of which is very

close to the gap energy (eV / . ),Δ 0 11= and the second one

is eV = 2 0Δ . The figure illustrates the increasing ampli-

tude of the conductance oscillations near eV � Δ 0.

For the defect in the superconducting half-space the

oscillatory part of the conductance consists of two terms

ΔG V r G V g
r

k zns Fosc ( , ) ( ) ~ ( )0 0
0

2

0
212= − ⎛

⎝
⎜

⎞
⎠
⎟ ×

×
= ±
∑

π

ψα
α

�

( ) ( ) ( ) ,eV j k r y k r1 0 1 0α α (29)

where

ψ ε± ±= ⎧
⎨
⎩

= ± −⎡
⎣⎢

⎤
⎦⎥

u

v
k

m
eVF

0

0

2
0
2

1 22
,

*
( ) .

/

�
Δ (30)

In Eqs. (26)–(29) we neglected all small terms of

the order of Δ 0 / εF and eV F/ ε . Nevertheless we kept

the second term in square brackets in the formula for

k± (see, Eq.(30)) because for a relatively large r0,

( ( ) / )( / )eV rF F
2

0
2

0 1− Δ ε � � , the phase shift of the os-

cillations may be important. In Fig. 4 we show the differ-

ence between the dependencies of the normalized oscilla-

tory parts of the conductance ΔG G nsosc / 0 on the distance
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voltage. The defect is situated in the normal metal at a depth

z F0 5= � . The dimensionless constant of interaction is taken
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ρ0 for a contact between normal metals ( )Δ 0 0= and for a

NS contact. An observable shift of the conductance oscil-

lations results from the voltage dependence of wave vec-

tors k± (30).

5. Conclusion

Thus, we have analyzed the conductance G of a tunnel

NS point contact with a radius a smaller than the Fermi

wave length � F , at low temperatures ( )T = 0 and for ap-

plied bias eV larger than the gap energy of the supercon-

ductor Δ 0. The effect of quantum interference of qua-

siparticles scattered by a single defect situated in the

vicinity of the contact has been taken into account. We

have shown that in leading approximation in the parame-

ters eV F/ ,ε << 1 Δ 0 1/ εF << the conductance of a small

NS contact is G G N eVns nn s0 0= ( ), Eq. (26), i.e., the pro-

duct of the conductance of the same contact between nor-

mal metals, G ann0
4∼ , and the normalized density of

states of the superconductor N eVs( ), similar as for a pla-

nar tunnel contact. Although such result is not unexpected

and has been confirmed by experiment [11] , for a contact

of radius a F< � it was not obvious and it is first obtained

in this paper.

If the defect is situated in the normal metal the con-

ductance displays oscillations, the period of which is de-

fined by the Fermi wave vector, ΔG V r k rFosc ( , ) sin0 02∼
at k rF 0 1>> (Eq. (27), Fig. 3), as for a contact between

normal metals [4]. In this case the defect plays the role of

an additional «barrier» between the normal and supercon-

ducting metals and results in oscillations of the transmis-

sion coefficient. The underlying principle here is similar

to resonance transmission through a two-barrier system.

In the superconductor the electron wave incident on

the contact from the normal metal is transformed into a

superposition of «electron-like» and «hole-like»

quasiparticles. In the case of location of the defect in the

superconducting half-space quantum interference takes

place between partial waves transmitted and those scat-

tered by the defect, for both types of quasiparticles inde-

pendently (Eq. (29)). Although the difference between

wave vectors k eV( )( )± of «electrons» and «holes» is

small the shift ( )( ) ( )k k r+ −− 0 between the two oscilla-

tions should be observable (Fig. 4).

Appendix: Oscillations of the order parameter near

the surface in the presence of a defect

When calculating the conductance to first order in the

transmission probability we should know the order pa-

rameter Δ( )r in the limit of a nontransparent interface

(surface), U 0 → ∞. According to Ref. 32,

Δ Θ* ( ) ( , ) ( ),r r r= −+

=−∞

∞

∑γ ω ωωT F

n

D (A.1)

where ω π= +T n( )2 1 are the Matsubara frequencies. The

Fourier components Gω ( , )r r′ and Fω
+ ( , )r r of Green's

functions satisfy the Gor'kov equations, which in the ab-

sence of a defect potential have the form

i
m

G FFω ε δω ω− ∇ −
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ′ + ′ = − ′+�

2 2

2 *
( , ) ( ) ( , ) (r r r r r r rΔ ) ,

i
m

F GFω ε ω ω+ ∇ +
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ′ + ′ =+�

2 2

2
0

*
( , ) * ( ) ( , )r r r r rΔ .

(A.2)

For a homogeneous superconductor Δ Δ( )r = =0 const

a n d t h e s o l u t i o n s G Gω ω( , ) ( )
( )

r r r r′ = − ′0
a n d

F Fω ω
+ +′ = − ′( , ) ( )

( )
r r r r

0
of Eqs. ( A.2) can be found to be

G
N

k r
k r

i
k r

F
F Fω

π ω

ω

( )
( )

( )
cos sin

0

0
2 2

0
r r− ′ = − +

+

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥Δ
×

× − +⎛
⎝
⎜

⎞
⎠
⎟exp ,

r

vF �
Δ 0

2 2ω (A.3)

F
N k r

k r

r

v

F

F F
ω

π

ω
ω+ − ′ =

+
− +( )

*

( )
( ) sin

exp
0 0

0
2 2

0
2 20

r r
Δ

Δ
Δ

�

⎛
⎝
⎜

⎞
⎠
⎟ ,

(A.4)

where r = − ′| | ,r r vF is the Fermi velocity, ω ε<< F . For

the semi-infinite superconducting half-space any compo-

nent of the matrix Green function

� ( , )
( , ) ( , )

( , )

( )
( ) ( )

( )
G

G F

F G

s
s s

sω
ω ω

ω
r r

r r r r

r r
′ = ′ ′

′ −+
−ω
( )

( , )
s

r r′

⎛

⎝
⎜

⎞

⎠
⎟ (A.5)
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Fig. 4. The dependence of the oscillatory parts of the conduc-

tance ΔG Gosc / 0 (29) on the distance ρ0 between the defect and

contact axis for the contact between normal metals

( / )( )ΔG Gnn
nnosc 0 and a NS contact ( / )( )ΔG Gns

nsosc 0 . The defect is

situated in the right metal (the superconductor) at a depth

10� F ; eV / ;Δ0 5= ~ . .g = 0 01



can be written as

� ( , ) � ( ) � ( ~ )
( ) ( ) ( )

G G G
s

ω ω ωr r r r r r′ = − ′ − − ′0 0
, (A.6)

where ~ ( , , )r ′ = ′ ′ − ′x y z . Equation (A.6) is exact and it pro-

vides the zero value of Δ( )r at the surface z = 0. The fact

that the order parameter vanishes at the nontransparent

interface can by seen from Eq. (6).

The Green's function for the superconducting half-

space in the presence of the point defect can be found

from the Dyson equation

� ( , ) � ( , )

� ( , ) (|

( )

( )

G G

d G D

s

s

ω ω

ω

r r r r

r r r r -r

′ = ′ +

+ ′ ′ ′ ′ ′ ′∫ 0 3| ) � ( , ) ,τ ωG r r′ ′ ′ (A.7)

where τ 3 is the Pauli matrix. Making use of the small ra-

dius of the defect potential in the first order approxima-

tion in the interaction constant g (22) we obtain

F F
s

ω ω
+ += ′ +( , ) ( , )

( )
r r r r

+ ′ ++
−

+
g F G G F

s s s s
[ ( , ) ( , ) ( , ) ( ,

( ) ( ) ( ) ( )
ω ω ω ωr r r r r r r0 0 0 0 r′ )] .

(A.8)

As a first step for the self-consistent solution, the func-

tions Gω
( )

( )
0

r r− ′ (A.3) and Fω
+ − ′( )

( )
0

r r (A.4) may be

used. At T → 0 the summation over Matsubara frequen-

cies in Eq. (A.1) can be replaced by an integration. Sub-

stituting the Eqs. (A.3), (A.4) into Eq. (A.6) and using

Eq. (A.8) we find the space distribution of the order pa-

rameter (A.1) in the next (after Δ Δ= =0 const.) approxi-

mation.
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Here

�( ; ) ,a b dt

b

a t= ∫ −

0

arcsinh

coshe (A.10)

s0 0= −| | ;r r ~ | ~ |,s0 0= −r r and ξ π0 0= �vF / Δ is the coher-

ence length. At ab >> 1, �( ; ) ( )a b K a� 0 , the modified

Bessel function [31]. The Eq. (A.9) is valid at distances

from the defect larger than the characteristic radius of the

potential D(| | )r – r0 . The correction to the constant value

of the order parameter Δ 0 decreases at small distances

r << ξ 0 from the surface or the defect according to a po-

wer law, and vanishes exponentially ( ∼ −e 2 0π ξr/ ) at larger

distances r >> ξ 0. A grey-scale plot of Δ( )r obtained by

means of Eq. (A.9) is presented in Fig. 2. In the plot we

used an unrealistically large value of the constant ~g in or-

der to show the influence on the order parameter of the

defect and the surface in the same plot. For realistic val-

ues ~ .g ∼ 0 01 the spatial oscillations of Δ( )r resulting from

the scattering by the defect have a much smaller ampli-

tude than the second term in the braces of Eq. (A.9). The

matching procedure can be continued when we put Δ( )r of

Eq. (A.9) into Gor'kov's equations (Eqs. (A.2)) or BdG

equations (2). Unfortunately, starting with this step the

solutions may be obtained only numerically.
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