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Abstract Given a function f on the positive half-line R+ and a sequence (finite
or infinite) of points X = {xk}ωk=1 in R

n , we define and study matrices SX ( f ) =
[ f (‖xi −x j‖)]ωi, j=1 called Schoenberg’s matrices.We are primarily interested in those

matrices which generate bounded and invertible linear operators SX ( f ) on �2(N). We
provide conditions on X and f for the latter to hold. If f is an �2-positive definite
function, such conditions are given in terms of the Schoenberg measure σ f . Examples
of Schoenberg’s operators with various spectral properties are presented. We also
approach Schoenberg’s matrices from the viewpoint of harmonic analysis on R

n ,
wherein the notion of the strong X -positive definiteness plays a key role. In particular,
we prove that each radial �2-positive definite function is strongly X-positive definite
whenever X is a separated set. We also implement a “grammization” procedure for
certain positive definite Schoenberg’s matrices. This leads to Riesz–Fischer and Riesz
sequences (Riesz bases in their linear span) of the form FX (g) = {g(· − x j )}x j∈X for
certain radial functions g ∈ L2(Rn).
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1 Introduction

Positive definite functions have a long history, entering as an important chapter in all
treatments of harmonic analysis. They can be traced back to papers of Carathéodory,
Herglotz, Bernstein, culminating in Bochner’s celebrated theorem from 1932 to 1933.
See definitions in Sect. 2.1.1.

In this paper we will be dealing primarily with radial positive definite functions
(RPDF). RPDF’s have significant applications in probability theory, Fourier analy-
sis, and approximation theory, where they occur as characteristic functions or Fourier
transforms of spherically symmetric probability distributions [18,20,34,36], covari-
ance functions of stationary and isotropic random fields [29], radial basis functions in
scattered data interpolation [37], data assimilation in geodesy [23].

We stick to the standard notation for the inner product 〈u, v〉n = 〈u, v〉 = u1v1 +
. . . + unvn of two vectors u = (u1, . . . , un) and v = (v1, . . . , vn) in R

n , and ‖u‖n =
‖u‖ = √〈u, u〉 for the Euclidean norm of u. Let us emphasize from the outset that
throughout the whole paper n is an arbitrary and fixed positive integer.

Definition 1.1 A real-valued and continuous function f on R+ = [0,∞) is called
a radial positive definite function on R

n , if for an arbitrary finite set {x1, . . . , xm} of
points xk ∈ R

n , and an arbitrary finite set {ξ1, . . . , ξm} of complex numbers ξk ∈ C

m∑

k, j=1

f (‖xk − x j‖)ξ jξ k ≥ 0. (1.1)

We denote this class by �n .
The characterization of RPDF’s is a fundamental result of I. Schoenberg [30,31]

(see, e.g., [3, Theorem 5.4.2]).

Theorem 1.2 A function f ∈ �n, f (0) = 1, if and only if there exists a probability
measure ν f on R+ such that

f (r) =
∫ ∞

0
�n(r t) ν f (dt), r ∈ R+, (1.2)

where

�n(s) := 	(q + 1)

(
2

s

)q
Jq(s) =

∞∑

j=0

	(q + 1)

j ! 	( j + q + 1)

(
− s2

4

) j

, q := n

2
− 1,

(1.3)
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Jq is the Bessel function of the first kind and order q. Moreover,

�n(‖x‖) =
∫

Sn−1
ei〈u,x〉sn(du), x ∈ R

n, (1.4)

where sn is the normalized surface measure on the unit sphere Sn−1 ⊂ R
n.

The first three functions �n , n = 1, 2, 3, can be computed as

�1(s) = cos s, �2(s) = J0(s), �3(s) = sins

s
. (1.5)

The main object under consideration in this paper arises from the definition of
RPDF’s.

Definition 1.3 Let X = {xk}ωk=1 ⊂ R
n be a (finite or infinite) set of distinct points

in R
n , and let f be a real-valued function defined on the right half-line R+. A matrix

(finite or infinite)

SX ( f ) := [ f (‖xi − x j‖)]ωi, j=1, ω ≤ ∞, (1.6)

will be called a Schoenberg matrix generated by the set X and the function f . This
function is referred to as the Schoenberg symbol.

It is clear that SX ( f ) is a Hermitian (real symmetric) matrix. By the definition, a
function f ∈ �n if for each finite set X ⊂ R

n the Schoenberg matrix SX ( f ) is
nonnegative definite, SX ( f ) ≥ 0.

We undertake a detailed study of Schoenberg’s matrices from two different points
of view. The first one, considered in Sect. 3, comes from operator theory.

If the columns of SX ( f ) are in �2 := �2(N), then one can associate a closed
symmetric operator SX ( f ) with SX ( f ) in a natural way (see Sect. 3.1). We call it a
Schoenberg operator. If SX ( f ) appears to be bounded, a matrix SX ( f ) (admitting
some abuse of language) will be called bounded. The first main goal of the paper is
to find necessary and sufficient conditions on X and f , which ensure that the matrix
SX ( f ) is bounded. We also suggest conditions on X and f for SX ( f ) to be invertible,
i.e., to have a bounded inverse.

Denote by L(X) the linear span of X , a subspace in R
n of dimension d =

dimL(X) ≤ n. Throughout the paper we assume that X is a separated set, i.e.,

d∗ = d∗(X) := inf
i �= j

‖xi − x j‖ > 0, (1.7)

(the term uniformly discrete is also in common usage). We denote by Xd the class of
all separated sets X ⊂ R

n with dimL(X) = d. With no loss of generality we can
assume that x1 = 0.

Next, denote by M+ the class of nonnegative and monotone decreasing functions

f ∈ M+ : f ≥ 0, f ↓, f (0) = 1. (1.8)

Author's personal copy
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With this preparation our main result on boundedness of SX ( f ) reads as follows.

Theorem 1.4 Let f ∈ M+, X ∈ Xd , d ≤ n.

(i) If td−1 f (·) ∈ L1(R+), then the Schoenberg operator SX ( f ) is bounded on �2

and

‖SX ( f )‖ ≤ 1 + d2
(

5

d∗(X)

)d ∫ ∞

0
td−1 f (t) dt. (1.9)

(ii) Moreover, SX ( f ) has a bounded inverse whenever, in addition,

d∗(X) > 5d2/d ‖td−1 f ‖1/d
L1(R+)

. (1.10)

(iii) Conversely, let SY ( f ) be bounded for at least one δ-regular set Y . Then
td−1 f (·) ∈ L1(R+).

Concerning regular sets see Definition 3.3. For instance, X = δZ
n is δ-regular.

In particular, Theorem 1.4 completely describes bounded operators SX ( f ) with
symbols f from the classes �∞(α) defined below in Sect. 2.1.3.

Our second viewpoint on Schoenberg’s matrices is related to harmonic analysis on
R
n .
It was proved in [33] (see also [16, Theorem 3.6]) that for each function f ∈ �n

and each finite set of distinct points X ⊂ R
n the Schoenberg matrix SX ( f ) is positive

definite and non-singular, that is, the minimal eigenvalue λmin(SX ( f )) > 0. This fact
has been heavily exploited in [16] for investigation of certain spectral properties of
2D and 3D Schrödinger operator with a finite number of point interactions.

The situation is much more delicate for infinite test sets X .

Definition 1.5 Let f ∈ �n and X = {xk}k∈N ⊂ R
n . We say that f is strongly

X-positive definite if for any set ξ = {ξ1, . . . , ξm} ⊂ C of complex numbers, not
identically zeros, and any finite set {x j }mj=1 of distinct points x j ∈ X there exists a
constant c(X) > 0, independent of ξ and m and such that

m∑

k, j=1

f (‖xk − x j‖)ξ jξk > c(X)

m∑

k=1

|ξk |2. (1.11)

The same definition with obvious changes applies to general (not necessarily radial)
positive definite functions.

We show that if f ∈ �n is strongly X -positive definite, then X is necessarily
separated (see Proposition 3.21).

Our second main goal is to find properties of f ∈ �n which ensure f to be strongly
X -positive definite for each X ∈ Xn . In this direction we obtain the following result.

Theorem 1.6 Let (const �=) f ∈ �n, n ≥ 2, with the representing measure ν f from
(1.2). If ν f is equivalent to the Lebesgue measure onR+, then f is strongly X-positive
definite for each X ∈ Xn.

Author's personal copy
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It might be worth noting that for each f ∈ �n there exists a separated set X ( f ) so
that f is strongly X ( f )-positive definite [21, Corollary 2.19].

Actually, the most complete result on the strong X -positive definiteness and the
boundedness of SX ( f ) is obtained for the class �∞ := ⋂

n∈N
�n and its subclasses

�∞(α), α ∈ (0, 2] defined in the next section. It looks as follows.

Theorem 1.7 Let f ∈ �∞(α), 0 < α ≤ 2. Then

(i) f is strongly X-positive definite for each X ∈ Xd , d ∈ N. In particular, if SX ( f )
generates an operator SX ( f ) on �2, then it is positive definite and so invertible.

(ii) If the Schoenberg measure σ f in (2.6) satisfies

∫ ∞

0
s− d

α σ f (ds) < ∞, d ∈ N, (1.12)

then the Schoenberg operator SX ( f ) is bounded and invertible for each X ∈ Xd .
(iii) Conversely, if SY ( f ) is bounded for at least one δ-regular set Y ∈ Xd , then

(1.12) holds.

The notion of the strong X -positive definiteness makes sense for any f ∈ �n

regardless of whether the Schoenberg operator SX ( f ) is well defined or not. In the
former case the strong X -positive definiteness of f is identical to positive definiteness
of SX ( f ), i.e., validity of the inequality

〈SX ( f )h, h〉 ≥ ε‖h‖2, h ∈ dom SX ( f ) ⊂ �2 (1.13)

with some ε > 0 independent of h. So Definition 1.5 merely extends property (1.13)
of SX ( f ), when the latter exists, to the case of an arbitrary Schoenberg matrix SX ( f ),
not necessarily generating an operator in �2.

A concept of “grammization” plays a key role in the rest of the Sect. 4.
It is a common knowledge that every positive matrix is a Gram matrix of a certain

system of vectors

A = [ai j ]i, j∈N ≥ 0 ⇔ A = [〈ϕi , ϕ j 〉]i, j∈N =: Gr({ϕk}k∈N,H), (1.14)

{ϕk}k∈N are vectors in a Hilbert spaceH. The main applications of Theorems 1.4 and
1.6 are based on the grammization procedure for certain Schoenberg’s matrices and
concern Riesz–Fischer and Riesz sequences of translates FX (g) = {g(· − x j )} j∈N,
X = {x j } j∈N ⊂ R

n , of radial functions g ∈ L2(Rn).
Let us recall some basic notions from harmonic analysis on the Hilbert spaces ([25,

Sect. C.3.3], [40]).

Definition 1.8 Let F = {hk}k∈N be a sequence of vectors in a Hilbert space H.

Author's personal copy
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(i) F is called a Riesz–Fischer sequence if for all {ξ1, · · · , ξm} ⊂ C and m ∈ N

there is a constant c > 0 such that

∥∥∥∥
m∑

j=1

ξ j h j

∥∥∥∥
2

H
≥ c2

m∑

j=1

|ξ j |2. (1.15)

(ii) F is called a Bessel sequence if for all {ξ1, · · · , ξm} ⊂ C and m ∈ N there is a
constant C < ∞ such that

∥∥∥∥
m∑

j=1

ξ j h j

∥∥∥∥
2

H
≤ C2

m∑

j=1

|ξ j |2. (1.16)

(iii) F is called a Riesz sequence (or a Riesz basis in its linear span) if F is both
Riesz–Fischer and Bessel sequence. If F is complete inH, F is referred to as a
Riesz basis.

Theorem 1.9 Let g ∈ L2(Rn), n ≥ 2, be a real-valued and radial function such that
its Fourier transform

ĝ(t) := 1

(2π)n/2

∫

Rn
g(x)e−i〈t,x〉 dx �= 0 (1.17)

a.e., and let X = {x j } j∈N ⊂ R
n. Then the following statements are equivalent.

(i) FX (g) = {g(· − x j )} j∈N forms a Riesz–Fischer sequence in L2(Rn);
(ii) FX (g) is uniformly minimal in L2(Rn);
(iii) X is a separated set, i.e., d∗(X) > 0.

Theorem 1.10 Let g ∈ L2(Rn), n ≥ 2, be a real-valued and radial function such that
its Fourier transform ĝ �= 0 a.e., and let X = {x j } j∈N ⊂ R

n. Assume that

v(ξ) := sup
‖t‖≥‖ξ‖

| f (t)| ∈ L1(Rn), ξ ∈ R
n, f (t) :=

∫

Rn
g(t + y)g(y) dy.

(1.18)
Then the following statements are equivalent.

(i) FX (g) forms a Riesz sequence in L2(Rn);
(ii) FX (g) forms a basis in its linear span;
(iii) FX (g) is uniformly minimal in L2(Rn);
(iv) X is a separated set, i.e., d∗(X) > 0.

For minimal and uniformly minimal sequences of vectors see Definition 4.20.

Corollary 1.11 Let g ∈ L2(Rn), n ≥ 2, be a real-valued and radial function with
compact support, g �≡ 0, and let X = {x j } j∈N ⊂ R

n. The sequence FX (g) forms a
Riesz sequence in L2(Rn) if and only if X is a separated set.
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Remark 1.12 It is worthmentioning the following result which is a special case of [12,
Theorem 1.2]: no sequence FX (g) of translates can form a Riesz basis for L2(Rn). In
particular, for a radial function g ∈ L2(Rn) with compact support the system FX (g)
can be complete in L2(Rn) only for sets X with d∗(X) = 0.

The idea of the proof relies upon the fact that the system FX (g) performs the
grammization of a certain Schoenberg’smatrix. Indeed, it is clear that the inner product
of two translates gξ (·) := g(· − ξ) and gη(·) := g(· − η), ξ, η ∈ R

n is

〈gξ , gη〉L2(Rn) = f (η − ξ), f (x) =
∫

Rn
g(x + y)g(y) dy. (1.19)

Moreover, the function f is positive definite. In fact, the class of functions f (1.19) is
exactly the class of all positive definite functionswith absolutely continuousBochner’s
measures (the latter result is known as the Wiener–Khinchin criterion). Clearly, f is
a radial function as long as g is, so f ∈ �n . Thus we come to the following principal
equality

Gr(FX (g), L2(Rn)) = SX ( f ). (1.20)

So once we show that the Schoenberg operator SX ( f ) is bounded and invertible on
�2, the result of Theorem 1.10 is immediate from the classical theorem of Bari (see
[15, Theorem 6.2.1], [25, Sect. 3.3.1, (iv)]). The latter claims that the property of the
Gram matrix Gr{ϕk}k∈N to generate a bounded and invertible operator on �2 amounts
to the sequence {ϕk}k∈N to be a Riesz sequence in the corresponding Hilbert space.
Thereby we make up a bridge between Riesz sequences and Grammatrices on the one
hand and Schoenberg’s matrices and operators on the other hand.

We consider a number of examples which satisfy the assumptions of Proposition
1.9 and Theorem 1.10. Among them

g(x) = ga(x) = e−a‖x‖2 , g(x) = ga,μ(x) =
(

a

‖x‖
)μ

Kμ(a‖x‖), (1.21)

where Kμ is themodifiedBessel functionof the secondkind andorderμ, 0 ≤ μ < n/4.
Let us emphasize, that our choice of the second system in (1.21) is also motivated

by applications to certain elliptic operators with point interactions, since the functions
ga,μ(· − x j ) occur naturally in the spectral theory of such operators for certain other
values of μ. We hope to continue the study of this subject in our forthcoming papers.

It is worth stressing that in the abstract setting the uniform minimality is much
weaker than the Riesz sequence property. Nonetheless the equivalence of these prop-
erties is well known for certain classical systems such as

(i) Exponential system {eiλk x }λk∈C in L2[0, a),a ≤ ∞, provided that infk(Im λk) >

−∞.
(ii) The system of rational functions

{(1−|λk |2)1/2(1−λk z)
−1}λk∈D ∈ L2(T), D :={z : |z| < 1}, T :={z : |z|=1}.
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From the very starting point we were influenced by the paper [21], wherein a tight
relation between the spectral theory of 3D Schrödinger operators with infinitely many
point interactions and RPDF’s in R

3 was discovered and exploited in both directions.
In particular, a special case of Theorem 1.7 (for n = d = 3 and α = 1) was proved
in [21] by applying machinery of the spectral theory and the grammization of the
Schoenberg–Bernstein matrix SX (e−as), which is achieved for n = 3 by the system

ga,1/2(x − x j ) =
√

a

‖x − x j‖ K1/2(a‖x − x j‖) =
√

π

2

e−a‖x−x j‖

‖x − x j‖ , j ∈ N,

(see 4.28). However the spectral methods applied in [21] cannot be extended to either
n ≥ 4 or α �= 1. Our reasoning is based on the harmonic analysis on R

n and works
for an arbitrary dimension n ≥ 2.

2 Preliminaries

2.1 Positive Definite Functions

Recall some basic facts and notions related to positive definite functions [3,7,34,37].

Definition 2.1 A function h : R
n → C is called positive definite on R

n if h is
continuous at the origin, and for arbitrary finite sets {x1, . . . , xm}, xk ∈ R

n and
{ξ1, . . . , ξm} ⊂ C we have

m∑

k, j=1

h(xk − x j )ξ jξ k ≥ 0. (2.1)

The set of positive definite function on R
n is denoted by �(Rn). Clearly, a function

h ∈ �(Rn) if and only if it is continuous at the origin, and the matrix BX (h) :=
[h(xk−x j )]mk, j=1 is nonnegative definite,BX (h) ≥ 0, for all finite subsets X = {x j }mj=1
in R

n .
A celebrated theorem of Bochner [10] gives a description of the class �(Rn).

Theorem 2.2 A function h is positive definite on R
n if and only if there exists a finite

positive Borel measure μh on R
n such that

h(x) =
∫

Rn
ei〈u,x〉μh(du), x ∈ R

n . (2.2)

When h is a radial function, h(·) = f (‖ · ‖), f ∈ �n , the representing measure ν f

in (1.2) is related to the Bochner measure μh by ν f {[0, r ]} = μh{‖x‖ ≤ r} (cf. [3,
Sect. V.4.2]).
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2.1.1 Class �∞ of �2-Radial Positive Definite Functions

Going over to the classes �n of PRDF’s, note that the sequence {�n}n∈N is known
to be nested, i.e., �n+1 ⊂ �n , and inclusion is proper (see [30], [34, Sect. 6.3]). So
the intersection �∞ = ⋂

n∈N
�n comes in naturally. The class �∞ is the case of study

in the pioneering paper of I. Schoenberg [30]. According to the Schoenberg theorem
(see, e.g., [3, Theorem 5.4.3]), f ∈ �∞, f (0) = 1, if and only if it admits an integral
representation

f (t) =
∫ ∞

0
e−st2 σ f (ds), t ≥ 0, (2.3)

with σ f being a probabilitymeasure onR+. Themeasure σ f , which is called a Schoen-
berg measure of f ∈ �∞, is then uniquely determined by f .

Another characterization of the class �∞ is �∞ = �(�2), where the latter is the
class of radial positive definite functions on the real Hilbert space �2 (see, e.g., [34,
p. 283]). Indeed, since R

n is embedded in �2 for each n ∈ N, we have �(�2) ⊂
�∞. Conversely, let f ∈ �∞ and Y = {yk}mk=1 ⊂ �2, yk = (yk1, yk2, . . .). Define

truncations y(n)
k := (yk1, yk2, . . . , ykn, 0, 0, . . .) ∈ R

n . Then for each n

[ f (‖y(n)
i − y(n)

j ‖)]mi, j=1 ≥ 0.

As limn→∞ ‖y(n)
i − y(n)

j ‖ = ‖yi − y j‖ and f is continuous, the matrix [ f (‖yi −
y j‖)]mi, j=1 is also positive definite, as claimed.

2.1.2 Bernstein Class CM(R+) of Completely Monotone Functions

Definition 2.3 A function f ∈ C∞(R+) is called completely monotone if

(−1)k f (k)(t) ≥ 0, t > 0, k = 0, 1, 2, . . . . (2.4)

The set of such functions is denoted byCM(R+). A function f belongs to the subclass
CM0(R+) of CM(R+) if f ∈ CM(R+) and f (+0) = 1.

A fundamental theorem of Bernstein–Widder ([8,39], see also [3, p. 204]) claims that
f ∈ CM(R+) if and only if there exists a positive Borel measure τ f on R+ such that

f (t) =
∫ ∞

0
e−stτ f (ds), t > 0. (2.5)

The measure τ f , which is called a Bernstein measure of f ∈ CM(R+), is then
uniquely determined by f . τ f is a probability measure if and only if f ∈ CM0(R+).
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2.1.3 Subclasses �∞(α) of Radial Positive Definite Functions

By definition, the class �∞(α) consists of functions which admit an integral repre-
sentation

f (t) =
∫ ∞

0
e−stα σ f (ds), t ≥ 0, 0 < α ≤ 2, (2.6)

σ f is a probability measure on R+. So, �∞(2) = �∞, �∞(1) = CM0(R+). We call
the functions f ∈ �∞(α) α-stable.

The classes �∞(α) are known to admit the following characterization [9]:
f ∈ �∞(α), 0 < α ≤ 2, if and only if the function f (‖x‖α) is positive definite,
where

x = (x1, x2, . . .), ‖x‖α :=
( ∞∑

n=1

|x j |α

) 1
α

.

Note that the family {�∞(α)}0<α≤2 is nested, i.e.,

�∞(α1) ⊂ �∞(α2), 0 < α1 < α2 ≤ 2, (2.7)

and the inclusion is proper (see, e.g., [9,13]). Indeed, (2.7) is equivalent to

�∞(α) ⊂ �∞(1) = CM0(R+), 0 < α < 1, (2.8)

(a simple change of variables under the integral sign). Next, it is known (and can be
easily verified by induction, using Leibniz chain rule) that the function f = e−g ∈
CM(R+) provided g′ ∈ CM(R+). Hence

exp(−sxα) ∈ CM0(R+), 0 < α ≤ 1,

so (2.4) holds for this function. Differentiation under the integral sign shows that the
same is true for each f ∈ �∞(α) and (2.8) follows. The same argument implies
exp(−sxβ) /∈ �∞(α) for β > α.

Functions of the class �∞(α) arise naturally in connection with isometric embed-
ding of certainmetric (Banach, finite dimensional) spaces into L p spaces. For instance,
a normed space E admits an isometric embedding into L p, 0 < p ≤ 2, if and only if
the function exp(−‖x‖p) is positive definite on E [9] (see also [36, Chap. 2.7], [20,
Chap. 6], and references therein). A criterion for an isometric embedding is obtained
in [2, Theorem 6.1].

2.2 Infinite Matrices and Schur Test

We say that an infinite matrix A = [akj ]k, j∈N with complex entries akj generates a
bounded linear operator A on the Hilbert space �2 (or simply that an infinite matrix is
a bounded operator on �2) if there exists a bounded linear operator A such that
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〈Ax, y〉 =
∞∑

k, j=1

akj xk y j , x = (xk)k∈N, y = (yk)k∈N, x, y ∈ �2. (2.9)

Clearly, ifA defines a bounded operator A, then A is uniquely determined by equalities
(2.9).

The following result known as the Schur test (due in substance to I. Schur) provides
certain general conditions for an infinite matrix A = [ai j ]i, j∈N to define a bounded
linear operator A on �2 (see, e.g., [24, Theorem 5.2.1]). One of the simplest versions
can be stated as follows.

Lemma 2.4 Let A = [ai j ]i, j∈N be an infinite Hermitian matrix which satisfies

C := sup
j∈N

∞∑

i=1

|ai j | < ∞. (2.10)

Then A defines a bounded self-adjoint operator A on �2 with ‖A‖ ≤ C.

Note that the Schur test applies to general (not necessarily Hermitian) matrices with
two independent conditions for their rows and columns

C1 := sup j∈N
∞∑

i=1

|ai j | < ∞, C2 := supi∈N
∞∑

j=1

|ai j | < ∞,

and the bound for the norm is ‖A‖2 ≤ C1C2.
The condition for compactness of A is similar.

Lemma 2.5 Suppose that

δp := sup
j≥p

∑

k≥p

|a jk | < ∞, ∀p ∈ N, and lim
p→∞ δp = 0. (2.11)

Then the Hermitian matrixA = [akj ]k, j∈N generates a compact self-adjoint operator
on �2.

For the proof see, e.g., [21, Lemma 2.23].

3 Schoenberg Matrices from Operator Theory Viewpoint

3.1 Bounded Schoenberg Operators

Sometimes an infinite Schoenberg matrix generates a linear operator SX ( f ) on �2.
We call SX ( f ) a Schoenberg operator. The main problem we address here concerns
conditions on the test set X ⊂ R

n and the Schoenberg symbol f for SX ( f ) to be
bounded.
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We will be dealing primarily with separated sets X ,

d∗ = d∗(X) := inf
i �= j

‖xi − x j‖ > 0.

Recall the notation Xn for the class of all separated sets in R
n and L = L(X) for the

linear span of X , d = dimL ≤ n.
The result below gives an upper bound for a number of points of a separated set X

in a spherical layer

Ur (p, q, a, X) := {y ∈ L(X) : pr ≤ ‖y − a‖ < qr}, q > p ≥ 0,

centered at a ∈ L(X).

Lemma 3.1 Let X = {xk}k∈N ∈ Xn, d∗(X) = ε > 0, and let a ∈ L(X). Then for
the number Nm(X) of points {xk} contained in Uε(m,m + 1, a, X), m = 0, 1, . . ., the
inequality

Nm(X) = card
(
X
⋂

Uε(m,m + 1, a, X)
) ≤ (2m + 3)d − (2m − 1)d < d 5d md−1

(3.1)
holds.

Proof Take x j ∈ X ∩ Uε(m,m + 1, a, X) and consider the balls Bε/2(x j ) = {x ∈
L : ‖x − x j‖ < ε/2}, centered at x j . They are contained in the spherical layer
Uε(m − 1/2,m + 3/2, a, X) and pairwise disjoint. Since the volume of this layer is

Vol(Uε(m−1/2,m+3/2, a, X))=κd

[(
(m+3/2)ε

)d−((m−1/2)ε
)d]

,

κd = πd/2

	
( d
2 + 1

)

is the volume of the unit ball in R
d , and the volume of the ball Vol(Bε/2(x j )) =

κd(ε/2)d , the number Nm(X) satisfies (3.1), as claimed. ��
As far as the Schoenberg symbol f in the definition of Schoenberg’s matrices goes,

we assume here that it is a nonnegative, monotone decreasing function on R+, and
f (0) = 1, i.e., f ∈ M+ (cf. 1.8). Further assumptions on the behavior of f at infinity
will vary.

We proceed with a simple technical result.

Lemma 3.2 Let h ∈ M+ and d ∈ N. Then

∞∑

m=1

md−1 h(m) < ∞ ⇐⇒
∫ ∞

0
td−1 h(t) dt < ∞. (3.2)
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More precisely, for all p ∈ N

2−d+1
∫ ∞

p
td−1 h(t) dt ≤

∞∑

m=p

md−1 h(m) ≤ d
∫ ∞

p−1
td−1 h(t) dt. (3.3)

Proof An elementary inequality

md−1

d
≤ md − (m − 1)d

d
≤ md−1, m ∈ N,

gives for h ∈ M+
∫ m

m−1
td−1 h(t) dt ≥ h(m)

∫ m

m−1
td−1 dt = h(m)

md − (m − 1)d

d
≥ md−1h(m)

d
,

so summation over m leads to the right inequality in (3.3). Similarly,

∫ m+1

m
td−1 h(t) dt≤h(m)

∫ m+1

m
td−1 dt=h(m)

(m+1)d − md

d
≤(m+1)d−1h(m),

and hence

∞∑

m=p

(m + 1)d−1 h(m) ≥
∫ ∞

p
td−1 h(t) dt.

It remains only to note that m + 1 ≤ 2m for m ∈ N. ��
For a one-dimensional X , i.e., d(X) = 1, condition (3.2) is just f ∈ L1(R+).
The following notionwill be crucial in the second part of Theorem 3.4 below. Recall

that we write X ∈ Xd , d ≤ n, if X ∈ Xn and dimL(X) = d.

Definition 3.3 A set Y = {y j } j∈N ∈ Xd is called δ-regular if there are constants
c0 = c0(d, δ,Y ) > 0 and r0 = r0(d,Y ) ≥ 0, independent of j such that

card(Y ( j)
r (δ)) ≥ c0(d, δ,Y ) rd−1, Y ( j)

r (δ) := {yk ∈ Y : r ≤ ‖yk − y j‖ < r +δ},
(3.4)

for r ≥ r0 and j ∈ N.

For instance, the lattice Z
n and its part Z

n+ are δ-regular for all δ > 0. On the other
hand, if X = {xk}k∈N ⊂ R

n , L(X) = R
n but there is a positive integer p such that

X (p) := {xk}k≥p ⊂ R
n−1, then X is certainly irregular.

Note that for any regular setY the number N ( j)
r of points in the setY∩{y : |y−y j | ≤

r} is subject to the bounds
c1r

d ≤ N ( j)
r ≤ c2r

d (3.5)

for all large enough r . Here and in the proof of Theorem 3.4 ck stand for different
positive constants which depend on d, δ, and Y .
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Theorem 3.4 (Theorem 1.4) Let f ∈ M+, X ∈ Xd , d ≤ n.

(i) If td−1 f (·) ∈ L1(R+), then the Schoenberg operator SX ( f ) is bounded on �2

and

‖SX ( f )‖ ≤ 1 + d2
(

5

d∗(X)

)d ∫ ∞

0
td−1 f (t) dt. (3.6)

(ii) Moreover, SX ( f ) has a bounded inverse whenever, in addition,

d∗(X) > 5d2/d ‖td−1 f ‖1/d
L1(R+)

. (3.7)

(iii) Conversely, let SY ( f ) be bounded for at least one δ-regular set Y . Then
td−1 f (·) ∈ L1(R+).

Proof (i).We apply the Schur test to SX ( f ) = [ f (‖xk −x j‖)]k, j∈N. For a fixed j ∈ N

and ε = d∗(X) > 0 denote

X ( j)
m := {xk ∈ X : mε ≤ ‖xk − x j‖ < (m + 1)ε}, m ∈ N, X ( j)

0 = {x j }. (3.8)

ByLemma 3.1 card(X ( j)
m ) < d 5d md−1. Combining this estimatewith themonotonic-

ity of f yields

∞∑

k=1

f (‖xk − x j‖) = 1 +
∞∑

m=1

∑

xk∈X ( j)
m

f (‖xk − x j‖) ≤ 1 +
∞∑

m=1

card(X ( j)
m ) f (mε)

≤ 1 + d5d
∞∑

m=1

md−1 f (mε). (3.9)

The result now follows from the Schur test and Lemma 3.2 with h(·) = f (ε·).
(ii). Going over to the second statement, one has as above

∞∑

k=1

| f (‖xk − x j‖) − δk j | =
∞∑

k=1
k �= j

f (‖xk − x j‖) ≤ d2
(

5

d∗(X)

)d ∫ ∞

0
td−1 f (t) dt,

δk j is the Kronecker symbol, so ‖SX ( f )− I‖ < 1 as soon as (3.7) holds, I is the unity
operator in �2. Hence SX ( f ) is invertible.

(iii). With no loss of generality assume that L(X) = R
d . At this point we make

use of a particular labeling of the set X (generally speaking the way of enumeration
of X makes no difference in our setting). Precisely, we label X by increasing of the
distance from the origin

0 = ‖x1‖ < ‖x2‖ ≤ ‖x3‖ ≤ . . . .

For a ball Br = Bd
r of radius r > 0 centered at the origin we put Er := X ∩ Br

and Nr := card(Er ). Given x j ∈ X , denote by p( j) the number of layers X ( j)
m which

are contained in Br . It is clear that for any x j ∈ Er/2 one has p( j) ≥ [r/2ε].
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From the Definition 3.3 and f ∈ M+ we see that

Nr∑

k=1

f (‖xk − x j‖) ≥
p( j)∑

m=1

∑

xk∈X ( j)
m

f (‖xk − x j‖) ≥ c3

p( j)∑

m=1

md−1 f (ε(m + 1))

≥ c4

p( j)+1∑

m=2

md−1 f (εm). (3.10)

Since SX ( f ) is bounded then on the test vector h = hNr = 1√
Nr

(1, 1, . . . , 1, 0, 0, . . .),

‖h‖ = 1, we have in view of (3.10) and (3.5) (with j = 1, x1 = 0)

‖SX ( f )‖≥|〈SX ( f )h, h〉|= 1

Nr

Nr∑

j=1

Nr∑

k=1

f (‖xk−x j‖) ≥ 1

Nr

Nr∑

|x j |<r/2

Nr∑

k=1

f (|xk − x j |)

≥ c5
Nr

Nr/2

[r/2ε]∑

m=2

md−1 f (εm) ≥ c6

[r/2ε]∑

m=2

md−1 f (εm).

Since r is arbitrarily large, the result follows from Lemma 3.2. ��
Remark 3.5 The statement (iii) of the above theorem is particularly simple for d = 1.
Let

� = {λk}k∈N, 0 = λ1 < λ2 < . . . ,

0 < d∗(�) := inf(λk+1 − λk) < d∗(�) := sup(λk+1 − λk) < ∞, (3.11)

A one-dimensional sequence X = {xk}k∈N, xk = λke, {λk} from (3.11), e is a unit
vector, is called a Toeplitz-like sequence.

Assume now that the Schoenberg operator SX ( f ) is bounded. Take the same test
vector hN = 1√

N
(1, 1, . . . , 1, 0, 0, . . .), ‖hN‖ = 1 and write

‖SX ( f )‖≥〈SX ( f )hN , hN 〉= 1

N

N∑

i, j=1

f (‖xi −x j‖)= f (0)+ 2

N

N−1∑

k=1

N−k∑

i=1

f (λi+k−λi ).

By (3.11), kd∗(�) ≤ λi+k − λi ≤ kd∗(�), and in view of monotonicity

‖SX ( f )‖≥2
N−1∑

k=1

(
1− k

N

)
f (kd∗(�))≥2

N/2∑

k=1

(
1− k

N

)
f (kd∗(�))≥

N/2∑

k=1

f (kd∗(�)).

Thereby the series
∑

k f (kd∗(�)) converges and Lemma 3.2 gives f ∈ L1(R+).

For α-stable functions we have a simple condition for the boundedness of SX ( f )
in terms of the Schoenberg measure σ f (2.6).
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Corollary 3.6 Let f ∈ �∞(α), 0 < α ≤ 2, d ∈ N, and let σ f be the Schoenberg
measure in (2.6). Then

∫ ∞

0
td−1 f (t) dt < ∞ ⇐⇒

∫ ∞

0
s− d

α σ f (ds) < ∞. (3.12)

In particular, the Schoenberg operator SX ( f ) is bounded for all X ∈ Xd , provided
that the measure σ f satisfies (3.12).

Proof It is clear that f ∈ M+. Next,
∫ ∞

0
td−1 f (t) dt =

∫ ∞

0
td−1 dt

∫ ∞

0
e−stα σ (ds) =

∫ ∞

0
σ(ds)

∫ ∞

0
td−1e−stα dt

= 1

α
	

(
d

α

) ∫ ∞

0
s− d

α σ (ds) < ∞. (3.13)

Theorem 3.4 completes the proof. ��
Note that the above argument goes through for an arbitrary α > 0.
We prove later in Theorem 4.8 that each Schoenberg operator SX ( f ) with the

symbol as in Corollary 3.6 is actually invertible.
As another direct consequence of Theorem 3.4 we have

Corollary 3.7 Let f, g ∈ M+ and f (t) = g(t) for t ≥ t0. If the Schoenberg operator
SY ( f ) is bounded for at least one regular set Y ∈ Xd , then so are SX (g) for all X ∈ Xd .

Themonotonicity condition in (1.8) is somewhat restrictive. It is not at all necessary
for Schoenberg’s operator to be bounded.

Proposition 3.8 Let f and h be real-valued functions on R+. Assume that | f | ≤ h
and the operator SX (h) is bounded. Then so is SX ( f ). In particular, let f be a bounded
function onR+, which is monotone decreasing for t ≥ t0( f ) and td−1 f (·) ∈ L1(R+).
Then SX ( f ) is bounded.

Proof The SchoenbergmatrixSX (h) dominatesSX ( f ), i.e., h(‖x j−xk‖) ≥ | f (‖x j−
xk‖)|. Hence if SX (h) is bounded then so is SX ( f ) (see [4, Theorem 29.2]).

Concerning the second statement, it is clear that f ≥ 0 on [t0( f ),∞). Put h(t) :=
supt≥s | f (s)|. Then h is a nonnegative function,monotone decreasing onR+, h(0) > 0
(we assume f �≡ 0), and h = f on [t0( f ),∞), so (3.2) holds for h. By Theorem 3.4,
SX (h) is bounded and as h ≥ | f | on R+, then by the first part of the proof, so is
SX ( f ), as needed. ��
Corollary 3.9 Let g ∈ �n, α > 0, and eα(t) := e−αt . Then fα := eαg ∈ �n and for
any d ∈ N and any X ∈ Xd the Schoenberg operator SX ( fα) is bounded.

Proof Since eα ∈ CM0(R+) ⊂ �∞, then for each finite X the Schoenberg matrix

SX ( fα) = SX (eα) ◦ SX (g),
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being the Schur product of two nonnegative matrices SX (eα) and SX (g), is also non-
negative. This proves the inclusion fα ∈ �n .

Next, since | fα(t)| ≤ Me−αt with M = ‖g‖C(R+), then td−1 fα(·) ∈ L1(R+) with
an arbitrary d ∈ N. It remains to apply Proposition 3.8. ��

3.2 Fredholm Property

Let S∞(�2) be the class of compact operators in �2. We discuss here the situation
when SX ( f ) is a Fredholm operator, more precisely,

SX ( f ) = I + T, T ∈ S∞(�2). (3.14)

To provide (3.14) one should impose amuch stronger condition on X than just d∗(X) >

0.

Theorem 3.10 Let X = {xk}k∈N ⊂ R
d satisfy

lim
i, j→∞
i �= j

‖xi − x j‖ = +∞, (3.15)

and let f ∈ M+ with td−1 f (·) ∈ L1(R+). Then (3.14) holds. In particular, SX ( f )
has bounded inverse whenever ker SX ( f ) = {0}.

Conversely, let f be a strictly positive, monotone decreasing function on R+,
f (0) = 1, and td−1 f (·) ∈ L1(R+). Then (3.14) implies (3.15).

Proof Note that (3.15) implies d∗(X) > 0. To apply Lemma 2.5 we argue as in
the proof of the Theorem 3.4. According to Lemma 3.1 for each p ∈ N there is
q = q(p) ∈ N so that for j ≥ p

∞∑

k=p

| f (‖xk − x j‖) − δk j | =
∞∑

k=p
k �= j

f (‖xk − x j‖) =
∞∑

m=q

∑

xk∈X ( j)
m

f (‖xk − x j‖)

≤ d5d
∞∑

m=q

md−1 f (d∗(X)m)

≤ d2
(

5

d∗(X)

)d ∫ ∞

(q−1)d∗(X)

td−1 f (t) dt

(see 3.3 for the last step). Condition (3.15) implies q(p) → ∞ as p → ∞ and so
operator T = SX ( f ) − I is compact by Lemma 2.5.

Conversely, suppose that there are two sequences of positive integers {im}m , { jm}m
so that im �= jm , both tend to infinity as m → ∞ and supm ‖xim − x jm‖ ≤ C < ∞.
Then

0 < f (C) ≤ f (‖xim − x jm‖) = 〈SX ( f )e jm , eim 〉 = 〈T e jm , eim 〉,
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which contradicts the compactness of T . The proof is complete. ��
Example 3.11 We show that in the converse statement of Theorem 3.10 the condition
f > 0 cannot be relaxed to f ≥ 0. Take the truncated power function

f (t) = (1 − t)l+, l > 0.

It is known [17,41] that f ∈ �n if and only if l ≥ n+1
2 . As a test sequence X = {xk}k∈N

we put xk = akξ , ‖ξ‖ = 1, with

a1 = 0, a2 = 1

2
, ak = k, k = 3, 4, . . . ,

so that f (‖x2 − x1‖) = 2−l , f (‖xi − x j‖) = 0 for the rest of the pairs j �= i . The
Schoenberg operator now takes the form

SX ( f ) =
[
A

I

]
, A =

[
1 2−l

2−l 1

]

and I is a unit matrix. It is clear that SX ( f ) = I + T , rank T = 2, but (3.15) is false.

3.3 Unbounded Schoenberg Operators

Conditions on an infinite matrix A for the corresponding linear operator A on �2

to be bounded are rather stringent. These conditions fail to hold for a number of
Schoenberg’s matrices (cf. Example 3.27).

To broaden the area of our study, consider an infinite Hermitian matrix A =
[akj ]k, j∈N, a jk = āk j , satisfying the following conditions

∞∑

k=1

|akj |2 < ∞, ∀ j ∈ N. (3.16)

Such matrix defines in a natural way a linear operator A′ on �2 which act on the
standard basis vectors {ek}k∈N, (ek)m = δkm , as

A′e j =
∞∑

k=1

akj ek, j ∈ N,

extended by linearity to the linear span L of {ek}k∈N, so A′ is densely defined and
dom(A′) ⊃ L. Being symmetric (since A is a Hermitian matrix), A′ is closable,
and we denote by A = A′ its closure. The operator A is called a minimal operator
associated with A.

Matrices (3.16) are usually referred to as unbounded Hermitian matrices (unless A
is a bounded operator).
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A maximal operator associated with such matrix A is defined on the domain

dom (Amax) =

⎧
⎪⎨

⎪⎩
f =

∞∑

k=1

xkek :
∞∑

k=1

∣∣∣∣∣∣

∞∑

j=1

akj x j

∣∣∣∣∣∣

2

< ∞

⎫
⎪⎬

⎪⎭
.

by

Amax f =
∞∑

k=1

bkek, bk =
∞∑

j=1

akj x j , (3.17)

It is known (see, e.g., [4, Theorem 53.2]) that Amax = A∗.
Conversely, given a closed symmetric operator A on aHilbert spaceH, an orthonor-

mal basis {hk}k∈N is called a basis of thematrix representation of A (cf. [4, Sect. IV.53])
if

• hk ∈ dom(A), k ∈ N;
• A is a minimal closed operator sending hk to Ahk , k ∈ N.

The latter means that if B is a closed symmetric operator such that B ⊆ A and
Bhk = Ahk then B = A.

A curious property of certain Schoenberg’s matrices is that the validity of (3.16)
for at least one value of j implies relation (3.16) to hold for all j ∈ N. We begin with
a technical lemma.

Let us say that a finite positiveBorelmeasureσ onR+ possesses a doubling property
if there is κ > 0 so that

σ {[2u, 2v]} ≤ κ σ {[u, v]}, ∀[u, v] ⊂ R+. (3.18)

Lemma 3.12 Let f ∈ CM0(R+) and ξ, η ∈ R
n. Then there is a constant C =

C( f, ξ, η) > 0 such that

f (‖x − ξ‖) < C f (‖x − η‖), ∀x ∈ R
n . (3.19)

The same conclusion is true for f ∈ �∞ = �∞(2) as long as its Schoenberg measure
σ f (2.6) possesses the doubling property.

Proof First, let f ∈ CM0(R+) and τ f be its Bernstein’s measure (2.5). Choose
a = a f > 0 so that

∫ a

0
τ f (ds) >

1

2
⇒
∫ ∞

a
τ f (ds) <

1

2
. (3.20)

We show that (3.19) actually holds with C = 2ea‖ξ−η‖. Consider two cases.
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1. Let first ‖x − η‖ ≤ ‖ξ − η‖. Then since f ≤ 1, one has

f (‖x − η‖) =
∫ ∞

0
e−s‖x−η‖ τ f (ds) ≥

∫ a

0
e−s‖x−η‖ τ f (ds) >

1

2
e−a‖x−η‖

≥ 1

2
e−a‖ξ−η‖ f (‖x − ξ‖),

as needed.
2. Let now ‖x − η‖ > ‖ξ − η‖, so ‖x − ξ‖ ≥ ‖x − η‖ − ‖ξ − η‖ > 0. The function

f is certainly monotone decreasing, so

f (‖x − ξ‖)≤ f (‖x − η‖ − ‖ξ − η‖)=
∫ ∞

0
exp(−s‖x − η‖+s‖ξ − η‖)τ f (ds)

=
{∫ a

0
+
∫ ∞

a

}
exp(−s‖x − η‖ + s‖ξ − η‖)τ f (ds) = I1 + I2.

Obviously, for every nonnegative and monotone decreasing function u on R+, condi-
tion (3.20) implies

∫ a

0
u(s)τ f (ds) ≥ u(a)

2
> u(a)

∫ ∞

a
τ f (ds) ≥

∫ ∞

a
u(s)τ f (ds).

Hence I2 ≤ I1. To bound I1 note that

I1 ≤ ea‖ξ−η‖
∫ ∞

0
e−s‖x−η‖ τ f (ds) = ea‖ξ−η‖ f (‖x − η‖),

and (3.19) follows.
Concerning functions f ∈ �∞, the reasoning is identical (with the obvious replace-

ment of τ with σ ) up to the bound of I1, where the doubling property comes into play.
We now have

I1 =
∫ a

0
exp(−s(‖x − η‖ − ‖ξ − η‖)2) σ f (ds) ≤ ea‖ξ−η‖2

∫ a

0
e− s

2 ‖x−η‖2 σ f (ds)

≤ ea‖ξ−η‖2 f
(‖x − η‖√

2

)
.

It remains only to note that

f

(
r√
2

)
=
∫ ∞

0
e− s

2 r
2
σ f (ds) ≤ κ

∫ ∞

0
e−sr2 σ f (ds) = κ f (r), r > 0

because of the doubling property (3.18). The proof is complete. ��
Proposition 3.13 Let f ∈ CM0(R+), X = {xk}k∈N ⊂ R

n, and let SX ( f ) be the
corresponding Schoenberg matrix. If at least one column of SX ( f ) belongs to �2,
then (3.16) holds and {ek}k∈N is a basis of the matrix representation for the minimal
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operator A associated with SX ( f ). The same conclusion is true for f ∈ �∞ as long
as its Schoenberg measure σ possesses the doubling property.

Proof Let the first column of SX ( f ) belong to �2. By Lemma 3.12 one has

∞∑

j=1

f 2(‖x j − xk‖) ≤ C2
∞∑

j=1

f 2(‖x j − x1‖) < ∞ (3.21)

for each k = 2, 3, . . .. The statement about the basis of the matrix representation is
obvious. ��
Remark 3.14 It is easy to see that for a general function in �∞ the doubling property
(3.18) for σ f cannot be dropped for Lemma 3.12 to hold.

Put

an := √log n + 2 log log n, n ≥ 2.

Then clearly

∞∑

n=2

e−a2n =
∞∑

n=2

1

n log2 n
< ∞,

∞∑

n=2

e−(an−1)2 = 1

e

∞∑

n=2

e2an

n log2 n
= ∞.

Consider now the Schoenberg matrix SX ( f ) with

f (t) = e−t2 ∈ �∞\CM0(R+), X = {xk}k∈N ⊂ R
1 : x1 = 0, x2 = 1,

xn = an, n ≥ 3.

Then

∞∑

n=1

f 2(‖xn − x1‖) < ∞,

∞∑

n=1

f 2(‖xn − x2‖) = ∞.

Certainly, now σ f = δ{1}, the Dirac measure at the point 1, has no doubling property.
Note that in this instance the conclusion of Lemma 3.12 is false either.

In the above example the set X is not separated, that is, d∗(X) = 0. As we will
see later in Theorem 4.8, the Schoenberg operator SX (e−t2) is bounded and invertible
whenever d∗(X) > 0, so all columns belong to �2.

There is an intermediate condition on the Schoenberg matrixSX ( f ) between (3.16)
and the boundedness. Precisely, let

C( f, X) := sup
j

∞∑

k=1

f 2(‖xk − x j‖) < ∞. (3.22)

In other words, sup j ‖SX ( f )e j‖ < ∞.
Recall that δ-regular sets are defined in Definition 3.3 above.
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Proposition 3.15 Let f ∈ M+ (1.8), and for a positive integer d, 1 ≤ d ≤ n,

∫ ∞

0
td−1 f 2(t) dt < ∞. (3.23)

Then (3.22) holds for each separated set X ∈ Xd . Conversely, assume that

∞∑

k=1

f 2(‖yk − y j‖) < ∞ (3.24)

for some j ∈ N and at least one δ-regular set Y = {yk}k∈N. Then (3.23) holds with
d = dimL(Y ).

Proof Let (3.23) hold. We apply Lemma 3.2 with h = f 2 and obtain as above

∞∑

k=1

f 2(‖xk−x j‖)≤1+
∞∑

m=1

card(X ( j)
m ) f 2(d∗(X)m)

≤ 1+d2
(

5

d∗(X)

)d ∫ ∞

0
sd−1 f 2(s)ds,

so (3.22) follows.
Conversely, let f satisfy (3.24) for some j ∈ N and some δ-regular set Y . In view

of the lower bound (3.3) one has by Lemma 3.2,

∞∑

k=1

f 2(‖yk−y j‖)=1+
∞∑

m=1

∑

yk∈Y ( j)
m

f 2(‖yk − y j‖)

≥ 1+c2(d)

∞∑

m=1

md−1 f 2(d∗(Y )(m+1))

≥1+c3(d)

∞∑

m=2

md−1 f 2(d∗(Y )m)≥1+c4(d)

∫ ∞

2d∗(Y )

sd−1 f 2(s) ds.

The proof is complete. ��
Corollary 3.16 If e j ∈ dom SX ( f ) for some j ∈ N and all X ∈ Xn then (3.22) holds.

Remark 3.17 It is easy to manufacture a function f ∈ M+ and a separated set X
so that (3.22) holds but (3.23) is violated. Indeed, let f tend to zero slow enough as
x → ∞, so that f /∈ L2(R+). Choose a sequence of positive numbers {tk}, t1 = 0 so
that f (tk) ≤ e−k . Now take a set X = {xk}k∈N with xk = tkξ , k ∈ N, ξ a unit vector.
Then

∞∑

i=1

f 2(‖xk − x1‖) ≤
∑

k

e−2k < ∞
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regardless of whether condition (3.23) holds or not. Due to the second statement of
Proposition 3.15 such set is supposed to be irregular.

The example below illustrates Proposition 3.15 and Theorem 3.4.

Example 3.18 Let h(r) = (1 + r)−1 ∈ CM0(R+). Take X = Z
2+ = {(p, q) : p, q ∈

Z+} labeled in the following way

X =
∞⋃

m=0

Xm, Xm = {x (m)
k }mk=0, x (m)

k = (m − k, k), X0 = {(0, 0)}.

As |x (m)
k |2 = (m − k)2 + k2 = m2 + 2k(k − m) ≤ m2, we can easily compute the

sum in (3.22)

∞∑

m=0

m∑

k=0

h2(‖x (m)
k ‖)=

∞∑

m=0

m∑

k=0

1

(1+‖x (m)
k ‖)2

≥
∞∑

m=0

m∑

k=0

1

(1 + m)2
=

∞∑

m=0

1

1 + m
=+∞,

which is consistent with Proposition 3.15, since d = dimL(X) = 2, and condition
(3.23) is violated.

On the other hand, for X = Z+ we come to a version of the well-known Hilbert–
Toeplitz matrix

SX (h) = [(1 + |i − j |)−1]i, j∈N, h(r) = 1

1 + r
=
∫ ∞

0
e−sr e−s ds. (3.25)

Now d = 1, so by Proposition 3.15, (3.24) holds. Yet the operator SX (h) is unbounded
in view of Theorem 3.4 (Z+ is a 1-regular set). We show later in Proposition 3.26 that
SX (h) is a positive definite and self-adjoint operator.

An important property of the minimal Schoenberg operator SX ( f ) constitutes the
content of the following theorem.

Theorem 3.19 Let f ∈ �∞(α), α ∈ (0, 2], X = {x j } j∈N ⊂ R
n, and X ∈ Xn.

Assume that the Schoenberg matrixSX ( f ) satisfies condition (3.16). Then the minimal
Schoenberg operator SX ( f ) associated with the matrix SX ( f ) is a symmetric positive
definite operator, i.e.,

〈SX ( f )ξ, ξ 〉 ≥ ε‖ξ‖2, ξ ∈ dom SX ( f ), ε > 0. (3.26)

In particular, SX ( f ) is self-adjoint if and only if ker S∗
X ( f ) = {0}.

Proof According to Theorem 4.8, the function f ∈ �∞(α) is strongly X -positive
definite, i.e., there exists ε > 0 such that

N∑

j,k=1

f (‖x j − xk‖)ξ jξ k ≥ ε

N∑

j=1

|ξ j |2, ξ = (ξ j )
N
1 ∈ C

N , ∀N ∈ N. (3.27)
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Due to assumption (3.16) the basis {e j } j∈N is a basis of the matrix representation of
the minimal operator SX ( f ) associated with the Schoenberg matrix SX ( f ). Therefore
inequality (3.27) means that for any finite vector ξ = (ξ1, ξ2, . . . , ξN , 0, 0, . . .)

〈SX ( f )ξ, ξ 〉 ≥ ε

N∑

k=1

|ξk |2 = ε ‖ξ‖2.

Taking the closure we get the statement. ��

Note that the proof of our main result about �∞-functions (Theorem 4.8) in the
next section is completely independent of the above Theorem 3.19.

The converse to Theorem 3.19 is true in a more general setting.

Proposition 3.20 Assume that the Schoenberg matrix SX ( f ), f ∈ �n, satisfies con-
dition (3.16), and the minimal Schoenberg operator SX ( f ) associated with the matrix
SX ( f ) satisfies (3.26), i.e., it is positive definite. Then X is separated, i.e., d∗(X) > 0.

Proof In the above assumptions one has

〈SX ( f )h, h〉 ≥ c‖h‖2, 0 < c < ∞ (3.28)

for each h ∈ dom(SX ( f )). Hence putting h = ek − e j ∈ dom(SX ( f )) we see that

〈SX ( f )h, h〉 = 2 f (0) − 2 f (‖xk − x j‖) ≥ 2c,

so f (‖xk − x j‖) ≤ f (0) − c, c > 0, which immediately implies d∗(X) > 0. ��

Proposition 3.20 says that if d∗(X) = 0 and SX ( f ) is bounded for f ∈ �n , then
0 ∈ σ(SX ( f )), σ(A) being the spectrum of operator A. It is easy to manufacture such
X for f (t) = e−t (cf. [21, Lemma 3.7]).

There is a simple function theoretic analogue of Proposition 3.20.

Proposition 3.21 If f ∈ �n is strongly X-positive definite, then X is separated.

Proof By the definition we have for all k, j

f (0)(|ξ1|2 + |ξ2|2) − f (‖x j − xk‖)(ξ1ξ̄2 + ξ̄1ξ2) ≥ c(|ξ1|2 + |ξ2|2), ξ1, ξ2 ∈ C.

By putting ξ1 = ξ2 �= 0 we see that

f (0) − f (‖x j − xk‖) ≥ c > 0,

so X ∈ Xn , as needed. ��
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3.4 Schoenberg–Toeplitz Operators

Although we have no sufficient conditions for general Schoenberg operators SX ( f ) to
be self-adjoint, Theorem 3.19 gives an essential step toward proving self-adjointness,
since it reduces this problem to the study of ker S∗

X ( f ).

Definition 3.22 (i) LetN0 := N∪{0}. Recall that a matrixA := [a jk] j,k∈N0 is called
a Toeplitz matrix if there is a sequence {am}m∈Z of complex numbers such that
a jk = a j−k for every j, k ∈ N0.

(ii) An operator A on a space of analytic functions in the unit disk D such that its
domain contains the set of analytic polynomials Pol+ is called a Toeplitz operator
if its matrix with respect to the basis {zk}k∈N0 = {eikϕ}k∈N0 is a Toeplitz matrix.

It is known that a Toeplitz operator is characterized by the identity

U∗AU = A, (3.29)

whereU is a unilateral shift in �2.According to the basic assumption (3.16) theToeplitz
matrix A defines an operator in �2 if {ak} ∈ �2(Z), i.e.,

∑

j∈Z
|a j |2 < ∞. (3.30)

In this case the Toeplitz symbol is a function given by

a(A, eiϕ) :=
∑

k∈Z
ake

ikϕ ∈ L2[−π, π ]. (3.31)

Lemma 3.23 Let a− j = ā j , j ∈ N, i.e., the Toeplitz matrix A = [a j−k] j,k∈N0 is
a Hermitian matrix. Assume also that A satisfies (3.30) and the minimal symmetric
Toeplitz operator A associated with A in �2(N) is semibounded from below. Then it
is self-adjoint, A = A∗.
Proof Without loss of generality we can assume that A is positive definite. In this case
it suffices to make sure that the conjugate (maximal) operator A∗ has the trivial kernel.
Since A∗ = Amax acts by means of the same matrix A (but defined on the maximal
domain), the latter property is equivalent to

⎡

⎢⎢⎢⎣

a0 a1 a2 . . .

a−1 a0 a1 . . .

a−2 a−1 a0 . . .
...

...
...

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

p0
p1
p2
...

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

0
0
0
...

⎤

⎥⎥⎥⎦⇒ p j ≡ 0, p = {p j } ∈ �2. (3.32)

To prove implication (3.32) it is instructive to rephrase the problem in the function
theoretic terms.

Let M denote the multiplication (shift) operator on L2(T), T is the unit circle. The
equality in (3.32) means that the function
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p(t) :=
∑

j≥0

p j t
j ∈ H2

is orthogonal to the system {Mka}k≥0, where a ∈ L2(T) is the Toeplitz symbol (3.31).
In other words, the product p− := p a ∈ L1(T) is orthogonal to all powers {tk}k≥0,
i.e., p− ∈ H1− (for the Hardy spaces H p, H p

− see [11, Chapter II]).
Positive definiteness of the minimal operator A reads as follows

〈Aq, q〉 =
N∑

k, j=0

ak− j q j q̄k =
∫

T

a(t)|q(t)|2 m(dt) ≥ ε‖q‖2L2(T)
,

q(t) :=
N∑

j=0

q j t
j , ε > 0, (3.33)

for an arbitrary q ∈ Pol+, m is the normalized Lebesgue measure on T. It is clear
from (3.33) that a(t) ≥ ε for a.e. t = eiϕ ∈ T. Therefore (see [11, Theorem II.4.6])
there is an outer function D such that

a(t) = |D(t)|2, D ∈ H2, D−1 ∈ H∞.

We have p−(t) = p(t) a(t) = p(t) |D(t)|2 ∈ H1− and hence

p(t) D(t) = p−(t)

D(t)
.

But the left-hand side of the latter equality belongs to H1, whereas the right-hand side
lies in H1− which yields p ≡ 0, as claimed. The proof is complete. ��

A sequence X = {xk}k∈N ⊂ R
n is called a Toeplitz sequence, if ‖xi − x j‖ = |i − j |

for i, j ∈ N. The latter is equivalent (recall that by our convention x1 = 0) to xk =
(k−1)ξ , ξ ∈ R

n , and ‖ξ‖ = 1, so d = dimL(X) = 1. In this case SX ( f ) is a Toeplitz
operator, which will be called a Schoenberg–Toeplitz operator. The Toeplitz symbol
a (3.31) takes now the form

a( f, eiϕ) :=
∑

k∈Z
f (|k|)eikϕ. (3.34)

Remark 3.24 (i) Self-adjointness of not necessarily positive Toeplitz operators with
the Toeplitz symbol from BMO(T) (see [11, Chapter VI]) was established by V.
Peller [26]. In particular, this is the case for the Hilbert–Toeplitz operator (3.25)
with the Toeplitz symbol

a(h, t) = 1 − 2Re
log(1 − t)

t
∈ BMO(T),
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but not for general Schoenberg–Toeplitz operators with Toeplitz symbols (3.42)
below.

(ii) Semibounded Toeplitz operators have been studied in several papers (see [27] and
references therein). For instance, it is proved in [28] that the Friedrichs extension
AF of A has absolutely continuous spectrum. However, according to Lemma
3.23, AF = A.

In the rest of the section wewill focus on the Schoenberg–Toeplitz operators SX ( f )
with symbols f ∈ �∞ = �∞(2). We clarify and complete Corollary 3.6 for such
operators and describe their spectra in terms of the Schoenberg measures σ f .

Proposition 3.25 Let f ∈ �∞ and let σ f be its Schoenberg measure (2.6). The
Schoenberg–Toeplitz matrixSX ( f ) defines aminimal operator SX ( f ) in �2 if and only
if f ∈ L2(R+). In this case SX ( f ) is self-adjoint, its spectrum is purely absolutely
continuous and fills in the interval

σ(SX ( f )) = σac(SX ( f )) = [c−, c+],
0<c− :=

∫ ∞

0
ϑ3
(
π, e−s) σ f (ds)<c+ :=

∫ ∞

0
ϑ3
(
0, e−s) σ f (ds) ≤ +∞, (3.35)

where ϑ3 is the Jacobi theta-function.
Moreover, the operator SX ( f ) is bounded if and only if f ∈ L1(R+), or, equiva-

lently, ∫ ∞

0

σ f (ds)√
s

< ∞. (3.36)

Proof As the Schoenberg symbol f is a nonnegative and monotone decreasing func-
tion, conditions f ∈ L2(R+) and { f (k)}k≥0 ∈ �2 are equivalent, so (3.30) is met.
Next, for f ∈ �∞ the corresponding minimal operator is symmetric and strongly
positive definite by Theorem 3.19. Hence SX ( f ) is self-adjoint in view of Lemma
3.23.

Consider the kernel function es(u) := e−su2 , s > 0, so SX (es) = [e−s|i− j |2 ]i, j∈N.
Since es ∈ L1(R+), the operator SX (es) is bounded by Theorem 3.4. The correspond-
ing Toeplitz symbol is given by (3.34). It can now be expressed by means of the Jacobi
theta-function

a(es, e
iϕ) =

∑

k∈Z

e−s|k|2eikϕ = ϑ3

(ϕ

2
, e−s

)
.

It is well known (see [38, Chapter 21]) that ϑ3 is positive on the real line and

ϑ ′
3(ϕ)

ϑ3(ϕ)
= −4 sin 2ϕ

∞∑

k=1

q2k−1

1 + 2q2k−1 cos 2ϕ + q4k−2 , q = e−s,

so a(es) is monotone decreasing on [0, π ] (a(es) is “bell-shaped” on [−π, π ]). By the
Hartman–Wintner theorem (see, e.g., [24, Theorem 4.2.7]) its spectrum agrees with
the range of a( f ), so it is the interval

σ(SX (es)) = a(es, T) = [a(es,−1), a(es, 1)] =
[
ϑ3

(π

2
, q
)
, ϑ3(0, q)

]
.
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For a general function f ∈ �∞ the Toeplitz symbol a( f ) of SX ( f ) = [ f (|i −
j |)]i, j∈N can be computed as

a( f, eiϕ) =
∑

k∈Z

f (|k|)eikϕ =
∑

k∈Z

eikϕ
∫ ∞

0
e−s|k|2 σ f (ds)

=
∫ ∞

0
ϑ3

(ϕ

2
, e−s

)
σ f (ds), ϕ �= 0. (3.37)

It is easily seen that

ϑ3

(π

2
, e−s

)
≤ ϑ3

(ϕ

2
, e−s

)
≤ ϑ3(0, e

−s)

=
∑

k∈Z
e−sk2 ∼ 1√

s
, s → +0, 0 ≤ ϕ ≤ π. (3.38)

Again by the Hartman–Wintner theorem, the spectrum of SX ( f ) agrees with the range
of a( f ), which is exactly the interval given by (3.35). Its absolute continuity is a
standard fact in the theory of Toeplitz operators, (see, e.g., [27, p. 64]).

By Theorem 3.4 the boundedness of SX ( f ) is equivalent to f ∈ L1(R+). In turn,
the latter is equivalent to (3.36) by Corollary 3.6, applied with α = 2 and d = 1. The
proof is complete. ��

It is easy to express the inclusion f ∈ �∞ ∩ L2(R+) in terms of σ f (cf. 3.36)

∫

R
2+

σ f (ds1) σ f (ds2)√
s1 + s2

< ∞. (3.39)

Next, we provide a similar result for f ∈ CM0(R+).

Proposition 3.26 Let f ∈ CM0(R+), τ f be its Bernstein measure (2.5). The
Schoenberg–Toeplitz matrixSX ( f ) defines aminimal operator SX ( f ) in �2 if and only
if f ∈ L2(R+). In this case SX ( f ) is self-adjoint, its spectrum is purely absolutely
continuous and fills in the interval

σ(SX ( f )) = σac(SX ( f )) = [c−, c+], 0 < c± =
∫ ∞

0

1 ± e−s

1 ∓ e−s
τ f (ds). (3.40)

Moreover, the operator SX ( f ) is bounded if and only if f ∈ L1(R+), or, equivalently,

∫ ∞

0

τ f (ds)

s
< ∞. (3.41)

Proof As in the proof of the preceding result, we start with the kernel function es(u) :=
e−su , s > 0, and relate the Schoenberg and Toeplitz symbols:
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a(es, e
iϕ) =

∑

k∈Z

e−s|k|eikϕ = 1 + e−s+iϕ

1 − e−s+iϕ
+ e−s−iϕ

1 − e−s−iϕ

= 1 − e−2s

|1 − te−s+iϕ |2 = P(e−s, eiϕ),

where P(e−s, eiϕ) denotes the Poisson kernel for the unit disk. Hence SX (es) =
[e−s|i− j |]i, j∈N is bounded and its spectrum is the interval

σ(SX (es)) = a(es, T) =
[
1 − e−s

1 + e−s
,
1 + e−s

1 − e−s

]
.

The Toeplitz symbol a( f ) of the operator SX ( f ) = [ f (|i− j |)]i, j∈N can be computed
as above

a( f, eiϕ) =
∑

k∈Z

f (|k|)eikϕ =
∑

k∈Z

eikϕ
∫ ∞

0
e−s|k| τ(ds)

=
∫ ∞

0
P(e−s, eiϕ) τ f (ds), ϕ �= 0. (3.42)

One completes the proof in just the same fashion as in Proposition 3.25. ��
Similarly, the condition f ∈ CM0(R+) ∩ L2(R+) is equivalent to (cf. 3.41)

∫

R
2+

τ f (ds1) τ f (ds2)

s1 + s2
< ∞. (3.43)

Example 3.27 It is not hard to manufacture a Schoenberg–Toeplitz matrices with the
Schoenberg symbol f ∈ CM0(R+)\L2(R+). Indeed, one can take

SX ( fβ)=[(1+|i− j |)−β ]i, j∈N, fβ(r)= 1

(1 + r)β
= 1

	(β)

∫ ∞

0
e−sr sβ−1e−s ds

(3.44)
with 0 < β ≤ 1/2. In this example neither column vector belongs to �2.

Remark 3.28 (i) According to a result of Brown and Halmos (see, e.g., [24, Theo-
rem 4.1.4]) the operator SX ( f ) is bounded if and only if a( f ) ∈ L∞(T). Due
to the asymptotic relation (3.38) for f ∈ �∞ the latter is equivalent to (3.36).
This observation provides another proof of the last statement of both preceding
propositions.

(ii) The relation between the Schoenberg symbol f ∈ �∞(α) for α = 1, 2 and
the Toeplitz symbol a( f ) is implemented by the Poisson kernel and the Jacobi
theta-function, respectively. We are unaware of a similar relation for 1 < α < 2.

(iii) A Schoenberg–Toeplitz operator SX ( f ) with f ∈ M+ is bounded if and only
if the Fourier coefficients of its Toeplitz symbol a( f ) (3.34) are positive and
monotone decreasing anda( f ) ∈ W , theWiener algebra of absolutely convergent
Fourier series. This result stems directly from Theorem 3.4.
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Example 3.29 We construct a bounded Schoenberg–Toeplitz operator SX (ϕ)with 0 ∈
σ(SX (ϕ)). Take any Toeplitz sequence X ⊂ R

1 so that |xi − x j | = |i − j | and put

ϕ(t) =
(
1 − t

2

)

+
∈ �1, (a)+ := max(a, 0).

Then SX (ϕ) = J ({1}, {1/2}) is the Jacobi operator with 1’s on the main diagonal and
1/2’s off the main diagonal. It is well known that σ(SX (ϕ)) = [0, 2], as claimed.
Certainly, ϕ /∈ �∞.

4 Schoenberg Matrices and Harmonic Analysis on R
n

4.1 Radial Strongly X -Positive Definite Functions

It turns out that the notions of Riesz–Fischer, Bessel, and Riesz sequences (see Defini-
tion 1.8) applied to sequences of exponential functions in L2-spaces are tightly related
to the strong X -positive definiteness.

Given an arbitrary sequence X = {xk}k∈N of distinct points in R
n , we introduce a

system
EX = {e(·, xk)}k∈N, e(x, xk) = ei〈x,xk 〉, x ∈ R

n, (4.1)

of exponential functions.

Proposition 4.1 Let h be a positive definite function (2.2) with the Bochner measure
μh. For an arbitrary sequence X = {xk}k∈N of distinct points inR

n and for the system
of exponential functions EX (4.1) the following holds.

(i) EX is a Riesz–Fischer sequence in L2(Rn, μh) if and only if h is strongly X-
positive definite.

(ii) EX is a Bessel sequence if and only if the Gram matrix

Gr(EX , L2(Rn, μh)) = [〈e(·, xk), e(·, x j )〉L2(Rn ,μh)
]k, j∈N = [h(xk − x j )]k, j∈N

(4.2)
defines a bounded, self-adjoint and nonnegative operator on �2.

(iii) EX is a Riesz sequence if and only if Gr(EX , L2(Rn, μh)) defines a bounded and
invertible, nonnegative operator.

Proof It is clear that

m∑

k, j=1

h(xk − x j )ξ jξ k =
∫

Rn

∣∣∣∣∣

m∑

k=1

ξke(u, xk)

∣∣∣∣∣

2

μh(du) =
∥∥∥∥

m∑

k=1

ξke(·, xk)
∥∥∥∥
2

L2(Rn ,μh)

(4.3)
for ξ = {ξ1, . . . , ξm} ⊂ C and arbitrary m ∈ N. All statements are immediate from
(4.3). ��

The same system E can be viewed as a system of vectors in another Hilbert space,
namely L2(Sn−1

r ), Sn−1
r being a sphere in R

n of radius r , centered at the origin,
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with the normalized Lebesgue measure sn . We denote this system by EX (Sn−1
r ). Such

approach leads to RPDF’s. Note that the assumption n ≥ 2 looks quite natural now
since otherwise the sphere makes no sense.

Definition 4.2 Let X = {xk}k∈N be a sequence of distinct points in R
n ,K ⊂ R+ be a

Borel set. K is called X-massive if EX (Sn−1
r ) is the Riesz–Fischer sequence for each

r ∈ K.

The following result is borrowed from [21, Proposition 2.14]. We present it with
the proof because of its importance in the sequel. Recall that �n is the Schoenberg
kernel (1.4).

Proposition 4.3 Let f ∈ �n, n ≥ 2, with the measure ν f in (1.2). Given an arbitrary
sequence X = {xk}k∈N of distinct points in R

n, the function f is strongly X-positive
definite if and only if there exists an X-massive setK of positive ν f -measure, ν f (K) >

0. In particular, the function fρ(·) = �n(ρ·), ρ > 0, is strongly X-positive definite if
and only if the system EX (Sn−1

ρ ) is the Riesz–Fischer sequence.

Proof It follows from (1.2) and (1.4) that for {ξ1, . . . , ξm} ⊂ C and m ∈ N

m∑

j,k=1

f (‖xk − x j‖)ξ jξ k =
∫ +∞

0

⎛

⎝
∫

Sn−1
r

∣∣∣∣∣

m∑

k=1

ξke(u, xk)

∣∣∣∣∣

2

sn(du)

⎞

⎠ ν f (dr). (4.4)

Suppose that there exists a set K as stated above. Then for every r ∈ K there is a
constant c(r) > 0 so that

∫

Sn−1
r

∣∣∣∣∣

m∑

k=1

ξke(u, xk)

∣∣∣∣∣

2

sn(du) =
∥∥∥∥

m∑

k=1

ξke(·, xk)
∥∥∥∥
2

L2(Sn−1
r )

≥ c(r)
m∑

k=1

|ξk |2. (4.5)

Choosing c(r) bounded andmeasurable and combining the latter inequality with (4.4),
we obtain

m∑

j,k=1

f (‖x j − xk‖)ξ jξ k ≥
∫

K

(∥∥∥∥
m∑

k=1

ξke(·, xk)
∥∥∥∥
2

L2
r (S

n−1)

)
ν f (dr) ≥ c

m∑

k=1

|ξk |2,

c :=
∫

K
c(r)ν f (dr). (4.6)

Since ν f (K) > 0 and c(r) > 0, we have c > 0, so f is strongly X -positive definite.
Conversely, if

∫ ∞

0
h(r) ν f (dr) ≥ c1 > 0, h(r) =

∥∥∥∥
m∑

k=1

ξke(·, xk)
∥∥∥∥
2

L2
r (S

n−1)

,

then there is a Borel set K ⊂ (0,+∞) of positive ν f -measure such that h ≥ c1 on K,
as claimed. ��
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We want to lay stress on the fact that the measure ν f enters this result only via
existence of a certain Borel set K of positive ν f -measure.

A combination of the latter result with Proposition 3.21 leads to the following

Corollary 4.4 If X /∈ Xn, i.e., d∗(X) = 0, then EX (Sn−1
r ) is the Riesz–Fischer

sequence for neither r > 0.

Corollary 4.5 Let f j ∈ �n, n ≥ 2, j = 1, 2, with the measures ν1 and ν2 in (1.2),
respectively. Assume that ν1 is absolutely continuous with respect to ν2. Given a set
X = {xk}k∈N of distinct points in R

n, if f1 is strongly X-positive definite then so is
f2. In particular, if ν1 and ν2 are mutually absolutely continuous (equivalent), then
f1 and f2 are strongly X-positive definite simultaneously.

Proof By Proposition 4.3 there is an X -massive set K, ν1(K) > 0. Since ν1 is
absolutely continuous with respect to ν2, then ν2(K) > 0 as well. Now Proposi-
tion 4.3 applies in the backward direction and yields strong X -positive definiteness of
f2, as claimed. ��
We are in a position now to present the main result of the section.

Theorem 4.6 (Theorem 1.6) Let (const �=) f ∈ �n, n ≥ 2, with the representing
measure ν f (1.2). If ν f is equivalent to the Lebesgue measure on R+, then f is
strongly X-positive definite for each X ∈ Xn.

Proof We begin with the function es(r) := e−sr ∈ �n and show that for each X ∈ Xn

es is strongly X -positive definite for all large enough s > 0. Indeed, take s so that

‖tn−1es‖L1(R+) =
∫ ∞

0
tn−1e−st dt = 	(n)

sn
<

dn∗ (X)

5nn2
.

By Theorem 3.4 (see 3.7) the Schoenberg operator SX (es) is bounded and invertible,
so (1.11) holds, as needed.

To make use of Corollary 4.5 we compute the measure νes . To this end recall a
well-known result from the Fourier transforms theory, which plays a key role in the
sequel.

Let h ∈ L1(Rn) and ĥ be its Fourier transform (1.17). If h(·) = h0(‖ · ‖) is a radial
function, then so is ĥ(·) = H0(‖ · ‖). Moreover, H0 and h0 are related by (see, e.g.,
[32, Theorem IV.3.3])

H0(r) = 1

rq

∫ ∞

0
Jq(ru)uq+1h0(u) du

= 1

2q	(q + 1)

∫ ∞

0
�n(ru)un−1h0(u) du, q := n

2
− 1. (4.7)

The latter is usually referred to as the Fourier–Bessel transform.
We apply (4.7) to the pair of functions (see, e.g., [32, Theorem 1.13])

h(x) = 2n/2	
( n+1

2

)
√

π

s

(s2 + ‖x‖2) n+1
2

, ĥ(t) = e−s‖t‖,
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(this is a particular case of (4.23) below) and come to

es(r) = e−sr = 2

B
( n
2 , 1

2

)
∫ ∞

0
�n(ru)

sun−1

(s2 + u2)
n+1
2

du, s, t > 0,

B(a, b) := 	(a)	(b)

	(a + b)
(4.8)

is the Euler beta-function. This is exactly representation (1.2) of es with the measure

νes (du) = 2

B
( n
2 , 1

2

)
sun−1

(s2 + u2)
n+1
2

du,

equivalent to the Lebesgue measure. By the assumption of the theorem the measures
ν f and νes are equivalent. Since es is strongly X -positive definite for large enough s
and each separated set X ∈ Xn , then by Corollary 4.5, so is f , as claimed. ��
Remark 4.7 In fact, Theorem 4.6 remains valid whenever the Lebesgue measure on
R+ is absolutely continuous with respect to the measure ν, that is,

ν f (ds) = ν f,ac + ν f,sing = ν′
f (s) ds + ν f,sing, ν′

f (s) > 0 a.e., (4.9)

ν f,sing is a singular measure. This statement is immediate from the obvious identity
SX ( f ) = SX ( fac) + SX ( fsing), where fac and fsing are the �n-functions defined
by (1.2) with the measures ν f,ac and ν f,sing , respectively. It is also a consequence of
Corollary 4.5, applied in its full extent.

Theorem 4.8 (Theorem 1.7) Let f ∈ �∞(α), 0 < α ≤ 2. Then

(i) f is strongly X-positive definite for each X ∈ Xd , d ∈ N. In particular, if SX ( f )
generates an operator SX ( f ) on �2, then it is positive definite and so invertible.

(ii) If the Schoenberg measure σ f in (2.6) satisfies

∫ ∞

0
s− d

α σ f (ds) < ∞, d ∈ N, (4.10)

then the Schoenberg operator SX ( f ) is bounded and invertible for each X ∈ Xd .
(iii) Conversely, if SY ( f ) is bounded for at least one δ-regular set Y ∈ Xd , then

(4.10) holds.

Proof (i). We apply again (4.7), now to the pair of functions

h(x) = (2s)−n/2 exp

(
−‖x‖2

4s

)
, ĥ(t) = e−s‖t‖2 ,

to obtain representation (1.2) for the function

gs(r) :=e−sr2 = 1

2q	(q + 1)

∫ ∞

0
�n(ru)

un−1

(2s)n/2 exp

(
−u2

4s

)
du, r, s > 0,

(4.11)
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(cf. [3, Sect. V.4.3]). Hence for any f ∈ �∞ we can relate integral representations
(1.2) and (2.6). Namely, combining (4.11) with (2.6) we arrive at representation
(1.2) for f ∈ �∞

f (r) =
∫ ∞

0
�n(ru)φn(u, f ) du, φn(u, f )

:= un−1

2q	(q + 1)

∫ ∞

0
(2s)−n/2 exp

(
−u2

4s

)
σ f (ds). (4.12)

Clearly, ν f = φn(·, f ) du is equivalent to the Lebesgue measure, and the density
φn,σ is bounded, strictly positive and continuous on R+. The rest is Theorem 4.6.

(ii). By Corollary 3.6, the Schoenberg operator SX ( f ) is bounded. It is invertible in
view of the strong X -positive definiteness of f .

(iii) is a combination of Theorem 3.4, (iii), and Corollary 3.6.
The proof is complete. ��

Remark 4.9 As a special case of Theorem 4.8 we get that the function gs (see 4.11)
is strongly X -positive definite for all s > 0 and each X ∈ Xn . The corresponding
Schoenberg operator SX (gs) is bounded and invertible by Theorem 4.8.

Example 4.10 According to representation (2.6) each f ∈ �∞(α) is monotone
decreasing. The following example demonstrates that the monotonicity is not nec-
essary for f to be strongly X -positive definite for each separated set X ∈ Xn . In
particular, it gives an example of strongly X -positive definite function from �n\�∞.

Let Kμ be themodifiedBessel functionof the secondkind andorderμ (the definition
and properties of Kμ are given in the next section). By [35, p. 435, (5)] the following
integral representation holds for n ≥ 3

hs(r) := �n(rs)Mq(rs) = 2(2s)n−2

B
(
q, 1

2

)
∫ ∞

0
�n(ru)

un−1

(u4 + 4s4)
n−1
2

du,

Mq(t) := tq Kq(t)

2q−1	(q)
(4.13)

is the Whittle–Matérn function, well-established in spatial statistics, q = n/2 − 1,
s > 0 is a parameter. We show in the next section that Mq ∈ �∞, so the function
hs ∈ �n . Its representing measure in (1.2) is equivalent to the Lebesgue measure and
given explicitly by

νhs (du) = 2(2s)n−2

B
(
q, 1

2

)
un−1

(u4 + 4s4)
n−1
2

du

so by Theorem 4.6 hs is strongly X -positive definite function for each X ∈ Xn .
On the other hand, hs has infinitelymany real zeros, so it is notmonotone decreasing

and hence f /∈ �∞. Thus, by (4.13), f ∈ �n\�∞.
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Remark 4.11 If a real-valued function f obeys | f (r)| ≤ ce−ar , a > 0, (as in the
above example), then by Proposition 3.8, the operator SX ( f ) is bounded for each
X ∈ Xn and each n ∈ N.

4.2 “Grammization” of Schoenberg Matrices

Our goal here is to implement the “grammization” procedure (see Sect. 1) for two
positive definite Schoenberg’s matrices

SX ( f ) = [exp (−a‖xi − x j‖2)]i, j∈N, and

SX ( f ) = [exp (−a‖xi − x j‖)]i, j∈N , a > 0, (4.14)

as well as for a certain family of Schoenberg’s matrices which contains the second
one in (4.14).

A key observation is stated as the following simple result.

Lemma 4.12 Let g ∈ L2(Rn) and gξ (·) := g(·−ξ), gη(·) := g(·−η) be its translates
on ξ, η ∈ R

n. Then

〈gξ , gη〉L2(Rn) = f (η − ξ) = F̂(ξ − η),

f (x) :=
∫

Rn
g(x + y)g(y) dy, F(t) := (2π)n/2 |̂g(t)|2. (4.15)

If g is a radial function, then f ∈ �n and its Schoenberg’s measure ν f is absolutely
continuous with respect to the Lebesgue measure.

Proof The first equality in (4.15) is merely definition of the inner product. By Parse-
val’s equality

〈gξ , gη〉L2(Rn)=〈ĝξ , ĝη〉L2(Rn)=
∫

Rn
|̂g(t)|2e−i〈t,ξ−η〉 dt=(2π)n/2 F̂(ξ−η), ξ, η∈R

n .

The rest is standard (see, e.g., [29, Lemma 3.6.5]). ��
Proposition 4.13 Let ξ, η ∈ R

n, a > 0. Then

e− a
2 ‖ξ−η‖2 =

(
2a

π

)n/2

〈ga,ξ , ga,η〉L2(Rn), ga,ξ (x)=e−a‖x−ξ‖2 . (4.16)

The grammization of the first Schoenberg’s matrix in (4.14) reads as follows

[
exp
(
−a

2
‖xi − x j‖2

)]

i, j∈N
=
(
2a

π

)n/2

Gr({g j }, L2(Rn)), g j (x)=e−a‖x−x j‖2 .
(4.17)
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Proof A combination of Lemma 4.12 (see 4.15) and the well-known formula

̂e−b‖· ‖2(t) = 1

(2π)n/2

∫

Rn
e−b‖x‖2−i〈x,t〉 dx = 1

(2b)n/2 e− ‖t‖2
4b , b > 0, (4.18)

yields the result. ��
The grammization of the second Schoenberg matrix in (4.14) is similar but techni-

cally more involved.
We begin with a brief reminder of the modified Bessel functions Kμ of the second

kind of order μ, which solve the differential equations

t2u′′(t) + tu′(t) − (t2 + μ2)u(t) = 0, t > 0, μ ∈ R.

The asymptotics for Kμ is well known (see [1, (9.6.8–9.6.9)], [35, p. 202, (1)])

Kμ(t) =
{

	(μ)
2

( t
2

)−μ + O(t−μ+2), μ > 0;
log 2

t + O(1), μ = 0; t → 0,

Kμ(t) =
√

π

2t
e−t (1 + O(t−1)), t → ∞. (4.19)

The functions Kμ are known to satisfy K−μ = Kμ and to admit the following
integral representations (see [35, p. 183, (15)], [35, p. 172, (4)])

Kμ(z) = 1

2

(
z

2

)μ ∫ ∞

0
exp
(
−r − z2

4r

)
r−μ−1 dr

=
√

π

	
(
μ + 1

2

)
(
z

2

)μ ∫ ∞

1
e−zr (r2 − 1)μ− 1

2 dr, μ > −1

2
, | arg z| <

π

2
.

(4.20)

Furthermore, Kμ is positive and monotone decreasing function on R+.

Proposition 4.14 Let n ∈ N and Kμ be the modified Bessel function of the second
kind of order μ, 0 ≤ μ < n/4. For a > 0 and ξ ∈ R

n put

ga,μ(x) :=
(

a

‖x‖
)μ

Kμ(a‖x‖), ga,μ,ξ (x) := ga,μ(x − ξ), x ∈ R
n . (4.21)

Then with p := n
2 − 2μ > 0 the following equality holds for all ξ, η ∈ R

n

(‖ξ − η‖
a

)p

K p (a‖ξ − η‖) = 22τ− n
2

π
n
2 B
(
τ, 1

2

) 〈ga,μ,ξ , ga,μ,η〉L2(Rn) , τ := n

2
− μ.

(4.22)
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Proof It follows from (4.19) that ga,μ ∈ L1(Rn) ∩ L2(Rn) for 0 ≤ μ < n/4. We
begin with the formula for the Fourier transform (cf. [29, Theorem 3.7.5])

ĝa,μ(t) = 2q−μ 	(q − μ + 1)

(a2 + ‖t‖2)q−μ+1 = 2τ−1 	(τ)

(a2 + ‖t‖2)τ =: ha,μ(t) , q = n

2
− 1. (4.23)

Due to its importance we outline the proof (cf. [18, p. 7]).
Since ha,μ ∈ L2(Rn) for 0 ≤ μ < n/4 we can compute its Fourier transform ĥa,μ.

The starting point is the gamma function identity

A−τ = 1

	(τ)

∫ ∞

0
e−s Asτ−1 ds, A, τ > 0,

which we use to obtain

1

(a2 + ‖x‖2)τ = 1

	(τ)

∫ ∞

0
e−s(a2+‖x‖2)sτ−1 ds. (4.24)

Next, we take the Fourier transform of both sides and apply (4.18) to find

ĥa,μ(t) = (2π)−n/2
∫

Rn

2τ−1 	(τ)

(a2 + ‖x‖2)τ e−i〈t,x〉 dx

= 2τ−1

(2π)n/2

∫ ∞

0
e−sa2sτ−1 ds

∫

Rn
e−s‖x‖2−i〈t,x〉 dx

= 2−μ−1
∫ ∞

0
exp
(
−sa2 − ‖t‖2

4s

)
s−μ−1 ds

= a2μ

2μ+1

∫ ∞

0
exp
(
−r − a2‖t‖2

4r

)
r−μ−1 dr.

Equality (4.23) now follows from the first integral representation (4.20).
In view of (4.15) it remains to compute

F̂(t) =
∫

Rn
|̂ga,μ(u)|2e−i〈t,u〉 du = 22(τ−1)	2(τ )

∫

Rn

e−i〈t,u〉

(a2 + ‖u‖2)2τ du

by using exactly the samemethod as above. Precisely, since	(2r) = 22r−1π−1/2 	(r)
	(r + 1/2), we have

22(τ−1)	2(τ )

∫

Rn

e−i〈t,u〉

(a2 + ‖u‖2)2τ du=22(τ−1)	2(τ )
(2π)n/2

22τ−1	(2τ)

( a

‖t‖
) n

2−2τ

K n
2−2τ (a‖t‖) = (2π)n/2

22τ
B

(
τ,

1

2

)(‖t‖
a

)p
K p(a‖t‖),

as claimed. ��
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Corollary 4.15 The grammization for the second Schoenberg matrix in (4.14) is

[exp (−a‖x j − xk‖)] j,k∈N = Gr({g j }, L2(Rn)),

g j (x) =
√√√√ 2	

( n+3
4

)
a

π
n+2
2 	

( n+1
4

)
(

a

‖x − x j‖
) n−1

4

K n−1
4

(a‖x − x j‖).

(4.25)

In particular, for n = 3

e−a‖ξ−η‖ = a

2π

∫

R3

e−a‖x−ξ‖

‖x − ξ‖
e−a‖x−η‖

‖x − η‖ dx, ξ, η ∈ R
3, a > 0. (4.26)

Proof Take μ = n−1
4 , so p = 1/2, and the function in the left side of (4.22) is just

the exponential function (cf. [35, p. 80, (13)])

√‖ξ − η‖
a

K1/2(a‖ξ − η‖) =
√

π

2

e−a‖ξ−η‖

a
, (4.27)

which is (4.25).
If n = 3, μ = 1/2, then

fa,1/2,ξ (x) =
(

a

‖x − ξ‖
)1/2

K1/2(a‖x − ξ‖) =
√

π

2

e−a‖x−ξ‖

‖x − ξ‖ , (4.28)

and (4.26) follows. ��
Note that (4.26) is one of the cornerstones of [21] (see formula (3.26) therein).
The case n = 2, μ = 0 leads to the following

Corollary 4.16 For all ξ, η ∈ R
2 and a > 0

‖ξ − η‖
a

K1 (a‖ξ − η‖) = 1

π
〈K0(a‖ · −ξ‖), K0(a‖ · −η‖)〉L2(R2).

There is another natural way to view (4.22). For arbitrary p > 0 and a > 0 consider
the Whittle–Matérn function (cf. 4.13)

Mp,a(r) :=
(
r

a

)p

K p(ar), r > 0. (4.29)

Since K−p = Kp, the notation makes sense for negative indices, and another family
of the Whittle–Matérn functions comes in

M̃p,a(r) = M−p,a(r) =
(
a

r

)p

K p(ar), p > 0, M̃0,a(r) = K0(r).
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Then equality (4.22) with 0 < 2p ≤ n reads

Mp,a(‖ξ − η‖) = 〈cn,p M̃d,a(‖ · −ξ‖), cn,p M̃d,a(‖ · −η‖)〉L2(Rn),

0 ≤ d := 1

2

(
n

2
− p

)
<

n

4
, c2n,p = 2p

π
n
2 B
(
d, 1

2

) (4.30)

for all ξ, η ∈ R
n .

To have a proper normalization at the origin we put (see 4.19 and 4.13)

Mp(r) = Mp,1(r)

2p−1	(p)
= r pK p(r)

2p−1	(p)
= 1 + O(r2), r → 0.

As a byproduct of Proposition 4.14 we have (cf. [19], [14, Table 2]).

Corollary 4.17 Mp ∈ �∞ for all p > 0.

Proof Take n > 2p. By Proposition 4.14, for each finite set X ⊂ R
n the Schoenberg

matrix SX (Mp) is the Gram matrix, so SX (Mp) ≥ 0. Hence Mp ∈ �n for all such n,
as claimed. ��

With regard to Corollary 4.17 one might ask whether the functions Mp belong to
certain subclasses of�∞, for instance, to the classCM0(R+) of completely monotone
functions. The result below seems interesting on its own.

Proposition 4.18 For theWhittle–Matérn function Mp the following statements hold.

(i) Mp ∈ CM(R+) if and only if −∞ < p ≤ 1/2.
(ii) Mp ∈ CM0(R+) if and only if 0 < p ≤ 1/2.

Proof The assertion for −∞ < p < 1/2 follows directly from the second integral
representation (4.20) and the Bernstein theorem, if one puts μ = −p. Note that the
Bernstein measure is finite if and only if 0 < p < 1/2. For p = 1/2 we have

M1/2(r) = e−r ∈ CM0(R+).

Let now p > 1/2. We wish to show that inequalities (2.4) are violated for some
k ≥ 1. The argument relies on the differentiation formulae for the Bessel functions,
which in our notation look as (see [35, p. 74])

(
1

z

d

dz

)m
Mp,1(z) = (−1)mMp−m,1(z). (4.31)

For m = 1 it displays the fact that Mp,1 is monotone decreasing function on R+. For
m = 2 we have

M ′′
p,1(r) = −Mp−1,1(r) + r2Mp−2,1(r).
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For p ≥ 2 obviously r2Mp−2,1 → 0 as r → +0, so M ′′
p,1(+0) = −2p−2	(p −

1) < 0, which is inconsistent with (2.4) for k = 2. If 1 < p < 2, then again

r2Mp−2,1(r) = r pK2−p,1(r) = r2p−2M2−p,1(r) → 0, r → +0,

with the same conclusion.
Finally, let 1/2 < p < 1. From (4.31) with m = 1 one has

M ′
p,1(r) = −rMp−1,1(r) = −r pK1−p(r) = −r2p−1M1−p,1(r) → 0, r → +0

so M ′
p,1(+0) = 0 that is impossible for a nonconstant completely monotone function.

The proof is complete. ��
Remark 4.19 For 0 ≤ p ≤ 1/2 a stronger result is proved in [22], namely,
er Mp,1(r) ∈ CM(R+). Our results for the other values of p seem to be new.

4.3 Minimality Conditions and Riesz Sequences in L2(Rn)

The classical result of Bari (see Sect. 1) states that a sequence {ϕk}k∈N of vectors
in a Hilbert space is a Riesz sequence if and only if the corresponding Gram matrix
Gr{ϕk}k∈N generates a bounded and invertible linear operator on �2. We examine here
certain systems of translates from this viewpoint.

The definitions below are standard (cf. [15, Chap. VI]).

Definition 4.20 A sequence of vectors {h j } j∈N in a Hilbert spaceH is calledminimal,
if neither of hk belongs to the closed linear span L({h j } j �=k) of the others. In other
words,

δk := dist(hk/‖hk‖,L({h j } j �=k)) > 0, k ∈ N.

{h j } j∈N is uniformly minimal, if infk δk > 0.

Recall that Riesz–Fischer systems are defined in (1.15).

Lemma 4.21 Any bounded Riesz–Fischer sequence {h j } j∈N is uniformly minimal.

Proof By the assumption, ‖hk‖ ≤ c1 with some c1 > 0. Therefore, by Definition 1.8
(i), (see 1.15), for any fixed k and any finite sequence {ξ j } ⊂ C

∥∥∥∥
∑

j �=k

ξ j h j − hk
‖hk‖

∥∥∥∥
2

≥ c2

⎛

⎝
∑

j �=k

|ξ j |2 + 1

‖hk‖2

⎞

⎠ ≥ c2

‖hk‖2 ≥ c2

c21
. (4.32)

Now the result follows directly from Definition 4.20. ��
Given a function g ∈ L2(Rn) and a set X = {x j } j∈N ⊂ R

n , consider a sequence
FX (g) = {g(· − x j )} j∈N of translates of g. Denote g j (·) = g(· − x j ).

Theorem 4.22 (Theorem 1.9) Let g ∈ L2(Rn), n ≥ 2, be a real-valued and radial
function such that its Fourier transform ĝ(t) �= 0 a.e., and let X = {x j } j∈N ⊂ R

n.
Then the following statements are equivalent.
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(i) FX (g) = {g j } j∈N forms a Riesz–Fischer sequence in L2(Rn);
(ii) FX (g) is uniformly minimal in L2(Rn);
(iii) X is a separated set, i.e., d∗(X) > 0.

Proof Implication (i)⇒(ii) is immediate from Lemma 4.21 since now

‖g j‖L2(Rn) = ‖g‖L2(Rn), j ∈ N.

(ii)⇒(iii). With no loss of generality we can assume that

‖g j‖L2(Rn) = ‖g‖L2(Rn) = 1, j ∈ N.

The normalization in (4.15) shows that F̂(0) = ‖g‖2
L2(Rn)

= 1.

LetFX ( f )beuniformlyminimal. Then there exists ε > 0 such that‖g j−gk‖2 ≥ 2ε
for all j �= k ∈ N. A combination of the latter inequality with identity (4.15) yields

1 − F̂(‖x j − xk‖) = 1 − 〈g j , gk〉L2(Rn) = ‖g j − gk‖2
2

≥ ε, j, k ∈ N, (4.33)

and so d∗(X) > 0.
(iii)⇒(i). Let d∗(X) > 0. As all functions in question are radial, we put

F0(‖t‖) := F(t) = (2π)n/2 |̂g(t)|2, F̃0(‖t‖) := F̂(t). (4.34)

By Lemma 4.12, F̂ is a radial positive definite function on R
n , i.e., F̃0 ∈ �n , and

F ∈ L1(Rn). The equality

F̂(ξ) = (2π)−n/2
∫

Rn
ei〈t,ξ〉F(t) dt

shows that the measure μF̂ from Bochner’s representation (2.2) of F̂ is absolutely
continuous, μF̂ (dt) = (2π)−n/2F dt . Moreover, the condition ĝ �= 0 a.e. implies
F > 0 a.e. on R

n , that is, μF̂ is equivalent to the Lebesgue measure on R
n . Hence,

the representing Schoenberg’s measure νF̃0 from (1.2) is equivalent to the Lebesgue
measure onR+ due to the relation νF̃0{[0, r ]} = μF̂ {‖x‖ ≤ r}. Thereby the conditions
of Theorem 4.6 aremet, and the function F̃0 is strongly X -positive definite. By Lemma
4.12 (see identity (4.15)) and Definition 1.5 of strongly X -positive definite functions,
the latter amounts to saying that FX (g) is the Riesz–Fischer system. The proof is
complete. ��
Under certain additional assumptions on g we come to Riesz sequences of translates.

Theorem 4.23 (Theorem 1.10) Let g ∈ L2(Rn), n ≥ 2, be a real-valued and radial
function such that its Fourier transform ĝ �= 0 a.e., and let X = {x j } j∈N ⊂ R

n.
Assume that
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v(ξ) := sup
‖t‖≥‖ξ‖

| f (t)| ∈ L1(Rn), ξ ∈ R
n, f (t) =

∫

Rn
g(t + y)g(y) dy.

(4.35)
Then the following statements are equivalent.

(i) FX (g) forms a Riesz sequence in L2(Rn);
(ii) FX (g) forms a basis in its linear span;
(iii) FX (g) is uniformly minimal in L2(Rn);
(iv) X is a separated set, i.e., d∗(X) > 0.

Proof The implications (i)⇒(ii)⇒(iii) are obvious. The implication (iii)⇒(iv) is
proved in Proposition 4.22.

It remains to prove that (iv) implies (i). Lemma 4.12 is a key ingredient of the proof.
Condition (4.15) now reads

Gr({g j , L
2(Rn)}) = SX (F̃0), (4.36)

F̃0 is defined in (4.34). In view of the aforementioned theorem of Bari we wish to
show that under the hypothesis of Theorem 4.23 the Schoenberg operator SX (F̃0) is
bounded and invertible.

First, v is the radial function, v(·) = u(‖ · ‖). It is clear that u−1(0)u(‖ · ‖) ∈ M+
and

v ∈ L1(Rn) ⇐⇒ sn−1u(s) ∈ L1(R+).

Therefore in view of Proposition 3.8, assumption (4.35) implies the boundedness of
the Schoenberg matrix SX (F̃0), so FX (g) is the Bessel sequence.

Secondly, according to Proposition 4.22, the condition ĝ �= 0 a.e. ensuresFX (g) to
be the Riesz–Fischer sequence, i.e., the Schoenberg operator SX (F̃0) is invertible, as
claimed. Thus, by (4.36) theGrammatrixGr({g j , L2(Rn)}) is bounded and invertible,
and the Bari theorem completes the proof. ��
Corollary 4.24 (Corollary 1.11) Let g ∈ L2(Rn), n ≥ 2, be a real-valued and radial
function with compact support, g �≡ 0, and let X = {x j } j∈N ⊂ R

n. FX (g) forms a
Riesz sequence in L2(Rn) if and only if X is a separated set.

Proof To verify the conditions of Theorem 4.23 note that the function f in (4.35) is
now bounded, continuous and has a compact support. So v ∈ L1(Rn). Next, induction
on n and Fubini’s theorem show that ĝ �= 0 a.e. ��

It might be interesting to point out that the latter result is in general false for
n = 1. Indeed, let g = χ[−1,1] equal 1 on [−1, 1] and zero otherwise. Let X =
{xk}k∈N ⊂ R

1, xk = k − 1. For the system of translates FX (g) it is easy to compute
the Gram matrix Gr({g j , L2(R1)}) = J ({2}, {1}) the Jacobi matrix with 2’s on the
main diagonal and 1’s off the main diagonal (cf. Example 3.29). Since its spectrum
σ(Gr({g j , L2(R1)})) = [0, 4], the corresponding operator on �2 is not invertible, so
FX (g) is not a Riesz sequence, as needed.
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Remark 4.25 Condition (4.35) appears in various problems of analysis. For instance,
it provides convergence of integral means of an integrable functions in all its Lebesgue
points (see [32, Theorem 1.25], [6], and [34, Theorem 8.1.3]).

Example 4.26 The conditions of Theorem 4.23 can be verified for the systems we
already encountered in the previous section. For instance, as we have seen in Propo-
sition 4.13,

g(x) = e−a‖x‖2 �⇒ F̃0(r) =
( 1

4a

)n/2
e− a

2 r
2
.

Similarly, it is shown in Proposition 4.14 that

g(x) =
(

a

‖x‖
)μ

Kμ(a‖x‖), 0 ≤ μ <
n

4
�⇒ F̃0(r)

= B
( n
2 − μ, 1

2

)

2n−2μ

(
r

a

)p

K p(ar), p = n

2
− 2μ.

Since in both cases F̃0 ∈ �∞ ⊂ M+ (cf. Corollary 4.17) and F̃0 decays exponentially
fast (see 4.19), Theorem4.23 applies, soFX ( f ) is theRiesz sequence for each X ∈ Xn .

In view of applications in the spectral theory let us single out two particular cases
of the above example.

Corollary 4.27 Let

F2 = {K0(a‖ · −x j‖)} j∈N, F3 =
{
e−a‖·−x j‖

‖ · −x j‖
}

j∈N
. (4.37)

Then each of the sequencesF2 andF3 forms a Riesz sequence in L2(R2) and L2(R3),
respectively, for each X ∈ Xn.

Remark 4.28 Corollary 4.27 is crucial in the study of certain spectral properties of
the Schrödinger operator with point interactions [21]. The statement on the system
F3 was proved in [21, Theorem 3.8] in a different manner. The appearance of such
functions takes its origin in the following classical formulae for the resolvent of the
Laplace operator H0 := −� in R

3 and R
2, respectively,

(H0 − z I )−1 f = 1

4π

∫

R3

ei
√
z‖x−t‖

‖x − t‖ f (t) dt,

(H0 − z I )−1 f = 1

2π

∫

R2
K0(

√−z‖x − t‖) f (t) dt, (4.38)

(see [5, formulae (1.1.19), (1.5.15)]).

We show now that a sequenceFX (g) can beminimal but not uniformly minimal, (so
necessarily d∗(X) = 0), whenever ĝ �= 0 a.e. is replaced by the stronger assumption
(4.39). Note that in the following proposition a function f is not assumed to be radial.
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Proposition 4.29 Given g ∈ L2(Rn), assume that its Fourier transform ĝ admits a
lower bound

|̂g(t)| ≥ C

(1 + ‖t‖)p (4.39)

for some p > 0. Then the system FX (g) = {g(· − x j )} j∈N is minimal in L2(Rn) for
each set X = {x j } j∈N ⊂ R

n with no finite accumulation points.

Proof Put g j (·) = g(· − x j ). Since the Fourier transform is a unitary operator in
L2(Rn), the system {g j } j∈N is minimal in L2(Rn) if and only if so is the system of
their Fourier images {ĝ j } j∈N. Note that ĝ j = ĝ e−i〈·,x j 〉, f = f1 (recall that x1 = 0).

To prove the minimality of {ĝ j } j∈N, it suffices (in fact is equivalent) to construct a
biorthogonal sequence {h j } j∈N,

〈h j , ĝk〉L2(Rn) =
∫

Rn
h j (t)ĝ(t) e

i〈t,xk 〉 dt = δk j , h j ∈ L({ĝ j } j∈N).

To this end take a smoothing function w and its shifts w j

w(x) :=
{
exp
( ‖x‖2

‖x‖2−1

)
, ‖x‖ < 1;

0, ‖x‖ ≥ 1.
w j (x) := w

(
x − x j

ρ j

)
,

ρ j := dist(x j , X\{x j }) > 0

for each j , since X has no finite accumulation points. By the definition w j (xk) = δk j .
Sincew ∈ C∞

0 (infinitely differentiablewith compact support), bothw j and ŵ j belong
to the Schwartz class. Define

h j,1(t) := (2π)−
n
2

ŵ j (t)

f̂ (t)
.

In view of (4.39), h j,1 ∈ L1(Rn) ∩ L2(Rn), so

〈h j,1, ĝk〉L2(Rn) =
∫

Rn
h j,1(t) f̂ (t) e

i〈t,xk 〉 dt = (2π)−
n
2

∫

Rn
ŵ j (t) e

i〈t,xk 〉 dt = w j (xk) = δk j .

We are left with putting h j := Ph j,1, where P is a projection from L2(Rn) onto
L({ĝ j } j∈N). The proof is complete. ��
Example 4.30 Let g = ga,μ be given by (4.21) with 0 ≤ μ < n/4. Condition (4.39)
follows from (4.23), so the system FX (g) is minimal for each set X of distinct points
with no finite accumulation points.

Remark 4.31 It is easy to construct a set X = {xk}k∈N with d∗(X) = 0, which has
no finite accumulation points. For instance, xk = √

k − 1 e, k ∈ N, e is a unit vector
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in R
n . Note also that a special case of Proposition 4.29 regarding minimality of the

system F3 (4.37) was proved in [21, Lemma 3.5] in a different manner. In the latter
case

g(x) = e−a‖x‖

‖x‖ , ĝ(t) =
√

2

π

1

a2 + ‖t‖2 ,

and (4.39) automatically holds.
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