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The modern physics of superconductivity can be called the physics of unconventional supercon-
ductivity. The discovery of the d-wave symmetry of the order parameter in high-temperature su-
perconductors and the triplet superconductivity in compound Sr2RuO4 has caused a huge stream of
theoretical and experimental investigations of unconventional superconductors. In this review we
discuss novel aspects of Josephson effect related to the symmetry of the order parameter. The most
intriguing of them is spontaneous current generation in an unconventional weak link. The example
of a Josephson junction as a grain boundary between two disorientated d-wave or f-wave supercon-
ductors, is considered in detail. Josephson current–phase relations and the phase dependences of
the spontaneous current, that flows along the interface are analyzed. The spontaneous current and
spontaneous phase difference are manifestations of the time-reversal symmetry (T ) breaking states
in the system. We analyzed the region of appearance of T -breaking states as function of tempera-
ture and mismatch angle. A review of the basics of superconducting qubits with emphasis on spe-
cific properties of d-wave qubits is given. Recent results in the problem of decoherence in d-wave
qubits, which is the major concern for any qubit realization, are presented.
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1. Introduction

The modern physics of superconductivity can be
called the physics of unconventional superconductiv-
ity. It should be noted that right after the famous pa-
per of Bardeen, Cooper, and Schriffer (BCS) [1] it be-
came clear that (conventional) s-wave singlet pairing
is not the only possibility [2,3], and more complex
superconducting (superfluid) states may be realized,
with nonzero orbital and spin momenta of Cooper
pairs. Because of success of the BCS theory in describ-
ing properties of the known metallic superconductors,
the theoretical research on unconventional supercon-
ductivity was purely academic and did not attract
much attention. Interest in unconventional pairing
symmetry has increased after the discovery of su-
perfluidity in 3He, with triplet spin symmetry and
multiple superfluid phases [4,5]. Low-temperature ex-
periments on complex compounds led to the discovery
of unconventional superconductivity in heavy-fermion
systems [6]. The heavy-fermion metal UPt3, like 3He,
has a complex superconducting phase diagram, which
shows the existence of several superconducting pha-
ses, while a weak temperature dependence of the para-
magnetic susceptibility indicates the triplet pairing.
Another triplet superconductor is the recently discov-
ered compound Sr2RuO4.

The real boom in investigations of unconventional
superconductivity started after the discovery by
Bednorz and Müller [7] of high-temperature (high-Tc)
superconductivity in cuprates, because of its funda-
mental importance for both basic science and practical
applications. Numerous experiments show that high-
Tc cuprates are singlet superconductors with non-
trivial orbital symmetry of the order parameter (a
so-called d-wave state, with the orbital moment of
pairs l � 2).

The Josephson effect [8] is extremely sensitive to
the dependence of the complex order parameter on the
momentum direction on the Fermi surface. Thus the

investigation of this effect in unconventional super-
conductors enables one to distinguish among different
candidates for the symmetry of the superconducting
state. This has stimulated numerous theoretical and
experimental studies of unconventional Josephson
weak links. One of the possibilities for forming a
Josephson junction is to create a point contact be-
tween two massive superconductors. A microscopic
theory of the stationary Josephson effect in ballistic
point contacts between conventional superconductors
was developed in Ref. 9. Later this theory was gener-
alized for a pinhole model in 3He [10,11], for point
contacts between d-wave high-Tc superconductors
[12–14] and for triplet superconductors [15]. The de-
tailed theory of Josephson properties of grain bound-
ary d-wave junctions was developed in [16]. In these
papers it was shown that current–phase relations for
the Josephson current in unconventional weak links
are quite different from those of conventional super-
conductors. One of the most striking manifestations of
a unconventional order-parameter symmetry is the ap-
pearance, together with the Josephson current, of a
spontaneous current flowing along the contact inter-
face. The spontaneous current arises due to the break-
ing of the time-reversal symmetry (T ) in the system.
Such a situation takes a place, for example, in a junc-
tion between two d-wave superconductors with different
crystallographic orientations. The d-wave order parame-
ter itself doesn’t break the T symmetry. But the mixture
of two differently oriented order parameters (proximity
effect) forms a T -breaking state near the interface [17].
Such spontaneous supercurrent jspon(and corresponding
spontaneous phase difference) exists even if the net
Josephson current equals zero. The state of the junction
with the spontaneous current is twofold degenerated,
and in fact, two values � jspon appear. An interesting
possibility arises then to use these macroscopic quan-
tum states for the design of d-wave quantum bits
(qubits).
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This review consists of three parts. In Section 2 the
general features of unconventional superconductivity
are presented. The different types of order parameters
are described. We briefly outline the essence of
T -symmetry breaking in unconventional superconduc-
tors and experimental tests for order-parameter sym-
metry. In Section 3 (and Appendix II) the theory of
coherent current states in Josephson junctions be-
tween d-wave superconductors and between triplet su-
perconductors is considered. The current–phase rela-
tions for the Josephson and spontaneous currents, as
well as the bistable states, are analyzed. Section 4 is
devoted to Josephson phase qubits based on d-wave
superconductors. It contains a review of the basics of
superconducting qubits with emphasis on specific
properties of d-wave qubits. Recent results in the
problem of decoherence in d-wave qubits, which is the
major concern for any qubit realization, are presented.

2. Unconventional superconductivity

2.1. Order-parameter in unconventional
superconductors. s-wave, d-wave, p-wave ... pairing

The classification and description of unconven-
tional superconducting states can be found, for exam-
ple, in the book [18] and review articles [19–23]. In
our review we do not aim to discuss this problem in
detail. We present only general information on the un-
conventional superconductors and their most likely
model descriptions.

It is well known [1] that a Cooper pair has zero or-
bital momentum, and its spin can be either S � 0 (sin-
glet state) or S � 1 (triplet state). As follows from the
Pauli exclusion principle, the matrix order parameter
of the superconductor � ��( )k (� �, are spin indices)
changes sign under permutation of particles in the Coo-
per pair � ��� ��( ) ( )k k� � � . Hence, the even parity
state is a singlet state with zero spin moment S = 0:

� ( ) ( ) �
( )� singlet k k� g i y� ;

g g( ) ( ).k k� � (1)

The odd parity state is a triplet state with S � 1,
which is in general a linear superposition of three
substates with different spin projection Sz � �1 0 1, , :

� ( ) ( ( ) �
( )� triplet )k d k� σ � y ; (2)

d k d k( ) ( )� � � .

Here �� i are Pauli matrices ( , , )i x y z� ; d k( ) and
σ � ( � , � , � )� � �x y z are vectors in the spin space. The
components of the vector d k( ) are related with the am-
plitudes gSz

(k) of states with different spin projec-
tions Sz � �( , , )1 0 1 on the quantization axis:

g d idx y1 � � � ; g dz0 � ; g d idx y� � �1 . (3)

The functions g( )k and d k( ) are frequently referred
to as an order parameter of the superconductor. For
the isotropic model g( )k � const the paring state is
singlet. In a triplet superconductor the order parame-
ter d k( ) is a vector (some authors call it the gap vec-
tor) in the spin space and in any case it depends on the
direction on the Fermi surface. This vector defines the
axis along which the Cooper pairs have zero spin pro-
jection.

The angular dependence of the order parameter is
defined by the symmetry group G of the normal state
and the symmetry of the electron interaction poten-
tial, which can break the symmetry G. In a model of
an isotropic conductor the quantum states of electron
pair can be described in terms of an orbital momentum
l and its z-projection m. The singlet (triplet) supercon-
ducting state is the state with an even (odd) orbital
momentum l of Cooper pairs. The respective states are
labeled by letters s p d, , ,� (similar to the labeling of
electron orbital states in atom) and are called s-wave,
p-wave, d-wave... states. In the general case the super-
conducting state may be a mixture of states with dif-
ferent orbital momenta l.

The spherically symmetrical superconducting state,
which now is frequently called the conventional one,
corresponds to s-wave singlet pairing l m S� � � 0. In
this case of the isotropic interaction, the order para-
meter is a single complex function g � const. Fortu-
nately, this simple model satisfactorily describes the
superconductivity in conventional metals, where the
electron–phonon interactions leads to spin-singlet
pairing with s-wave symmetry. The simplest triplet
superconducting state is the state with p-wave pairing
and orbital momentum of a Cooper pair l � 1. In the
case of p-wave pairing different superconducting
phases with different m � �1 0 1, , are possible. A Cooper
pair in a p-wave superconductor has internal struc-
ture, because for l � 1 it is intrinsically anisotropic.
The next singlet d-wave state has the orbital momen-
tum of Cooper pairs l � 2.

In unconventional superconducting states the Coo-
per pairs may have a nonzero expectation value of the
orbital L or (and) spin S momentum of a pair. States
with S 	 0 (S = 0) usually are called nonunitary (uni-
tary) triplet states.

A gap �( )k

� � �2 1
2

( ) � ( ) � ( )†k k k� Sp (4)

in the energy spectrum of elementary excitations is
given by relations

�( )( ) | ( )|singlet k k� g ; (5)
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�( )( ) [| ( )| | ( ) ( )|]triplet k d k d k d k� � 
 �2 . (6)

The gap in unconventional superconductors can be
equal to zero for some directions on a Fermi surface,
and for nonunitary states (S 	 0, so-called magnetic su-
perconductors) the energy spectrum has two branches.

In the absence of magnetic field the transition to a
superconducting state is a second-order phase transi-
tion. According to the Landau theory [24] of sec-
ond-order phase transitions, the order parameter of
such a state must be transformed according to one of
the irreducible representations of the point symmetry
group G of the normal phase, i.e., the symmetry group
of superconducting state is a subgroup of the symme-
try group of the normal state. The symmetry group G
of the normal state contains the symmetry operations
Gspin orbit� in spin and orbital (coordinate) spaces, the
operation of time reversal T , and the gauge transfor-
mationU( )1

G T� 
 
 �U G( )1 spin orbit .

The transition to a superconducting state breaks
the gauge symmetry U( )1 , and states with different
phases of the order parameter become distinguishable.
The conventional superconducting state is described
by the symmetry group H G� 
 �T spin orbit . If another
point symmetry property of the superconducting state
is broken, such a superconductor is termed an uncon-
ventional one. The order parameter of different super-
conducting states can be expanded on basis functions
of different irreducible representations of the point
symmetry groupG. For non-one-dimensional represen-
tations the order parameter is a sum of a few complex
functions with different phases, and such an order pa-
rameter is called a multicomponent one.

In real crystalline superconductors there is no clas-
sification of Cooper pairing by angular momentum
(s-wave, p-wave, d-wave, f-wave pairing, etc.). How-
ever these terms are often used for unconventional su-
perconductors, meaning that the point symmetry of
the order parameter is the same as that for the corre-
sponding representation of the SO(3) symmetry group
of an isotropic conductor. In this terminology conven-
tional superconductors can be referred to as s-wave. If
the symmetry of �� cannot be formally related to any
irreducible representation of the SO(3) group, these
states are usually referred to as hybrid states.

2.2. Pairing symmetry in cuprate and triplet
superconductors

Cuprate superconductors. All cuprate high-tempera-
ture superconductors (La2-xSrxCuO4, Tl2Ba2CaCu2O8,
HgBa2CaCu2O6, YBa2Cu3O7, YBa2Cu3O7–�,

Bi2Sr2CaCu2O8 and others) have a layered structure
with the common structural ingredient — the CuO2
planes. In some approximation these compounds may
be considered as quasi-two-dimensional metals having
a cylindrical Fermi surface. It is generally agreed that
superconductivity in cuprates basically originates
from the CuO2 layers. Knight shift measurements [25]
below Tc indicate that in the cuprate superconductors
pairs form spin singlets, and therefore even-parity or-
bital states.

The data of numerous experiments (see, for exam-
ple, the review article [19]), in which the different
properties of cuprate superconductors had been inves-
tigated, and the absence of multiple superconducting
phases testify that the superconducting state in this
compounds is most probably described by a one-com-
ponent nontrivial order parameter of the form

g T k kx y( ) ( )( � � )k � �� 2 2 , (7)

where �( )T is a real scalar function, which depends
only on the temperature T k kx y, � ( � , � )k � . This type of
pairing is a two-dimensional analog of the singlet super-
conducting state with l � 2 in an isotropic metal and
usually is called «d-wave» pairing (or d

x y2 2�
). The ex-

citation gap | ( )|g k has four line nodes on the Fermi sur-
face at  �n n� �( )( )4 2 1 , n � 0 1 2 3, , , . (Fig. 1) and
the order parameter g( )k changes sign in momentum
space.

Triplet superconductivity, an analog of triplet
superfluidity in 3He, was first discovered in a
heavy-fermion compound UPt3 more than ten years
ago [26,27]. Other triplet superconductors, Sr2RuO4
[28,29] and (TMTSF)2PF6 [30], were found recently.
In these compounds, the triplet pairing can be reliably
determined, e.g., by Knight shift experiments [31–33].
It is, however, much harder to identify the symmetry
of the order parameter. Apparently, in crystalline trip-
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let superconductors the order parameter depends on
the direction in momentum space, �k, in a more compli-
cated way, than the well-known p-wave behavior of
the superfluid phases of 3He. While numerous experi-
mental and theoretical works investigate various ther-
modynamic and transport properties of UPt3 and
Sr2RuO4, the precise order-parameter symmetry is
still to be determined (see, e.g., [34–37], and refe-
rences therein). Symmetry considerations allow con-
siderable freedom in the choice of irreducible repre-
sentation and its basis. Therefore numerous authors
(see, for example, [34–40]) consider different models
(so-called scenarios) of superconductivity in UPt3 and
Sr2RuO4, based on possible representations of crystal-
lographic point groups. Only the subsequent compari-
son of theoretical results with experimental data
makes it possible to reach a conclusion about the sym-
metry of the order parameter.

Pairing symmetry in Sr2RuO4. In experiment,
Sr2RuO4 shows clear signs of triplet superconducti-
vity below the critical temperature Tc = 1.5 K. The in-
vestigation of specific heat [41], penetration depth
[42], thermal conductivity [43], and ultrasound ab-
sorption [44] shows a power-law temperature depen-
dence, which is the evidence of the line nodes in the
energy gap in the spectrum of excitations. The combina-
tion of these results with the Knight shift experiment
[32] led to the conclusion that Sr2RuO4 is an unconven-
tional superconductor with spin-triplet pairing. A lay-
ered perovskite material, Sr2RuO4 has a quasi-two-di-
mensional Fermi surface [45].

The first candidate for the superconducting state in
Sr2RuO4 was the «p-wave» model [45–47]

d k( ) �( � � )� ��z k ikx y . (8)

The order parameter of the form (8) is a two-dimen-
sional analog ( � ( � , � ))k � k kx y of the order parameter in
the A phase of 3He. The d-vector pointing along the z
direction implies that the spin part of the Cooper pair
wave function is the spin-triplet state with Sz � 0,
i.e., in-plane equal-spin pairing (the z direction is
along the c axis of Sr2RuO4). In a system with cylin-
drical symmetry the orbital part of the pair wave
function is a state with finite angular momentum
along the z axis, Lz � �1.

However the model (8) does not describe the whole
corpus of the experimental data. Recently [36,37] it
was shown that the pairing state in Sr2RuO4, most
likely has lines of nodes, and some others models of
the order parameter have been proposed [36,37]:

d k( ) � � � ( � � )� ��zk k k kx y x y , (9)

d k)( �( � � )( � � )� � ��z k k k ikx y x y
2 2 . (10)

In unitary states (8)–(10) the Cooper pairs have
L � �1 and S � 0.

Theoretical studies of specific heat, thermal conduc-
tivity, and ultrasound absorption for different models
of triplet superconductivity show considerable quanti-
tative differences between calculated dependences for
«p-wave» and «f-wave» models [34–36,40].

Heavy fermion superconductor UPt3. One of the
best-investigated heavy fermion superconductors is
the heavy-fermion compound UPt3 [34,35]. The weak
temperature dependence of Knight shift [31], multiple
superconducting phases [26], unusual temperature de-
pendence of the heat capacity [48], thermal conduc-
tivity [49,50], and sound absorption [51] in UPt3
show that it is a triplet unconventional superconduc-
tor with a multicomponent order parameter.

The heavy-fermion superconductor UPt3 belongs to
the hexagonal crystallographic point group D6h. The
models which have been successful to explain proper-
ties of the superconducting phases in UPt3 is based on
the odd-parity two-dimensional representation E2u.
These models describe the hexagonal analog of
spin-triplet f-wave pairing.

One of the models corresponds to the strong spin-or-
bital coupling with vector d locked along the lattice c
axis ( �)c | | z [34,35]. For this model d � ��[ ]z Y Y� �1 1 2 2 ,
whereY k k kz x y1

2 2� �( ) andY k k kx y z2 2� are the basis
function of the representation. For the high-tempera-
ture polar phase ( , )� �1 21 0� �

d k( ) � � ( � � )� ��zk k kz x y
2 2 , (11)

and for the low-temperature axial phase ( , )� �1 21� � i

d k( ) � � ( � � )� ��zk k kz x y
2, (12)

where � ( � , � , � )k � k k kx y z .
Both of them are unitary states. The state (11) has

zero expectation value of orbital momentum, while in
the state (12) � � � �L 2. For the polar phase (11) the
gap in the energy spectrum of excitations | ( )|d k has an
equatorial nodal line at � �� 2 and longitudinal nodal
lines at  �n / n� �( )( )4 2 1 , n = 0, 1, 2, 3 (Fig. 2). In
the axial state (12) the longitudinal line nodes are
closed and there is a pair of point nodes � �� 0, (Fig. 3).

Other orbital state candidates, which assume weak
effective spin-orbital coupling in UPt3, are the uni-
tary planar state

d k( ) � [ �( � � ) �]� � ��k x k k k k yz x y x y
2 2 2 , (13)

and the nonunitary bipolar state
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d k( ) � [ �( � � ) �]� � ��k x k k ik k yz x y x y
2 2 2 . (14)

More models for the order parameter in UPt3 are
discussed in [21,34,35]. The models (8)–(10), (12),
(14) are interesting, because they spontaneously break
time-reversal symmetry (T -breaking), which we dis-
cuss in the next Section.

2.3. Breaking of the time-reversal symmetry in
unconventional superconductors. Spontaneous

magnetic fields and currents

Time-reversal symmetry means that the Hamil-
tonian H H� � , because if �(r) is a solution of the
Schrödinger equation, then ��( )r is also a solution of
the same equation. The time-reversal operation T is

equivalent to complex conjugation T � � .� �� � The sim-
plest example, when both the time-reversal symmetry
T and parity P are broken, is a charged particle in an
external magnetic field H, where �( )r H, and
��( )r H,– are solutions of the Schrödinger equation
while �( )r H,– and ��( )r H, describe different dege-
nerate states of the system. This fact is crucial for un-
derstanding of the appearance of nondissipative (per-
sistent) currents in mesoscopic rings, that reflects the
broken clockwise–counterclockwise symmetry of elec-
tron motion along the ring, caused by the external
vector potential.

Unconventional superconductivity allows for a large
variety of possible phases. In some of them T and P are
violated; such superconductors are frequently called
the chiral ones. (The word «chiral», literally «han-
ded», was first introduced into science by Lord Kelvin
(William Thomson) in 1884.) The time reversal (that
is, complex conjugation) of a one-component order pa-
rameter is equivalent to its multiplication by a phase
factor and does not change observables. Therefore only
in unconventional superconductors with a multicom-
ponent order parameter can the T -symmetry be broken.
In particular, all superconducting states possessing
nonzero orbital or/and spin momenta are chiral ones.

If the T-symmetry is broken, the superconducting
phase is determined not only by the symmetry of the
order parameter, but also by the topology of the
ground state. The latter is characterized by the inte-
ger-valued topological invariant N in the momentum
space [52–58]. Among the chirality’s various implica-
tions, perhaps the most striking is the set of chiral
quasiparticle states, localized at the surface. These
chiral states carry spontaneous dissipation-free cur-
rents along the surface. They are gapless, in contrast
to bulk quasiparticles of the superconductor [55].

Volovik and Gor’kov [52] have classified chiral
superconducting states into two categories, the so-called
«ferromagnetic» and «antiferromagnetic» states. They
are distinguished by the internal angular moment of
Cooper pairs. In the «ferromagnetic» state the Cooper
pairs possess a finite orbital or (for nonunitary states)
spin moment, while in the «antiferromagnetic» state
they have no net moments.

In high-temperature superconductors with the or-
der parameter (7) the time reversal T -symmetry is
preserved in the bulk. However, it has been shown
theoretically (see review paper [22], and references
therein) that the pure dx y2 2� pair state is not stable
against the T -breaking states, such as d idx y xy2 2� �
or d isx y2 2� � , at surfaces, interfaces, near impurities,
or below a certain characteristic temperature (dxy or s
means an admixture of the d-wave state with
g k kx y( ) ~k 2 or the s-wave state with g( )k � const. It

Spontaneous currents in Josephson junctions between unconventional superconductors and d-wave qubits

Fizika Nizkikh Temperatur, 2004, v. 30, Nos. 7/8 719

zk

xk
yk

Fig. 2. The modulus of the order parameter | ( )|d k (11) in
momentum space for the polar phase in an f-wave super-
conductor.
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Fig. 3. The modulus of the order parameter | ( )|d k (12) in
momentum space for the axial phase in an f-wave super-
conductor.



turns out that such states have larger condensation
energy. The d idx y xy2 2� � -wave state represents a fer-
romagnetic pairing state, while the d isx y2 2� � -wave
state is antiferromagnetic.

Among the heavy-fermion superconductors there
are two well-known systems which have T -violating
bulk superconducting phases: UPt3 and U1–xThxBe13
(0.017 < x < 0.45). These materials show double
superconducting transitions, as temperature drops,
and T -violation is associated with the second of them.
The proposed models of the order parameter in UPt3
(12), (14) correspond to the T -violating states. A
more recent candidate for T -violating superconducti-
vity is Sr2RuO4. The «p-wave» and «f-wave» unitary
models (8)–(10) describe the T -violating bulk super-
conducting phases with finite orbital moments of the
Cooper pairs.

T -breaking leads to interesting macroscopic phy-
sics in a superconductor. Local currents generating or-
bital angular momenta flow in the bulk. In general,
superconductivity and magnetism are antagonistic
phenomena, but in this case, the superconducting
state generates its own magnetism. The Meiss-
ner–Ochsenfeld effect, however, prevents uniform
magnetization inside the superconductor, and magne-
tism is restricted to areas of inhomogeneities — that
is, around impurities and domain walls or at interfaces
and surfaces. In these regions, spontaneous supercur-
rents flow. The surface current generates a spontane-
ous magnetic moment [59,60]. In triplet superconduc-
tors all nonunitary models break time-reversal
symmetry. For these states Cooper pairs have finite
spins, while the magnetization in the bulk is negligi-
ble. It was demonstrated that chiral superconductors
could show quantum Hall-like effects even in the ab-
sence of an external magnetic field [61]: a transverse
potential difference would appear in response to the
supercurrent.

2.4. Tests for order parameter in unconventional
superconductors

The simplest way to test the unconventional super-
conducting state is to investigate the effect of impu-
rity scattering on kinetic and thermodynamic charac-
teristics. For s-wave superconductors, nonmagnetic
impurities have no effects on Tc (Anderson’s theo-
rem). In superconductors with unconventional pairing
the nonmagnetic impurities induce pair-breaking and
suppress superconductivity. Increasing impurity con-
centration leads to the isotropization of the order pa-
rameter. In the state with broken spatial symmetry the
only way to achieve it is make the order parameter to
zero over entire Fermi surface. This happens, if
� 0 1� � , where � 0 is of the order of the average gap

magnitude in the absence of impurities at T � 0, and �
is the quasiparticles’ mean free time [62–64].

The Knight shift �� of the nuclear magnetic reso-
nance (NMR) frequency (for details, see [65]) is the
most suitable instrument to determine the spin struc-
ture of superconducting state. Because it results from
electron interaction with nuclear magnetic moments,
�� is proportional to the Pauli paramagnetic suscepti-
bility � of normal electrons, the temperature depen-
dence of ��( )T strongly depends on whether the pair-
ing is singlet or triplet. In singlet superconductors the
Cooper pair spin S = 0, and density of normal elec-
trons goes to zero at T � 0. Therefore ��� 0 as well.
In triplet superconductors both Cooper pairs and exci-
tations contribute to the susceptibility �, which chan-
ges little with decreasing temperature.

The presence of point and line nodes of the order pa-
rameter in unconventional superconductors may be de-
termined from the temperature dependence of thermo-
dynamic quantities and transport coefficients. In fully
gapped (� � const) s-wave superconductors they dis-
play thermally activated behavior ( exp( ))~ �� T . In a
superconductor with nodes in the gap of the elementary
excitation spectrum the thermodynamic and kinetic
quantities have power-law temperature dependence.

The most-detailed information on the order param-
eter can be obtained from phase-sensitive pairing sym-
metry tests. These are based on Josephson tunneling
and flux quantization: SQUID interferometry, tri-
crystal and tetracrystal magnetometry, magnetic flux
imaging, and thin-film SQUID magnetometry (for re-
view see [19], and references therein).

3. Josephson effect and spontaneous currents in
junctions between unconventional

superconductors

3.1. Superconducting weak links

The Josephson effect [8] arises in the superconduct-
ing weak links — the junctions of two weakly coupled
superconductors (massive banks) S1 and S2. The cou-
pling (contacting) allows the exchange of electrons
between the banks and establishes the superconduct-
ing phase coherence in the system as a whole. The
weakness of the coupling means that the supercon-
ducting order parameters of the banks are essentially
the same as for separate superconductors and they are
characterized by the phases of the order parameters �1
and �2. The Josephson weak link could be considered
as the «mixer» of two superconducting macroscopic
quantum states in the banks. The result of the mixing
is the phase-dependent current-carrying state with
current flowing from one bank to another. This cur-
rent (Josephson current) is determined (paramete-
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rized) by the phase difference  � �� �2 1 across the
weak link.

Classification. General properties. According to
the type of the coupling the Josephson junctions can
be classified as follows. 1) The tunnel junctions (orig-
inally considered by Josephson), S–I–S (I is an insu-
lator layer). Weak coupling is provided by quantum
tunneling of electrons through a potential barrier.
2) Junctions with direct conductivity, S–c–S (c is a
geometrical constriction). These are the microbridges
or point contacts. To have the Josephson behavior the
constriction size must be smaller than the supercon-
ducting coherence length �~ vF� �. 3) Junctions
based on the proximity effect, S–N–S (N is a normal
metal layer), S–F–S (F is a ferromagnetic metal
layer). The different combinations of these types of
junctions are possible, e.g., S–I–N–I–S, S–I–c–S
structures. Another type of Josephson weak links are
the multiterminal Josephson microstructures, in
which the several banks (more than two) are coupled
simultaneously with each other [66–69].

An important characteristic of a Josephson junction
is the current–phase relation (CPR) Is ( ) . It relates
the dc supercurrent flowing from one bank to another
with the difference of the phases of the superconduct-
ing order parameter in the banks. The maximum value
of Is ( ) determines the critical current Ic in the sys-
tem. The specific form of CPR depends on the type of
weak link. Only in a few cases it reduces to the simple
form I Is c( ) sin( ) � , which was predicted by
Josephson for the case of S–I–S tunnel junction. In
general case the CPR is a 2�-periodic function. For
conventional superconductors it also satisfies the rela-
tion I Is s( ) ( ) � � � . The latter property of CPR is
violated in superconductors with broken time-reversal
symmetry [70–73]. For general properties of the CPR
and its form for different types of weak links we refer
to books and reviews [66,74–76].

Unconventional Josephson weak links. The proper-
ties of the current carrying states in the weak link de-
pend not only on the manner of coupling but also on
the properties of the banks states. For example, the
S–c–S junction with the banks subjected to external
transport current was considered in [77]. In such a
system the time-reversal symmetry is artificially bro-
ken, which leads to some interesting features in junc-
tion properties (the appearance of vortex-like states
and the surface current flowing opposite to the tan-
gential transport current in the banks). In this review
we consider the junctions formed by unconventional
(d-wave and triplet) superconducting banks, which
we call unconventional Josephson weak links. The
most striking manifestation of the unconventional
symmetry of the order parameter in the junction is the

appearance of the spontaneous phase difference and
spontaneous surface current in the absence of current
flowing from one bank to the other.

3.2. Junctions between d-wave superconductors

The measurements of the characteristics of uncon-
ventional Josephson weak links give information
about the symmetry of superconducting pairing (see
review [78]). There are several approaches to the cal-
culation of coherent current states in unconventional
Josephson junctions. These can be the Ginzburg–Lan-
dau treatment [22], description in the language of
Andreev bound states [79], the numerical solution of
the Bogoljubov–de Gennes equations on a tight bind-
ing lattice [80]. A powerful method of describing
inhomogeneous superconducting states is based on the
quasiclassical Eilenberger equations for the Green’s
functions integrated over energy [81]. It was first used
in [9] to describe the dc Josephson effect in a ballistic
point contact between conventional superconductors.
The Eilenberger equations can be generalized to the
cases of d-wave and triplet pairing (Appendix II). In
this Section we present the results of quasiclassical
calculations for the Josephson and spontaneous cur-
rents in the grain boundary junction between d-wave
superconductors [12,16,17].

3.2.1. Current–phase relations. We consider the
Josephson weak link S Sd d

1 2
( ) ( )� which is formed by

the mismatching of lattice axes orientation in banks
S d

1
( ) and S d

2
( ), as is shown in Fig. 4. The x axis is per-

pendicular and the y axis is parallel to the interface
between two superconducting 2D half-spaces with dif-
ferent a–b axes orientations (angles �1 and �2 in
Fig. 4). Far from the interface (x � �� ) the order pa-
rameter is equal to the bulk values � 12, ( )vF . In the vi-
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Fig. 4. Interface between two d-wave superconductors S1
and S2 with different orientations �1 and �2 of the lattice
axes a–b.



cinity of the interface x = 0, if angles �1 and �2 do not
coincide, the value of � deviates from � 12, . To de-
scribe the coherent current states in the system, the
Eilenberger equations (A.4) for Green’s functions
must be solved simultaneously with equation for the �
(A.5). The equation of self-consistency (A.5) deter-
mines the spatial distribution of �( )r . The problem of
solving the coupled equations (A.4) and (A.5) can be
treated by numerical calculations. Analytical solu-
tions can be obtained for the model (non-self-consis-
tent) distribution of �( )r :

�
�

�
(

) exp( ), ,

( ) exp( ), .
v r

v

vF
F

F
,

i x

i x
)

(
�

� �

�

�
�
 

1

2

2 0

2 0



 (15)

The phase  is the global phase difference between
superconductors S1 and S2 . In the following we con-
sider the case of ideal interface with transparency
D = 1. For the influence of interface roughness and
effect of surface reflectancy (D 	 1) as well as the nu-
merical self-consistent treatment of the problem see,
in [16].

Analytical solutions in the model with non-self-con-
sistent order-parameter distribution (15) are presen-
ted in Appendix II. Using the expressions (A.9),
(A.12) and (A.13), we obtain the current densities
j x jx J( )� !0 and j x jy S( )� !0 :

j eN v TJ F�
� ��

"4 0 1 2

1 2
2

1 20

�
�

� 


�

( )
cos

cos
sin ,

� �

# # � �

(16)

j eN v TS F�
� ��

4 0 1 2

1 2
2

1 20

�
� �

� �

( )
sin (cos )

cos

� �

# # � �

sign" sin .

(17)

We denote by jJ the Josephson current flowing
from S1 to S2 and by jS the surface current flowing
along the interface boundary. The expressions (16)
and (17) are valid (within the applicability of the
model (15)) for arbitrary symmetry of the order pa-
rameters � 12. . In particular, for s-wave superconduc-
tors from Eq. (16) we have the current–phase relation
for the Josephson current in conventional (s-wave) 2D
ballistic S–c–S contact [9]:

j eN v T
T

TJ F� 2 0
2

2

20
0( ) ( )sin tanh
( ) cos( )

�
� 

.

The surface current jS (17) equals zero in this case.
For a S Sd d

1 2
( ) ( )� interface (DD junction) between

d-wave superconductors, the functions � 12, ( )vF in
(16) and (17) are � �12 0 122, ,( ) ( )� �T cos � � . In Ap-
pendix I the temperature dependence of the maximum
gap � 0( )T in d-wave superconductors is presented for
references. The results of the calculations of jJ ( ) and

jS ( ) for a DD junction are displayed in Fig. 5 for
different mismatch angles �� between the crystalline
axes across the grain boundary and at temperature T =
= 0.1 Tc (assuming the same transition temperature on
both sides). Interface between two d-wave supercon-
ductors S1 and S2 with different lattice axes a–b ori-
entations �1 and �2.

In these figures, the left superconductor is assumed
to be aligned with the boundary while the orientation
of the right superconductor varies. The Josephson cur-
rent–phase relation (Fig. 5,a) demonstrates a continu-
ous transition from a �-periodic (sawtooth-like) line
shape at �� � 45 � to a 2�-periodic one for small ��, as
expected in the case of a clean DND junction [82].
The phase dependence of the surface current (Fig. 5,b)
is also in qualitative agreement with results for SND
and DND junctions [83].
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3.2.2. Spontaneous currents and bistable states. In
contrast to the weak link between two conventional su-
perconductors, the current jS does not identically equal
to zero. Moreover, in some region of angles �1 and �2 a
value of the equilibrium phase difference  � 0 exists
at which (dj dJ ( ) )   � �

0
0, jJ ( )0 0� but

jS ( )0 0	 . These spontaneous phase difference 0
and spontaneous current j jS ( )0 ! spon correspond to
the appearance of the time-reversal symmetry break-
ing states in system (in fact, two values �0 of the
phase and corresponding spontaneous currents � jspon
appear). The region of T -breaking states (as a function
of temperature and mismatch angle) is shown in
Fig. 6. In Figs. 6 and 7 we also present the self-consis-
tent numerical result [16], for comparison. Only in
the asymmetric �� � 45 � junction does the degeneracy
(at  �� � 2) survive at all temperatures, due to its
special symmetry which leads to complete suppression
of all odd harmonics of I( ) ; generally, 0 0� at
some temperature that depends on the orientation.
The equilibrium value of the spontaneous current is
nonzero in a certain region of angles and temperatures
(Fig. 7), which is largest in the case of the asymmetric
�� � 45 � junction.

The Josephson current IJ ( ) is related to the
Josephson energy of the weak link EJ ( ) through
I e E dJ J( ) ( )( ( ) )  � $2 � . In Fig. 8 the Josephson
energy for DD junction as function of phase difference
is shown schematically. The arrows indicate two sta-
ble states of the system. These are two macroscopic
quantum states which can be used for the d-wave
qubit design (see below Sec. 4).

3.3. Junctions between triplet superconductors

The Josephson effects in the case of triplet pairing
was firstly discovered in weak links in 3He [84,85]. It
was found that at low temperatures a mass cur-
rent–phase dependence J( ) can essentially differ
from the case of a conventional superconductor, and a
so-called «�-state» (J % �( )� 0) is possible [85,86]. In
several theoretical papers the Josephson effect has
been considered for a pinhole in a thin wall separating
two volumes of 3He–B [10,11,13,87–90]. The discov-
ery of metal superconducting compounds with triplet
pairing of electrons makes topical a theoretical inves-
tigation of the Josephson effect in these superconduc-
tors. The Josephson effect is much more sensitive to
dependence of �( )k on the momentum direction on the
Fermi surface than are the thermodynamic and kinetic
coefficients. In this Section the consideration of the
Josephson effect in point contacts is based on the most
favorable models of the order parameter in UPt3 and
Sr2RuO4, which were presented in Sec. 2.
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3.3.1. Current density near an interface of
misoriented triplet superconductors. Let us consider a
model of the Josephson junction as a flat interface be-
tween two misorientated bulk triplet superconductors
(Fig. 9). In this Section we follow the results of the
paper [15]. In order to calculate the stationary
Josephson current contact we use «transport-like»
equations for �-integrated Green’s functions [80] (see
Appendix II.3 ). Here we consider a simple model of
the constant order parameter up to the surface. The
pair breaking and the electron scattering on the inter-
face are ignored. For this non-self-consistent model
the current–phase relation of a Josephson junction can
be calculated analytically. This makes it possible to
analyze the main features of the current–phase rela-
tions for different scenarios of «f-wave» superconduc-
tivity. We believe that under this strong assumption
our results describe the real situation qualitatively, as
was justified for point contacts between «d-wave» su-
perconductors [12] and pinholes in 3He [91].

Knowing the component g1 0( ) (A.29) of the
Green’s function g , m( �, )k r , one can calculate the cur-
rent density at the interface j(0):

j kk( ) ( ) � � Re ( ))0 4 0 0
0

1� "
�

�

�eN v T d gF
m

( , (18)

here

Re( ( ))
sin( )

cos( )
.g

m
1

1 2
2

1 2 1 2

0
2

�
�

� � ��
"� �

# # � �

�

�

(19)

The real vectors � 12, are related to the gap vectors
d k12, ( �) in the banks by the relation

d k kn n ni( �) ( �) ( )�∆ exp � . (20)

The angle � is defined by
∆ ∆1 2 1 2( �) ( �) ( �) ( �)k k k k� 
� � 
 cos ,� and

� � ( �) ( �) ( �)k k k� � �2 1 .
Misorientation of the crystals would generally re-

sult in the appearance of a current along the interface
[17], as can be calculated by projecting the vector j on
the corresponding direction.

We consider a rotation R only in the right super-
conductor (see Fig. 9), (i.e., d k d k2 1

1( �) ( �)� �R R ).
We choose the c axis in the left half-space along the
partition between superconductors (along the z axis in
Fig. 9). To illustrate the results obtained by computing
the formula (18), we plot the current–phase relation
for different below-mentioned scenarios of «f-wave»
superconductivity for two different geometries corres-
ponding to different orientations of the crystals to the
right and to the left at the interface (see Fig. 9):

(i) The basal ab plane to the right is rotated about
the c axis by the angle �; � �c c1 2|| .

(ii) The c axis to the right is rotated about the con-
tact axis (y axis in Fig. 9) by the angle �; � �b b1 2|| .

Further calculations require a certain model of the
vector order parameter d.

3.3.2. Current–phase relations and spontaneous
surface currents for different scenarios of «f-wave»
superconductivity. Let us consider the models of the
order parameter in UPt3, which are based on the
odd-parity E u2 representation of the hexagonal point
group D h6 . The first of them corresponds to the axial
state (12) and assumes the strong spin–orbital cou-
pling with the vector d locked along the c axis of the
lattice. The other candidate to describe the orbital
states, which imply that the effective spin–orbital
coupling in UPt3 is weak, is the unitary planar state
(13). The coordinate axes x, y, z here and below are
chosen along the crystallographic axes �, �, �a b c as at the
left in Fig. 9. These models describe the hexagonal an-
alog of spin-triplet f-wave pairing.

In Fig. 10 we plot the Josephson current–phase re-
lation j j yJ y( ) ( ) � � 0 calculated from Eq.(18) for
both the axial (with the order parameter given by
Eq.(12)) and the planar (Eq.(13)) states for a partic-
ular value of � under the rotation of the basal ab plane
to the right (the geometry (i)). For simplicity we use
the spherical model of the Fermi surface. For the axial
state the current–phase relation is just a slanted sinu-
soid, and for the planar state it shows a «� -state».
The appearance of the �-state at low temperatures is
due to the fact that different quasiparticle trajectories
contribute to the current with different effective
phase differences ( �)k (see Eqs. (18) and (19)) [11].
Such a different behavior can be a criterion for distin-
guishing between the axial and the planar states, tak-
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and with order parameter d k( ).



ing advantage of the phase-sensitive Josephson effect.
Note that for the axial model the Josephson current
formally does not equal zero at  � 0. This state is un-
stable (does not correspond to a minimum of the
Josephson energy), and the state with a spontaneous
phase difference (value 0 in Fig. 10), which depends
on the misorientation angle �, is realized.

The remarkable influence of the misorientation an-
gle � on the current–phase relation is shown in Fig. 11
for the axial state in the geometry (ii). For some val-
ues of � (in Fig. 11 it is � �� 3) there are more than
one state which correspond to minima of the
Josephson energy (jJ � 0 and dj dJ  � 0).

The calculated x and z components of the current,
which are parallel to the surface, jS ( ) , are shown in
Fig. 12 for the same axial state in the geometry (ii).
Note that the tangential to the surface current as a
function of  is nonzero when the Josephson current

(Fig. 11) is zero. This spontaneous tangential current
is due to the specific «proximity effect» similar to
spontaneous current in contacts between «d-wave» su-
perconductors [17]. The total current is determined by
the Green’s function, which depends on the order pa-
rameters in both superconductors. As a result, for non-
zero misorientation angles a current parallel to the
surface can be generated. In the geometry (i) the tan-
gential current for both the axial and planar states at
T = 0 is absent.

The candidates for the superconducting state in
Sr2RuO4 are «p-wave» model (8) and «f-wave»
hybrid model (10). Taking into account the
quasi-two-dimensional electron energy spectrum in
Sr2RuO4, we calculate the current (18) numerically
using the model of a cylindrical Fermi surface. The
Josephson current for the hybrid «f-wave» model of
the order parameter (Eq. (10)) is compared to the
p-wave model (Eq. (8)) in Fig. 13 (for � �� 4). Note
that the critical current for the «f-wave» model is sev-
eral times smaller (for the same value of � 0) than for
the «p-wave» model. This different character of the
current–phase relation enables us to distinguish be-
tween the two states.
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In Figs. 14 and 15 we present the Josephson current
and the tangential current for the hybrid «f-wave»
model for different misorientation angles � (for the
«p-wave» model it equals zero). Just as in Fig. 10 for
the «f-wave» order parameter (12), in Fig. 14 for the
hybrid «f-wave» model (9) the steady state of the
junction with zero Josephson current corresponds to
the nonzero spontaneous phase difference if the miso-
rientation angle � 	 0.

Thus, in this Section the stationary Josephson ef-
fect in a planar junction between triplet superconduc-
tors is considered. The analysis is based on models
with «f-wave» symmetry of the order parameter be-
longing to the two-dimensional representations of the
crystallographic symmetry groups. It is shown that
the current–phase relation are quite different for dif-
ferent models of the order parameter. Because the or-
der parameter phase depends on the momentum direc-
tion on the Fermi surface, the misorientation of the
superconductors leads to a spontaneous phase diffe-
rence that corresponds to zero Josephson current and
to the minimum of the weak-link energy. This phase
difference depends on the misorientation angle and

can possess any values. It has been found that in con-
trast to the «p-wave» model, in the «f-wave» models
the spontaneous current may be generated in a direc-
tion which is tangential to the orifice plane. Generally
speaking this current is not equal to zero in the ab-
sence of the Josephson current. It is demonstrated that
the study of the current–phase relation of a small
Josephson junction for different crystallographic ori-
entations of banks enables one to judge the applicabi-
lity of different models to the triplet superconductors
UPt3 and Sr2RuO4.

It is clear that such experiments require very clean
superconductors and perfect structures of the junction
because of pair-breaking effects of nonmagnetic impu-
rities and defects in triplet superconductors.

4. Josephson phase qubits based on d-wave
superconductors

4.1. Quantum computing basics

As we have seen, unconventional superconductors
support time-reversal symmetry breaking states on a
macroscopic, or at least, mesoscopic scale. An interest-
ing possibility arises then to apply them in quantum
bits (qubits), basic units of quantum computers (see,
e.g., [92–94]), using T -related states of the system as
basic qubit states.

A quantum computer is essentially the set of N
two-level quantum systems which, without loss of
generality, can be represented by spin operators
� , ...( )� i i N� 1 . The Hilbert space of the system is
spanned by 2N states s s s sN i1 2 0 1, , , �... , , .
The information to be processed is contained in com-
plex coefficients {�} of the expansion of a given state
in this basis:

� � , , ,
�
"� s s s

s
NN

j

s s s
1 2

0 1
1 2...

,

... . (21)
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The unitary operations on states of the qubits are
called gates, like in the classical case. Single qubit gates
are SU(2) rotations. An example of a two-qubit gate is
conditional phase shift, CP(/), which, being applied to
a two-qubit wave function, shifts its phase by /, if and
only if they are in the same («up» or «down») state. In
the basis { , , , }0 0 0 1 1 0 1 1, , , , it is

CP

i

i

( )/

/

/

�

0

1

2
2
2
2
2

3

4

5
5
5
5
5

e

e

0 0 0

0 1 0 0

0 0 1 0

0 0 0

. (22)

Obviously, if CP( )/ is applied to a factorized state of
two qubits, � � � , �( ) ( )� � � �1 1 2 20 1 0 1 , in
the general case we will obtain an entangled state.
Up to an unimportant global phase factor, CP( )/ re-
sults from the free evolution of two qubits, generated
by the Hamiltonian H � 6J z z� �

( ) ( )� �1 2 , for a time
T J� �/ ( )2 .

Another nontrivial example is controlled-not gate
CN12, which acting on s s1 2, leaves s1 intact and
flips s2 (1 0� , 0 1� ) if and only if s1 1� . A combina-
tion SW CN CN CN12 12 21 12� swaps (exchanges) the
states of two qubits.

It can be shown that a universal quantum computer
(that is, one that can realize any possible quantum al-
gorithm, the way a Turing machine can realize any pos-
sible classical algorithm) can be modeled by a chain of
qubits with only nearest-neighbor interactions:

H � � � 6
� � �
" "{ }( ) ( ) ( ) ( )u Ji z

i
i x

i

i

N

ij
i j

z
i

z
j� � � ��

1 1

. (23)

Further simplifications are possible [95], but this
would be irrelevant for our current discussion.

The operations of a quantum computer require that
the parameters of the above Hamiltonian be controlla-
ble (more specifically, one must be able to initialize,
manipulate, and read out qubits). For the unitary ma-
nipulations discussed above, at least some of the
parameters u J, ,� of the Hamiltonian must be cont-
rollable from the outside during the evolution. Initial-
ization and readout explicitly require nonunitary
operations (projections). Therefore any practical im-
plementation of a quantum computer must satisfy con-
tradictory requirements: qubits must be isolated from
the outside world to allow coherent quantum evolu-
tion (characterized by a decoherence time �d) for long
enough time to allow an algorithm to run, but they
must be sufficiently coupled to each other and to the
outside world to permit initialization, control, and
readout [94]. Fortunately, quantum error correction
allows one to translate a larger size of the system into
a longer effective decoherence time by coding each

logical qubit in several logical ones (currently it is ac-
cepted that a system with � �d g in excess of 104 can
run indefinitely, where �g is time of a single gate ap-
plication (e.g., the time T in the example of CP( )/ ).

Note that the operation of a quantum computer
based on consecutive application of quantum gates as
described above is not the only possible, or necessarily
the most efficient, way of its use. In particular, it re-
quires a huge overhead for quantum error correction.
Alternative approaches were suggested (e.g., adia-
batic quantum computing [96–98]), which may be
more appropriate for smaller scale quantum registers,
likely to be built in the immediate future.

4.2. Superconducting qubits

The size of the system is crucial not only from the
point of view of quantum error correction. It is mathe-
matically proven that a quantum computer is expo-
nentially faster than a classical one in factorizing large
integers; the number of known quantum algorithms is
still small, but an active search for more potential ap-
plications is under way (see the above reviews and
e.g., [96–98]). Nevertheless the scale on which its
qualitative advantages over classical computers begin
to be realized is about a thousand qubits. This indi-
cates that solid-state devices should be looked at for
the solution. The use of some microsopic degrees of
freedom as qubits, e.g. nuclear spins of 31P in a Si ma-
trix, as suggested by Kane [99], is attractive due to
both the large �d and well-defined basis states. The
difficulties in fabrication (due to small scale) and con-
trol and readout (due to weak coupling to the external
controls) have not allowed realization of the scheme
so far.

Among mesoscopic qubit candidates, superconduct-
ing, more specifically Josephson systems have the ad-
vantage of a coherent ground state and the absence or
suppression of low-energy excitations, which increases
the decoherence time. Together with well-understood
physics and developed experimental and fabrication
techniques, this makes them a natural choice.

The degree of freedom which is coupled to the con-
trol and readout circuits determines the physics of a
qubit. In the superconducting case, one can then distin-
guish charge and phase qubits depending on whether
the charge (number of particles) or phase of the super-
conductor (Josephson current) is well defined.

The simplest example of a Josephson qubit is an
rf-SQUID [100], with the Hamiltonian

H q x
cQ

C L

I
� � � �

�

( ) cos( )
2

0
2

2
2 0

2 8 2

7 7

�
 

�
 , (24)

where L is the self-inductance of the loop, and Ic andC
are the critical current and capacitance of the Josephson
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junction. The charge on the junction �Q ie� � $2  is con-
jugate to the phase difference  across it. The external
flux through the loop is 7 7x x�  �0 2( ). If it equals
exactly 70 2( �8x � , the T-symmetry is broken. The
potential part in (24) acquires a symmetric two-well
structure, with tunneling between the wells possible
due to the derivative term in (24), which reflects
quantum phase uncertainty in the Josephson junction
with finite capacitance. The tunneling rate is of the
order of � �p pUexp( ( ) )� 0 , where the frequency of
oscillations in one of the potential wells
�p J QE E~ , and the height of the potential barrier
between themU EJ( ) ~0 .

The states in right and left wells differ by the direc-
tion of the macroscopic persistent current and can be
used as qubit states 0 and 1 .

The dynamics of the system is determined by the in-
terplay of the charging energy E e CQ � 2 2 and
Josephson energy E hI eJ c� ( )2 . Here E EJ Q �� 1,
and charging effects are responsible for the tunneling
splitting of the levels. Coherent tunneling between
them was actually observed [100] in an Nb/AlOx/Nb
SQUID at 40 mK; the magnetic flux difference was
approximately 70 4, which corresponded to currents
about 2 9A. (The actual design was a little more com-
plicated than the simple rf-SQUID.) Fine tuning of
the external flux is essential to allow resonant tunnel-
ing through the potential barrier.

In the case of small loop inductance the phase will
be fixed by flux quantization. For phase to tunnel, one
has to introduce extra Josephson junctions in the loop.
In the three-junction design [101], two junctions are
identical, with Josephson energies EJ each, and the
third one has a little smaller energy �EJ , � � 1. In the
presence of external flux  x , the energy of the system
as a function of phases on the identical junctions
 1 2, is

U

EJ
x

( , )
cos cos cos( )

 
  �   1 2

1 2 1 2� � � � � � .

(25)

As before, if  �x � , the system has degenerate min-
ima. Due to two-dimensional potential landscape,
tunneling between them does not require large flux
transfer of order 70 2, as in the previous case. Tun-
neling is again possible due to charging effects, which
give the system effective «mass» proportional to the
Josephson junction capacitance C. Coherent tunnel-
ing between the minima was observed [102]. The po-
tential landscape (25) was restored from the measure-
ments on a classical 3-junction loop (with C too large
to allow tunneling) [103]. Rabi oscillations were
observed both indirectly, using the quantum noise
spectroscopy [104] (the observed decay time of Rabi

oscillation observed in these experiments �Rabi =
= 2.5 9s), and directly, in time domain [105] (�Rabi=
= 150 ns).
The above limit E EJ Q �� 1 can be reversed. Then
the design must include a mesoscopic island separated
by the rest of the system by two tunneling junctions
(superconducting single electron transistor, SSET).
The Hamiltonian becomes

H q
x cQ Q

C

I
�

�
�

( � )
cos

2
0

2 2

7

�
, (26)

where this time the role of external T-symmetry
breaking parameter is played by the charge Qx in-
duced on the island by a gate electrode. The working
states are eigenstates of charge on the island; at ap-
propriateQx the states withQ ne� 2 andQ n e� �2 1( )
are degenerated due to parity effect [106], where n is
the number of Cooper pairs in SSET. Quantum
coherence in SSET was observed not just through the
observation of level anticrossing near the degeneracy
point (like in [100,102], but in the time domain
[107]). The system was prepared in a superposition of
states n n, � 1 , kept at a degeneracy point for a con-
trolled time �, and measured. The probability P( )� to
find the system in state n exhibited quantum beats.

A «hybrid» system, with E EJ Q � 1, so-called
«quantronium», was fabricated and measured in the
time domain at CEA-Saclay [108], with an extraordi-
nary ratio � �d t : 8000 (the tunneling time �t can be
considered as the lower limit of the gate application
time �g). Quantronium can be described as a charge
qubit, which is read out through the phase variable,
and is currently the best superconducting single qubit.

An interesting inversion of the quantronium design
[109] is also a hybrid qubit, this time a flux qubit read
out through the charge variable. It promises several
advantages over other superconducting qubits, but
was not yet fabricated and tested.

Finally, a single current-biased Josephson junction
can also be used as a qubit (phase qubit) [110,111].
The role of basis states is played by the lowest and
first excited states in the washboard potential. Rabi
oscillations between them were successfully observed.

We only mention here charge, hybrid and phase
qubits for the sake of completeness, since unconven-
tional superconductors are more naturally employed
in flux qubits. Various Josephson qubits are reviewed
in [112].

4.3. Application of d-wave superconductors to
qubits

One of the main problems with the above flux
qubit designs is the necessity to artificially break the
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T-symmetry of the system by putting a flux 70 2
through it. Estimates show that the required accuracy
is 10 105 6� �� . The micron-size qubits must be positi-
oned close enough to each other to make possible their
coupling; the dispersion of their parameters means
that applied fields must be locally calibrated; this is a
formidable task given such sources of field fluctua-
tions as fields generated by persistent currents in
qubits themselves, which depend on the state of the
qubit; field creep in the shielding; captured fluxes and
magnetic impurities. Moreover, the circuitry which
produces and tunes the bias fields is an additional
source of decoherence in the system. (Similar prob-
lems arise in charge qubits, where the gate voltages
must be accurately tuned.)

These problems are avoided if the qubit is intrinsi-
cally bistable. The most straightforward way to
achieve this is to substitute the external flux by a
static phase shifter, a Josephson junction with uncon-
ventional superconductors with nonzero equilibrium
phase shift 0. From (25), one sees that, e.g., a
three-junction qubit would require an extra �-junc-
tion ( �0 � ) [113]. In the same way a �-junction can
be added to a multiterminal phase qubit [114]. The
only difference compared to the case of external mag-
netic field bias is in the decoherence time: instead of
noise from field generating circuits we will have to
take into account decoherence from nodal quasi-
particles (see below).

A more interesting possibility is opened up if the bi-
stable d-wave system is employed dynamically, that is,
if its phase is allowed to tunnel between the degener-
ate values. In so-called «quiet» qubit [113] an SDS’
junction (effectively two SD junctions in the (110)
direction) put in a small-inductance SQUID loop in
parallel with a conventional Josephson junction and
large capacitor. One of the SD junctions plays the role
of a � 2-phase shifter. The other junction’s capaci-
tance C is small enough to make possible tunneling be-
tween � 2 and �� 2 states due to the charging term
Q C2 2 . Two consecutive SD junctions are effectively
a single junction with equilibrium phases 0 and �
(which are chosen as working states of the qubit). The
control mechanisms suggested in [113] are based on
switches c s, . Switch c connects the small S’D junction
to a large capacitor, thus suppressing the tunneling.
Connecting s for the duration �t creates an energy dif-
ference �E between 0 and 1 , because in the latter
case we have a frustrated SQUID with 0- and �-junc-
tions, which generates a spontaneous flux 70 2 . This
is a generalization of applying the operation � z to the
qubit. Finally, if switch c is open, the phase of the
small junction can tunnel between 0 and �. Entangle-
ment between qubits is realized by connecting them

through another Josephson junction in a bigger
SQUID loop. The suggested implementation for
switches is based on a small inductance dc-SQUID de-
sign with conventional and �-junction in parallel,
with I Ic c, ,0 � �. In the absence of external magnetic
field the Josepshon current through it is zero, while at
external flux 70 2 it equals 2Ic. Instead of external
flux, another SDS’ junction is put in series with
�-junction, which can be switched by a voltage pulse
between 0 (closed) and � (open) states.

The above design is very interesting. Due to the ab-
sence of currents through the loop during tunneling
between 0 and 1 the authors called it «quiet»,
though, as we have seen, small currents and fluxes are
still generated near the SD boundaries.

Another design based on the same bistability [115]
only requires one SD or DD boundary. Here a small
island contacts a massive superconductor, and the an-
gle between the orientation of d-wave order parameter
and the direction of the boundary can be arbitrary (as
long as it is compatible with bistability). The advan-
tage of such design is that the potential barrier can to
certain extent be controlled and suppressed; more-
over, in general there are two «working» minima
� 0 0, ; the phase of the bulk superconductor across
the boundary is zero) will be separated from each
other by a smaller barrier than from the equivalent
states differing by 2�n. This allows us to disregard the
«leakage» of the qubit state from the working space
spanned by ( 0 , 1 ), which cannot be done in a
«quiet» design with exact �-periodicity of the poten-
tial profile. A convenient way of fabricating such
qubits is to use grain boundary DD junctions, where
indeed a two-well potential profile was observed
[104]. Operations of such qubits are based on the tun-
able coupling of the islands to a large superconducting
«bus» and would allow the realization of universal set
of quantum gates [116].

A more advanced design was fabricated and tested
in the classical regime in [117]. Here two bistable
d-wave grain boundary junctions with a small super-
conducting island between them are set in a SQUID
loop. (The junctions themselves are also small, so that
the total capacitance of the system allows phase tun-
neling.) In the case when the two junctions have the
same symmetry, but different critical currents, in the
absence of external magnetic field there is no current
passing through the big loop, and therefore the qubit
is decoupled from the electromagnetic environment
(«silent»). The second-order degeneracy of the poten-
tial profile at the minimum drastically reduces the
decoherence due to coupling to the external circuits.
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4.4. Decoherence in d-wave qubits

Decoherence is the major concern for any qubit im-
plementation, especially for solid-state qubits, due to
the abundance of low-energy degrees of freedom. In
superconductors, this problem is mitigated by the ex-
clusion of quasiparticle excitations due to the super-
conducting gap. This explains also why the very fact
of existence of gapless excitations in high-Tc supercon-
ductors long served as a deterrent against serious
search for macroscopic quantum coherence in these
systems. An additional source of trouble may be
zero-energy states (ZES) in DD junctions.

Nevertheless, recent theoretical analysis of DD
junctions [118,119], all using quasiclassical Eilen-
berger equations, shows that the detrimental role of
nodal quasiparticles and ZES could be exaggerated.

Before turning to these results, let us first do a sim-
ple estimate of dissipation due to nodal quasiparticles
in bulk d-wave superconductors [120].

Consider, for example, a three-junction («Delft»)
qubit with d-wave phase shifters. The 0 and 1 states
support, respectively, clockwise and counterclockwise
persistent currents around the loop, with superfluid
velocity vs. Tunneling between these states leads to
nonzero average �v s

2 in the bulk of the superconduct-
ing loop.

The time-dependent superfluid velocity produces a
local electric field

E A v� � �
1
c

m
e s

� � , (27)

and quasiparticle current j Eqp � � . The resulting av-
erage energy dissipation rate per unit volume is

� ( ) �E � :� �E m n v vs s
2 2

qp . (28)

Here �qp is the quasiparticle lifetime, and

n v d N n p v n p vs F F s F F s( ) º (º)[ (º ) (º )]� � � �

�

;
0

(29)

is the effective quasiparticle density. The angle-aver-
aged density of states inside the d-wave gap is [121]

N N(º) ( )
º

: 0
2

09�
, (30)

where 9 � �� � ��
0
1d d| ( )| , and � 0 is the maximal

value of the superconducting order parameter. Substi-
tuting (30) in (29), we obtain

n v N T p v Ts F s( ) ( ) ( )[ ( ( )): � � � �0
2

0

2
29�

Li exp

� �Li exp(2( ))]p v TF s , (31)

where Li2( )z is the dilogarithm. Expanding for small
p v TF s �� , we obtain

n v
N T
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30
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2
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�
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The two terms in parentheses correspond to thermal
activation of quasiparticles and their generation by
current-carrying state. Note that finite quasiparticle
density by itself does not lead to any dissipation.

In the opposite limit (T p vF s�� ) only the second
contribution remains,

n v
N

p vs F s( )
( )

( ):
0

0

2

9�
. (33)

The energy dissipation rate gives the upper limit � <
for the decoherence time (since dissipation is a suffi-
cient but not necessary condition for decoherence).
Denoting by Ic the amplitude of the persistent current
in the loop, by L the inductance of the loop, and by #
the effective volume of the d-wave superconductor, in
which persistent current flows, we can write

�

�
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s F s sqp 5
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9� 0
2LIc

.

(34)

Note that the thermal contribution to � <
�1 is independ-

ent of the absolute value of the supercurrent in the
loop (= vs), while the other term scales as Ic

2. Both
contributions are proportional to # and (via �vs) to
�t , the characteristic frequency of current oscillations
(i.e., the tunneling rate between clockwise and coun-
terclockwise current states).

It follows from the above analysis that the intrinsic
decoherence in a d-wave superconductor due to nodal
quasiparticles can be minimized by decreasing the ampli-
tude of the supercurrent through it, and the volume of
the material where time-dependent supercurrents flow.

Now let us estimate the dissipation in a DD junc-
tion. First, following [115,122], consider a DND
model with ideally transmissive ND boundaries. Due
to tunneling, the phase will fluctuate, creating a finite
voltage on the junction, V e� ( )�1 2 �, and normal cur-
rent I GVn � . The corresponding dissipative function
and decay decrement are

F E� � � 0
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2 2
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2

2
2 2

�
�

GV
G

e

�
; (35)
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Here E e CQ � 2 2 , M C e EQ Q� �16 1 322 , N> are
the Coulomb energy, effective «mass» and number of
quantum channels in the junction, respectively. The
latter is related to the critical Josephson current I0
and spacing between Andreev levels in the normal
part of the system, º � v LF 2 , via

I N e0 � > º. (37)

We require that / �0 1�� where
� �0 32� >N EQ º is the frequency of small phase
oscillations near a local minimum. This means that

N
EQ

> ��
º

. (38)

The above condition allows a straightforward physical
interpretation. In the absence of thermal excitations,
the only dissipation mechanism in the normal part of
the system is through the transitions between Andreev
levels, induced by fluctuation voltage. These transitions

become possible, if º �~ ~� 2 2
0eV � � , which brings

us back to (38). Another interpretation of this criterion
arises if we rewrite it as �0

1 1� ��� ( )v LF [115]. On

the right-hand side we see the time for a quasiparticle
to tranverse the normal part of the junction. If it
exceeds the period of phase oscillations (on the
left-hand side), Andreev levels simply don’t have time
to form. Since they provide the only mechanism for
coherent transport through the system, the latter is
impossible, unless our «no dissipation» criterion holds.

For a normal-layer thickness, L ~ 1000 Å and
vF ~ 107 cm/s this criterion limits �0

1210� � s–1,
which is a comfortable two orders of magnitude above
the usually obtained tunneling splitting in such qubits
(~ 1 GHz) and can be accommodated in the above de-
signs. Nevertheless, while presenting a useful qualita-
tive picture, the DND model is not adequate for the
task of extracting quantitative predictions.

A calculation [123], using a model of a DD junc-
tion interacting with a bosonic thermal bath gave an
optimistic estimate for the quality of the tricrystal
qubit, Q � 108.

The role of size quantization of quasiparticles in
small DD and SND structures was suggested in
[113,115]. The importance of effect is that it would
exponentially suppress the quasiparticle density and
therefore the dissipation below the temperature of the
quantization gap, estimated as 1–10 K. Recently this
problem was investigated for a finite width DD junc-
tion. Contrary to the expectations, the size quan-
tization as such turned out to be effectively absent on

a scale exceeding �0 (that is, practically irrelevant).
From the practical point of view this is a moot point,
since the decoherence time due to the quasiparticles in
the junction, estimated in [119], already corresponds
to a quality factor � � g ~ 106, which exceeds by two
orders of magnitude the theoretical threshold allowing
a quantum computer to run indefinitely.

The expression for the decoherence time obtained
in [119],

�
� �

4

2

e
I et( )�

, (39)

where � is the difference between equilibrium phases
in degenerate minima of the junction (i.e., � �� 2 0
in other notation), contains the expression for quasi-
particle current in the junction at finite voltage � t e
(where � t is the tunneling rate between the minima).
This agrees with our back-of-the-envelope analysis:
phase tunneling leads to finite voltage in the system
through the second Josephson relation, and with fi-
nite voltage comes quasiparticle current and
decoherence. The quality factor is defined as
Q t� � � 2�, that is, we compare the decoherence
time with the tunneling time. Strictly speaking, it is
the quality factor with respect to the fastest quantum
operation realized by the natural tunneling between
the minima at the degeneracy point. For the Rabi
transitions between the states of the qubit this num-
ber is much lower (10–20 versus 8000 [108]), due to
relatively small Rabi frequency.

A much bigger threat is posed by the contribution
from zero-energy bound states, which can be at least
two orders of magnitude larger. We can see this quali-
tatively from (39): a large density of quasiparticle
states close to zero energy (i.e., at the Fermi level)
means that even small voltages create large quasi-
particle currents, which sit in the denominator of the
expression for �. Fortunately, this contribution is
suppressed in the case of ZES splitting, and such split-
ting is always present due to, e.g., the finite equilib-
rium phase difference across the junction.

A similar picture follows from the analysis pre-
sented in [124]. A specific question addressed there is
especially important: it is known that the RC constant
measured in DD junctions is consistently 1 ps over a
wide range of junction sizes [125], and it is tempting
to accept this value as the dissipation rate in the sys-
tem. It would be a death knell for any quantum com-
puting application of high-Tc structures, and nearly
that for any hope to see some quantum effects there.
Nevertheless, it is not quite that bad. Indeed, we saw
that the ZES play a major role in dissipation in a DD
junction but are sensitive to phase differences across it.
Measurements of the RC constant are done in the re-
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sistive regime, when a finite voltage exists across the
junction, so that the phase difference grows monoto-
nically in time, forcing the ZES to approach the Fermi
surface repeatedly. Therefore �RC reflects some aver-
aged dissipation rate. On the other hand, in a free
junction with not too high a tunneling rate the phase
difference obviously tends to oscillate around �0 or
��0, its equilibrium values, and does not spend much
time near zero or �; therefore the ZES are usually
shifted from the Fermi level, and their contribution to
dissipation is suppressed.

This qualitative picture is confirmed by a detailed
calculation. The decoherence time is related to the
phase-dependent conductance via

�
� � �

�
 �

1
2

0
2F E

E
T( )

tanh . (40)

Here � is the dissipation coefficient, �E is interlevel
spacing in the well, and

G e F( ) [ ( )]� � ��� $4 2 2. (41)

For a realistic choice of parameters Eq. (40) gives a
conservative estimate �= 1–100 ns, and quality fac-
tor Q ~ 1 100� . This is, of course, too little for quan-
tum computing, but quite enough for observation of
quantum tunneling and coherence in such junctions.

5. Conclusion

We have reviewed one of the most intriguing as-
pects of unconventional superconductivity, the gener-
ation of the spontaneous currents in unconventional
Josephson weak links. The mixing of the unconven-
tional order-parameters from junction banks leads to
the formation of a T-breaking state in the weak link.
The time-reversal symmetry violation has as a conse-
quence a appearance of a phase difference on the
Josephson junction in the absence of current through
the contact. This phenomenon, not present in conven-
tional junctions between standard superconductors,
and radically changes the physics of weakly coupled
superconductors. The current–phase relations for un-
conventional Josephson weak links, which we have
discussed for S Sd d( ) ( )� and S S(triplet) (triplet)�
junctions, are quite different from conventional one. De-
pending on the angle of misorientation of the d-wave or-
der parameters in the banks, the current–phase relation
IJ ( ) is changed from a sin( ) -like curve to the
�sin( )2 dependence (Fig. 5). Clearly, it determines
new features in the behavior of such a Josephson junc-
tion in applied voltage or magnetic field. We have dis-
cussed the simple case of an ideal interface between
clean superconductors in which the spontaneous cur-
rent generation effect is the most pronounced. Beyond
the scope of this review remain a number of factors

which complicate the simple models. They are the in-
fluence on the spontaneous current states of the
interface roughness, potential barriers (dielectric
layer), scattering on impurities and defects in the
banks. For the case of a diffusive junction see the arti-
cle of Tanaka et al. in this issue. For detailed theory of
spontaneous currents in DD junctions see article [16].
The spatial distribution of spontaneous current, in
particular, the effect of superscreening, is considered
in [12,16]. An important and interesting question con-
cerns the possible induction of a subdominant order
parameter near the junction interface and its influence
on the value of spontaneous current. It was shown in
[17] that the spontaneous currents decrease when
there is interaction in the subdominant channel. This
statement, which may seem paradoxical, can be ex-
plained in the language of current-carrying Andreev
states (see Fig. 5 in [17]). As a whole, the theory of
unconventional Josephson weak links with breaking
of T -symmetry, in particular, the self-consistent con-
sideration and nonstationary behavior, needs further
development. The spontaneous bistable states in
Josephson d-wave junctions attract considerable inter-
est also from the standpoint of implementation of
qubits, basic units of quantum computers. In Sec. 4 we
analyzed the application of d-wave superconductors to
qubits. Unlike the Josephson charge and flux qubits
based on conventional superconductors, the d-wave
qubits are not yet realized experimentally. Neverthe-
less, the important advantages of d-wave qubits, e.g.,
from the point of view of scalability, not to mention
the fundamental significance of T-breaking phenome-
non, demand the future experimental investigations of
unconventional weak links and devices based on them.

Appendix I. Temperature dependence of the
order parameter in a d-wave superconductor

In a bulk homogeneous d-wave superconductor the
BCS equation for the order parameter �( )vF takes the
form

�
�

�

( ) ( ) ( , )
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( )
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v

F F F
F

F

N T V

F

�

�

%
%

%�
"

%

2 0
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(A.1)

Or, writing V VF F d( , ) cos cosv v % %� 2 2� � ,
?d dN V� ( ) ,0 � �� 0 2( ) cosT �, we have for � 0( )T
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(A.2)
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(� �� �( )2 1n T, �c is the cutoff frequency).
At zero temperature T � 0, in the weak coupling

limit ?d �� 1, for � �0 00 0( ) ( )T � � it follows from
(A.2) that

� 0 0 2 2 2 1 2 121( ) exp(– ), ln ln .� � � :� � ? �c d .

The critical temperature Tc is

T Cc c d� � � � :
2

2 0 577 178
�
� / ? / /exp( ), ln . , . .

Thus, � 0 0 214( ) .Tc � :�� / .
In terms of Tc, Eq. (A.2) can be presented in the

form
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In the limiting cases, the solution of equation (A.3)
has the form
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For arbitrary temperatures 0 H HT Tc the numeri-
cal solution of equation (A.3) is shown in Fig. 16.

Appendix II. Quasiclassical theory of coherent
current states in mesoscopic ballistic junctions

II.1. Basic equations

To describe the coherent current states in a supercon-
ducting ballistic microstructure we use the Eilenberger
equations [80] for the F-integrated Green’s functions

v
r

v r v r v rF F F FG G6
$
$

� � �� ( , ) [ � � ( , ), � ( , )]� ��� 3 0� ,

(A.4)

where

� ( , )G
g f

f gF�
� �

� �
v r �

�
0

1
22

3

4
55�

is the matrix Green’s function, which depends on the
Matsubara frequency �, the electron velocity on the
Fermi surface vF, and the coordinate r; here

��
�

�
�
0

1
2

3

4
5�

0

0

is the superconducting order parameter. In the gen-
eral case it depends on the direction of the vector vF
and is determined by the self-consistent equation

�( , ( ) ( , ) ( ,v r v v v r
v

F F F FN T V f
F

) )�� % %

�
%"2 0

0

� �
�

.

(A.5)

Solution of matrix equation (A.4) together with
self-consistent order parameter (A.5) determines the
current density j(r) in the system:

j r v v r
v

( ) )� �
�
"4 0

0

� �
�

ieN T gF F
F

( ) ( , . (A.6)

In the following we will consider the two-dimen-
sional case; N m( )0 2� � is the 2D density of states

and � � � ;� d� �

�

2

0

2

... is the averaging over directions

of the 2D vector vF.
Supposing the symmetry � �( ) ( )� �v vF F , from

equation of motion (A.4) and equation (A.5) we have
the following symmetry relations:

f f� �� �( ) ( )� � ; g g� � � �( ) ( )� � ;

f fF F
� �� �( , ) ( , )� �v v ; g gF F

� � �( , ) ( , )� �v v ;

f fF F( , ) ( , )� � �� �v v ; g gF F( , ) ( , )� � � �� �v v ;

� �� �� .

The different types of the symmetry of supercon-
ducting pairing on the phenomenological level are de-
termined by the symmetry of the pairing interaction
V F F( , )v v % in Eq. (A.5). For conventional (s-wave)
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pairing, the function V F F( , )v v % is constant, Vs , and
the corresponding BCS constant of interaction is
? � N Vs( )0 . In the case of d-wave pairing
V VF F d( , ) cos cosv v % %� 2 2� � , ?d dN V� ( ) .0 The an-
gles � and �%determine the directions of vectors vF and
vF
% in the a–b plane.

II.2. Analytical solutions of Eilenberger equations
in the model with non-self-consistent order

parameter distribution

The solutions of equation (A.5) for Green’s func-
tion � ( ,G vF� r) can be easily obtained for the model
distribution of �( )r (15). For x H 0 :

f x C
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For x I 0:
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Matching the solutions at x � 0 we obtain
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Here # �12
2

12
2

, ,� �� , � � sign( ).vx

II.3. Quasiclassical Eilenberger equations for
triplet superconductors

The «transport-like» equations for the �-integrated
Green functions g m

J
( �, )k r,< can be obtained for triplet

superconductors:

[ , ] �i g iv gm F< �
J J J J

� � K �3 0� k . (A.14)

The function g
J satisfies the normalization condition

g g
J J

� �1. (A.15)

Here < �m T m� �( )2 1 are discrete Matsubara ener-
gies, vF is the Fermi velocity, �k is a unit vector along
the electron velocity, � � �

J
� , �3 3 1 2 3�; � ( , , )I ii are

Pauli matrices in a particle–hole space.
The Matsubara propagator g can be written in the

form [96]:

g
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as can be done for an arbitrary Nambu matrix. The
matrix structure of the off-diagonal self-energy � in
Nambu space is

�
J

�
0

1
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0

0
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i

i

d

d
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� �

σσ
σ σ
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Below we consider so-called unitary states, for which
d d
 �� 0.

The gap vector d has to be determined from the
self-consistency equation:

d k r k k g k r( �, ) ( ) ( �, � ) ( � , , )� % %"� <TN V m
m

0 2 , (A.18)

where V( �, � )k k % is a potential of pairing interaction;
... stands for averaging over directions of the elec-
tron momentum on the Fermi surface; N( )0 is the
electron density of states.

Solutions of Eqs. (A.14), (A.18) must satisfy the
conditions for Green functions and vector d in the
banks of superconductors far from the orifice:

g
i m

m

J
J J

� �
�

�
( )

| |

,

,

�
< �

<

3 12

2
12

2

�

d
; (A.19)

d d k( ) ( �) exp,� �� � 0

1
2

3

4
512 2

i
, (A.20)

where  is the external phase difference. Equations
(A.14) and (A.18) have to be supplemented by the
boundary continuity conditions at the contact plane
and conditions of reflection at the interface between
superconductors. Below we assume that this interface
is smooth and electron scattering is negligible. In a
ballistic case the system of 16 equations for the func-
tions gi and g i can be decomposed into independent
blocks of equations. The set of equations which en-
ables us to find the Green’s function g1 is
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iv gF
� ( )k g d g dK � � ��

1 3 2 0; (A.21)

iv iF
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iv i g iF m
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iv i g iF m
�k g g d d gK � � � 
 ��2 2 12 2 0< ,(A.24)

where g g g� � �1 4. For the non-self-consistent
model (�

J

12, does not depend on coordinates up to in-
terface) the Eqs. (A.21)–(A.24) can be solved by in-
tegrating over ballistic trajectories of electrons in the
right and left half-spaces. The general solution satis-
fying the boundary conditions (A.19) at infinity is
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where t is the time of flight along the trajectory,

sign sign( ) ( ) ;t z s� � � � sign( );vz # n m n� �<2 2| |d .

By matching the solutions (A.25)–(A.28) at the ori-
fice plane L 8t � 0 , we find the constants Cn and C n .
Index n numbers the left ( )n � 1 and right ( )n � 2
half-spaces. The function g g g1 1

1
1
20 0 0( ) ( ) ( )( ) ( )� � � � ,

which determines the current density in the contact, is
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In formula (A.29) we have taken into account that
for unitary states the vectors d1,2 can be written as

dn n ni�∆ exp � , (A.30)

where ∆12, are real vectors.
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