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Orthogonal Polynomials on the Unit Circle
Leonid Golinskii

One way to generalize orthogonal polynomials on subsets of R is to consider orthogonality on
curves in the complex plane. Among these generalizations, the most developed theory is the
general theory of orthogonal polynomial on the unit circle T. The basic sources for this chapter
are Grenander and Szegő (1958), Szegő (1975), Geronimus (1961), Geronimus (1962), Simon
(2004a), Simon (2004b), Ismail (2005b, Chapters 8 and 17), and recent papers which will be
cited in the appropriate places.

In what follows we shall use Simon’s abbreviation OPUC for orthogonal polynomials on
the unit circle.

9.1 Definitions and Basic Properties

The unit circle T is by far the simplest closed curve in the complex plane with a number of
additional properties, so polynomials orthogonal with respect to measures on T are of specific
interest.

Consider the class of all nontrivial probability measures μ(θ) on [−π, π] (that is, not sup-
ported on a finite set, positive Borel measures with μ[−π, π] = 1). The Lebesgue decomposi-
tion of μ is the decomposition

μ(θ) = μac + μs = μ
′(θ)

dθ
2π
+ μs (9.1.1)

where μ′ ∈ L1([−π, π]) is the Radon–Nikodym derivative of μ with respect to the Lebesgue
measure and μs is the singular part of μ.

The moments (Fourier coefficients) of μ are defined by

μk =

π∫

−π
e−ikθ dμ(θ), k ∈ Z = {0,±1,±2, . . . }, (9.1.2)

and form a bounded sequence. The moments of μ generate the Toeplitz determinants

Dn = Dn(μ) = det ‖μi−k‖n
i,k=0 > 0. (9.1.3)

The theory of quadratic forms shows that Dn is strictly positive for all n ∈ Z+ = {0, 1, 2, . . . }.
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The orthogonal polynomials with respect to μ arise as an outcome of the standard Gram–
Schmidt procedure applied to the system of monomials {ζn}n≥0, ζ = eiθ, in the Hilbert space
L2
μ([−π, π]) of square-summable measurable functions on T with the inner product

( f , g)μ =

π∫

−π
f (ζ)g(ζ) dμ(θ), ζ = eiθ, ‖ f ‖2

μ = ( f , f )μ.

There are two natural ways of normalization: the orthonormal polynomials

φn(z) = φn(z; μ) = κnzn + lower-order terms, (φn, φm)μ = δnm, (9.1.4)

n,m ∈ Z+, and the monic orthogonal polynomials

Φn(z) = Φn(z; μ) = κ−1
n φn(z) = zn + �n,n−1zn−1 + lower-order terms. (9.1.5)

Both systems are uniquely determined when we demand that κn > 0. The monic orthogonal
polynomials are characterized by the property

deg(P) = n, (P, ζ)μ = 0, 0 ≤ j < n imply P = cnΦn. (9.1.6)

The following expressions for monic orthogonal polynomials are similar to (2.1.4) and
(2.1.6):

Φn(z) =
1

Dn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

μ0 μ−1 . . . μ−n

μ1 μ0 . . . μ−n+1
...

...
...

μn−1 μn−2 . . . μ−1

1 z . . . zn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(9.1.7)

and

Φn(z) =
1

n!Dn−1

∫

Tn

n∏

j=1

(z − ζ j)
∏

1≤ j<k≤n

|ζ j − ζk |2
n∏

j=1

dμ(ζ j). (9.1.8)

Equation (9.1.7) implies an important relation

(Φn, z
n)μ = ‖Φn‖2

μ =
Dn

Dn−1
. (9.1.9)

Let z0 be a zero of Φn. Following an elegant argument due to H. Landau (Landau, 1987),
we write Φn(z) = (z − z0)P(z), deg P = n − 1, so Φn⊥P and

zP(z) = Φn(z) + z0P(z), ‖zP‖2
μ = ‖P‖2

μ = ‖Φn‖2
μ + |z0|2‖P‖2

μ,

hence (1 − |z0|2)‖P‖2
μ = ‖Φn‖2

μ and so |z0| < 1. In other words, all zeros of all orthogonal
polynomials lie in the open unit disk D = {|z| < 1}.

The following extremal property of monic orthogonal polynomials is one of the highlights
of OPUC theory.
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Theorem 9.1.1 The minimum of the integral
π∫

−π
|P(ζ)|2 dμ(θ) (9.1.10)

taken over all monic polynomials P of degree n is attained when P = Φn. The minimum value
of the integral is κ−2

n .

As a straightforward consequence we have Simon’s variational principle (Simon, 2007b),
which proved useful in the study of Schur and related flows. Note that one can define monic
OPUC for any finite positive measure, even if not normalized, and of course Φn(z; cμ) =
Φn(z; μ) for any positive constant c.

Theorem 9.1.2 Let μ be a nontrivial probability measure on [−π, π], and {z j}kj=1 be among
the zeros of Φn(μ). Then

Φn(z; μ) =
k∏

j=1

(z − z j)Φn−k

⎛⎜⎜⎜⎜⎜⎜⎝z;
k∏

j=1

|z − z j|2 dμ

⎞⎟⎟⎟⎟⎟⎟⎠ .

The reverse polynomial f ∗ of a polynomial f of degree n is f ∗(z) = zn f (1/z), that is,

f ∗(z) =
n∑

k=0

f̄n−kzk if f (z) =
n∑

k=0

fkzk. (9.1.11)

Equation (9.1.6) now shows that

deg(P) ≤ n, P⊥ζ j, j = 1, . . . , n imply P = cnΦ
∗
n. (9.1.12)

The polynomials Φ∗n are called the ∗-reverse polynomials. Clearly, Φ∗n(0) = 1.
The next result shows how systems of orthogonal polynomials on T are in one-to-one cor-

respondence with pairs of special systems of polynomials orthogonal on [−1, 1]. The model
is {zn} on T and the Chebyshev polynomials

{
Re zn} and

{
Im zn+1/ Im z

}
on [−1, 1].

Theorem 9.1.3 (Szegő’s mapping theorem) Let dμ(x) be a probability measure on [−1, 1]
and let φn be the polynomials orthonormal with respect to dμ(cos θ) on the unit circle. Assume
further that {tn(x)} and {un(x)} are orthonormal sequences of polynomials whose measures of
orthogonality are dμ(x) and c2

(
1 − x2

)
dμ(x), respectively. With z ∈ T and x = (z+ 1/z)/2 we

have

tn(x) =
[
1 + φ2n(0)/κ2n

]−1/2 [z−nφ2n(z) + znφ2n(1/z)
]

=
[
1 − φ2n(0)/κ2n

]−1/2
[
z−n+1φ2n−1(z) + zn−1φ2n−1(1/z)

] (9.1.13)

and

un(x) =
z−n−1φ2n+2(z) + zn+1φ2n+2(1/z)√

1 − φ2n+2(0)/κ2n+2 (z − 1/z)

=
z−nφ2n+1(z) + znφ2n+1(1/z)√
1 + φ2n+2(0)/κ2n+2 (z − 1/z)

.

(9.1.14)
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9.2 Szegő Recurrence Relations and Verblunsky Coefficients

A key feature of the unit circle is that the multiplication operator U f = z f in L2
μ(T) is unitary.

So the differenceΦn+1(z)−zΦn(z) is of degree at most n and orthogonal to z j for j = 1, 2, . . . , n,
and by (9.1.12),

Φn+1(z) = zΦn(z) − ᾱnΦ
∗
n(z) (9.2.1)

with some complex numbers αn, known as the Verblunsky coefficients,

αn = −Φn+1(0) = (−1)n
n+1∏

j=1

z j,n+1, |αn| =
n+1∏

j=1

|z j,n+1| < 1, (9.2.2)

where {z j,n+1} are zeros of Φn+1(μ). Applying (9.1.11) to (9.2.1) yields

Φ∗n+1(z) = Φ∗n(z) − αnzΦn(z). (9.2.3)

The recurrence relations (9.2.1) and (9.2.3) are the Szegő recurrences.
It follows from the unitarity of U and Φ∗n⊥Φn+1, that

‖Φn+1‖2 = (1 − |αn|2)‖Φn‖2, ‖Φn‖2 = κ−2
n =

n−1∏

j=0

(1 − |α j|2). (9.2.4)

We set

ρ j :=
√

1 − |α j|2 , so that 0 < ρ j ≤ 1. (9.2.5)

Thus the leading coefficients κn satisfy κ−1
n+1 = ρnκ

−1
n , hence are given by

κn =

n∏

j=0

−1(1/ρ).

Combining (9.2.1) and (9.2.3) we obtain the Szegő recurrence relations in matrix form:
[
Φn+1(z)
Φ∗n+1(z)

]
= A(z, αn)

[
Φn(z)
Φ∗n(z)

]
, A(z, α) =

[
z −ᾱ
−zα 1

]
. (9.2.6)

In other words,
[
Φn+1(z)
Φ∗n+1(z)

]
= Tn+1(z)

[
1
1

]
, Tp(z) := A(z, αp−1) . . . A(z, α0). (9.2.7)

The matrix Tp(z) = is called a transfer matrix. This leads to the inverse Szegő recurrences

zΦn(z) = ρ−2
n

[
Φn+1(z) + ᾱnΦ

∗
n+1(z)

]
,

Φ∗n(z) = ρ−2
n

[
Φ∗n+1(z) + αnΦn+1(z)

]
.

By eliminating Φ∗n between the direct and inverse Szegő recurrences we get the three-term
recurrence relation (see Geronimus, 1962)

ᾱn−1Φn+1(z) = (ᾱn + ᾱn−1z)Φn(z) − ᾱnρ
2
n−1zΦn(z) (9.2.8)
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for theΦ j without anyΦ∗j , which is helpful for the study of the ratio asymptotics of orthogonal
polynomials. Equation (9.2.8) has the defect that αn−1 can vanish.

The Szegő recurrence relations for orthonormal polynomials are

[
φn+1(z)
φ∗n+1(z)

]
=

1
ρn

A(z, αn)

[
φn(z)
φ∗n(z)

]
=

n∏

j=0

1
ρ j

A(z, α j)

[
1
1

]
. (9.2.9)

The following fundamental result is proved in Verblunsky (1935).

Theorem 9.2.1 (Verblunsky’s theorem) Let D∞ be the set of complex sequences
{
α j
}∞

j=0 with
|α j| < 1. Let S be the mapping from the set of all nontrivial probability measures on [−π, π] to
D
∞ defined by S (μ) = {α j(μ)}∞j=0. Then S is one-to-one. Moreover, S is a homeomorphism if

the space of measures and D∞ are equipped with the weak* topology and the componentwise
convergence topology, respectively.

For a detailed discussion and several proofs see Simon (2004a). In fact, the analysis in
Verblunsky (1935) shows that the moments μn of every such measure can be parametrized by
elements of D∞ via

μn+1 = polynomial in {α0, ᾱ0, . . . , αn−1, ᾱn−1} + αn

n−1∏

j=0

ρ2
j .

Theorem 9.2.2 (Bernstein–Szegő approximation) Let μ be a nontrivial probability measure
on [−π, π] with orthonormal polynomials φn. Let

μ(n) = |φn(ζ; μ)|−2 dm. (9.2.10)

Then μ(n) belongs to the same class of measures, with

φk(z; μ(n)) = φk(z; μ), k = 0, 1, . . . , n; φk(z; μ(n)) = zk−nφn(z; μ) (9.2.11)

for k ≥ n, so

α j(μ
(n)) = α j(μ), j = 0, 1, . . . , n − 1; α j(μ

(n)) = 0, j ≥ n. (9.2.12)

Moreover, μ(n) → μ as n → ∞ in the *-weak topology.

In fact, the measures with finite sequences of Verblunsky coefficients are exactly those of
the form μ = c|P(ζ)|−2 dθ, where c is picked to make μ a probability measure, and P is a monic
polynomial of degree n with all zeros in D. In this case Φk(z; μ) = zk−nP(z) for k ≥ n.

The relation between measures μ and their Verblunsky coefficients in Theorem 9.2.1 is quite
intricate, and very little can be said in the general setting. But there is an important situation –
rotation of α – when some information about a corresponding family of measures is available.
Specifically, let λ ∈ T and put αn,λ = λαn, n ∈ Z+. The measures μλ with αn(μλ) = αn,λ

(which exist by Theorem 9.2.1) are known as the Aleksandrov measures (or Aleksandrov–
Clark measures). A representative with λ = −1 is of particular interest. The measure μ−1
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is called a measure of the second kind, and the corresponding orthogonal polynomials are
called polynomials of the second kind. Special notation,

Φn(z; μ−1) = Ψn(z), φn(z; μ−1) = ψn(z), (9.2.13)

is standard for the monic orthogonal (orthonormal) polynomials of the second kind, respec-
tively. The explicit formulas for Ψn are due to Geronimus (1961):

Ψn(z) =

π∫

−π

ζ + z
ζ − z

[
Φn(ζ) − Φn(z)

]
dμ(θ), ζ = eiθ, (9.2.14)

Ψ∗n(z) = zn

π∫

−π

ζ + z
ζ − z

[
Φn(z−1) − Φn(ζ)

]
dμ(θ), (9.2.15)

for n ≥ 1. Clearly, both relations hold for orthonormal polynomials as well. There is another
simple relation between Φ and Ψ:

Ψ∗n(z)Φn(z) + Ψn(z)Φ∗n(z) = 2zn
n−1∏

j=0

ρ2
j , n ≥ 1. (9.2.16)

An important consequence is the following theorem.

Theorem 9.2.3 Let μ be a nontrivial probability measure on [−π, π] and μ(n) be its Bernstein–
Szegő approximations (9.2.10). Then for z ∈ D,

Ψ∗n(z)
Φ∗n(z)

= F(z, μ(n)) =

π∫

−π

ζ + z
ζ − z

dμ(n)(θ), ζ = eiθ, (9.2.17)

so

lim
n→∞
Ψ∗n(z)
Φ∗n(z)

= F(z, μ) =

π∫

−π

ζ + z
ζ − z

dμ(θ) (9.2.18)

uniformly on compact subsets of D and
∣∣∣∣∣∣F(z, μ) − Ψ

∗
n(z)
Φ∗n(z)

∣∣∣∣∣∣ = O(zn+1), z → 0. (9.2.19)

The function F(μ) in (9.2.18) is a Carathéodory function of μ. An explicit formula for the
error in (9.2.19) is available:

F(z, μ)Φ∗n(z) − Ψ∗n(z) = zn

π∫

−π

ζ + z
ζ − z

Φn(ζ) dμ(θ). (9.2.20)

Similarly to (9.2.19) we also have

F(z, μ)Φn(z) + Ψn(z) = 2κ−2
n zn + O(zn+1), z → 0. (9.2.21)

There is a converse to (9.2.19)/(9.2.21) due to Peherstorfer and Steinbauer (1995).



9.2 Szegő Recurrence Relations and Verblunsky Coefficients 205

Theorem 9.2.4 Given a nontrivial probability measure μ on [−π, π] with the Carathéodory
function F(μ), let p and q be polynomials of degree at most n with

p(z)F(z, μ) + q(z) = O(zn), p∗(z)F(z, μ) − q∗(z) = O(zn+1),

as z → 0, where p∗, q∗ are the reverse polynomials for degree n. Then p = cΦn(μ), q = cΨn(μ)
for some constant c.

It turns out that the vector (
ψn(z)
−ψ∗n(z)

)

provides a second linearly independent solution of the Szegő recurrence (9.2.9), and the
Carathéodory function F(μ) has a property analogous to a defining property of the Weyl
m-function in the case of differential equations (see Geronimo, 1992; Golinskii and Nevai,
2001).

Theorem 9.2.5 For fixed z ∈ D a number r = F(z, μ) is the unique complex number so that
(
ψn(z)
−ψ∗n(z)

)
+ r

(
φn(z)
φ∗n(z)

)
∈ �2
(
Z+,C

2
)
. (9.2.22)

There is another important property of F(μ) related to mass points of the orthogonality
measure, which follows directly from the definition (9.2.18):

lim
r→1−0

(1 − r)F(rζ, μ) = 2μ{θ} for all ζ = eiθ ∈ T. (9.2.23)

The Christoffel kernels (reproducing kernels)

Kn(z,w) =
n∑

j=0

φ j(z)φ j(w) (9.2.24)

arise with regard to the following extremal problem.

Theorem 9.2.6 Let μ be a nontrivial probability measure on [−π, π], and Πn(w) be a set of
all polynomials P of degree at most n subject to P(w) = 1. Then

λn(w) = min
P∈Πn(w)

π∫

−π
|P(ζ)|2 dμ(θ) =

1
Kn(w,w)

. (9.2.25)

The minimum is attained when P(z) = Kn(z,w)/Kn(w,w).

Theorem 9.2.7 (Christoffel–Darboux formula) For any n ∈ Z+ and z,w ∈ C with w̄z � 1,

Kn(z,w) =
φ∗n+1(z)φ∗n+1(w) − φn+1(z)φn+1(w)

1 − w̄z
(9.2.26)

=
φ∗n(z)φ∗n(w) − zw̄φn(z)φn(w)

1 − w̄z
. (9.2.27)
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Here are some consequences of the Christoffel–Darboux formula. Setting z = w we have

(1 − |z|2)
n∑

j=0

|φ j(z)|2 = |φ∗n+1(z)|2 − |φn+1(z)|2. (9.2.28)

Setting w = 0 we come to

Kn(z, 0) =
n∑

j=0

φ j(z)φ j(0) = φ∗n(z)φ∗n(0) = κnφ
∗
n(z). (9.2.29)

The reproducing property of the Christoffel kernels is

π∫

−π
P(ζ)Kn(ζ,w) dμ(θ) = P(w), (9.2.30)

which holds for an arbitrary polynomial P of degree at most n and all complex w and follows
directly from the definition. As a simple consequence of (9.2.30) one has a unit circle analogue
of Theorem 2.1.8.

Theorem 9.2.8 Let Mn(μ) = ‖μi− j‖n
i, j=0 be the Toeplitz matrix of the moments of μ. Let

Kn(z,w) =
n∑

i, j=0

ai jz
iw̄ j

be the Taylor series expansion of the Christoffel kernel about the origin. Then

M−1
n (μ) = A∗, A = ‖ai j‖n

i, j=0.

One result connected to the Christoffel circle of ideas in the case of orthogonal polynomials
on the real line is the Gauss–Jacobi quadrature formula. The following is its partial analogue
for the unit circle case.

Theorem 9.2.9 Suppose that the monic orthogonal polynomial Φn(μ) has n distinct roots
z1, . . . , zn. Then for each Laurent polynomial π of the form

π(z) =
n∑

j=−n+1

π jz
j

there exist complex numbers β1, . . . , βn so that

π∫

−π
π(ζ) dμ(θ) =

n∑

j=1

β jπ(z j). (9.2.31)
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9.3 Szegő’s Theory and Its Extensions

Szegő’s theorems may well be considered the most celebrated in OPUC theory. They have
repeatedly served as a source for further development. For historical reasons one should state
them in terms of Toeplitz determinants, Dn(μ) (cf. (9.1.3)). It follows from (9.1.9) and (9.2.4)
that

Dn(μ) =
n∏

j=0

‖Φ j‖2 =

n−1∏

j=0

(1 − |α j|2)n− j,

so D1/n
n (μ) is monotone decreasing and

S (μ) = lim
n→∞(Dn(μ))1/n = lim

n→∞
Dn(μ)

Dn−1(μ)
(9.3.1)

exists and is a nonnegative number. Suppose S (μ) > 0. Then Dn(μ)/S n+1(μ) is monotone
increasing and

G(μ) = lim
n→∞

Dn(μ)
S n+1(μ)

(9.3.2)

exists and may be equal +∞. Also, G(μ) < +∞ if and only if
∑∞

j=0 j|α j|2 < ∞ (Ibragimov’s
condition).

Szegő’s theorems express S and G in terms of the absolutely continuous and singular com-
ponents of μ (cf. (9.1.1)).

Theorem 9.3.1 (Szegő’s theorem)

S (μ) =
∞∏

j=0

(1 − |α j|2) = exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1

2π

π∫

−π
log μ′(θ) dθ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (9.3.3)

A striking feature of this result is that the α depend heavily on the singular component μs,
whereas the product in (9.3.3) does not!

Szegő (1915) proved this for the case μs = 0 in 1915 (in his very first paper!). The result
does not depend on μs – this was shown by Verblunsky (1936).

It is immediate from Szegő’s theorem that

∞∑

j=0

|α j|2 < ∞ if and only if log μ′ ∈ L1. (9.3.4)

The equivalent conditions (9.3.4) are known as the Szegő condition, and the corresponding
class of measures the Szegő class. Within this class, the Szegő function

D(z) = D(z, μ) = exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1

4π

π∫

−π

ζ + z
ζ − z

log μ′(θ) dθ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , ζ = eiθ, |z| < 1, (9.3.5)

which depends only on an absolutely continuous component of the orthogonality measure,
is well defined. It is clear from the definition that D(μ) lies in the Hardy space H2(D), and
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the standard boundary value theory implies D(ζ) = limr↑1 D(rz) exists almost everywhere and
|D(ζ)|2 = μ′(θ) a.e., so ‖D‖H2 ≤ 1.

Theorem 9.3.2 (Strong Szegő theorem in Ibragimov’s version) If μs = 0 and the Szegő
condition holds, then

G(μ) =
∞∏

j=0

(1 − |α j|2)− j−1 = exp

⎛⎜⎜⎜⎜⎜⎝
∞∑

n=0

n|wn|2
⎞⎟⎟⎟⎟⎟⎠ = exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫

D

∣∣∣∣∣
D′(z)
D(z)

∣∣∣∣∣
2

d2z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

where wn are the Fourier coefficients of log μ′, and d2z the normalized Lebesgue measure of
D. All the values may equal +∞.

For the modern approach to this result see Simon (2004a, Chapter 6).
Simon (2004a, Section 2.8) came up with the idea of extending Szegő’s theorem by allow-

ing “Pollaczek singularities” (so all quantities in (9.3.3) may be infinite). His result can be
viewed as the first-order Szegő theorem: for any ζ0 ∈ T,

|ζ − ζ0|2 log μ′ ∈ L1 if and only if
∞∑

j=0

|α j+1 − ζ0α j|2 + |α j|4 < ∞.

Moreover, there is a precise formula for this case similar to the second equality in (9.3.3). The
second-order Szegő theorem appeared in Simon and Zlatoš (2005).

Theorem 9.3.3 Let ζk ∈ T, k = 1, 2. Then for ζ1 � ζ2,

|ζ − ζ1|2|ζ − ζ2|2 log μ′ ∈ L1 if and only if
∞∑

j=0

|α j+2 − (ζ1 + ζ2)α j+1 + ζ1ζ2α j|2 + |α j|4 < ∞,

and for ζ1 = ζ2,

|ζ − ζ1|4 log μ′ ∈ L1 if and only if
∞∑

j=0

|α j+2 − 2ζ1α j+1 + ζ
2
1α j|2 + |α j|6 < ∞.

The general conjecture called the higher-order Szegő theorem was formulated in Simon
(2004a, Section 2.8). Given ζk ∈ T, k = 1, . . . , n and ζp � ζq, p � q, define a polynomial

P(ζ) :=
n∏

k=1

(ζ − ζk)mk , mk ∈ N = {1, 2, . . . }, P(ζ) :=
n∏

k=1

(ζ − ζk)mk ,

and put m = 1 +maxk mk. Simon conjectures that

|P(ζ)|2 log w ∈ L1 if and only if
(
P(S )

) {
α j
} ∈ �2 and

{
α j
} ∈ �2m,

where S is the shift operator: S (α0, α1, . . . ) = (α1, α2, . . . ).
The following particular case of Simon’s conjecture which can be called the higher-order

Szegő theorem in �4 is proved in Golinskii and Zlatoš (2007).
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Theorem 9.3.4 Assume that
{
α j
} ∈ �4. Then

|P(ζ)|2 log μ′ ∈ L1 if and only if
(
P(S )

) {
α j
} ∈ �2.

The further advances concerning the polynomial Szegő class, that is, the class of measures
μ with |P(ζ)|2 log μ′ ∈ L1, in particular, the asymptotics inside the disk and L2 asymptotics on
the circle, are in Denisov and Kupin (2006).

The celebrated Szegő asymptotic formula is one of the cornerstones of OPUC theory.

Theorem 9.3.5 (Szegő’s limit theorem) Suppose the Szegő condition (9.3.4) holds. Then

lim
n→∞ φn(z) = 0, lim

n→∞ φ
∗
n(z) = D−1(z, μ) (9.3.6)

uniformly on compact supports of the unit disk.

The result appeared in Szegő’s pioneering 1920 paper (Szegő, 1920). Another closely re-
lated result concerns the asymptotics of the Christoffel kernels (see, for example, Grenander
and Szegő, 1958, Chapter 3.4)

Theorem 9.3.6 Under the Szegő condition (9.3.4),

lim
n→∞ Kn(z,w) =

∞∑

j=0

φ j(z)φ j(w) =
1

1 − w̄z
1

D(w, μ)

1
D(z, μ)

(9.3.7)

uniformly on compact supports of the bidisk (|z| < 1, |w| < 1).

In particular,

λ∞(w) := min

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

π∫

−π
|P(ζ)|2 dμ(θ) : P(w) = 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ = (1 − |w|2)|D(w, μ)|2, (9.3.8)

where the minimum is taken over the set of all polynomials P.
As for the asymptotics on the unit circle, we begin with L2-convergence. The argument here

uses a simple equality

1
2π

π∫

−π
|φ∗n(ζ) − D−1(ζ)|2μ′(θ) dθ +

π∫

−π
|φ∗n(ζ)|2 dμs

=

π∫

−π
|φ∗n(ζ)|2 dμ +

1
2π

π∫

−π

μ′(θ)
|D(ζ)|2 dθ − 2�D(0)φ∗(0)

(cf. Simon, 2004a, Section 2.4). Since the first two terms on the right-hand side are 1+ 1, and
from the Szegő limit theorem

φ∗n(0) = κn =

n−1∏

j=0

(1 − |α j|2), D−1(0) =
n−1∏

j=0

(1 − |α j|2),
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it is not hard to obtain the following bound:

1
2π

π∫

−π
|φ∗n(ζ) − D−1(ζ)|2μ′(θ) dθ +

π∫

−π
|φ∗n(ζ)|2 dμs ≤ 2

∞∑

j=n

|α j|2.

In particular, we have the following theorem.

Theorem 9.3.7 Under the Szegő condition (9.3.4),

lim
n→∞

1
2π

π∫

−π
|φ∗n(ζ) − D−1(ζ)|2μ′(θ) dθ = lim

n→∞

π∫

−π
|φ∗n(ζ)|2 dμs = 0. (9.3.9)

There are L2-convergence results of a slightly different type, which deal with the limit
relation

lim
n→∞

1
φ∗n(ζ)

= D(ζ), ζ ∈ T. (9.3.10)

Theorem 9.3.8 Under the Szegő condition, the convergence in (9.3.10) holds in the weak
topology of L2(T), that is,

lim
n→∞

1
2π

π∫

−π

g(ζ)
φ∗n(ζ)

dθ =
1

2π

π∫

−π
D(ζ)g(ζ) dθ, g ∈ L2.

Furthermore,

lim
n→∞
∥∥∥D − 1/φ∗n

∥∥∥2
L2 = μs([−π, π]).

In particular, the convergence in (9.3.10) is in the L2-norm if and only if μ is absolutely
continuous (μs = 0).

Khruschev (2001) proved the following nice limit relation that characterizes the Szegő class

lim
n→∞

π∫

−π

∣∣∣log |φn(ζ)|−2 − log μ′(ζ)
∣∣∣ dθ = 0.

As far as the Christoffel function on the circle goes, one can easily prove that for an arbitrary
measure μ,

lim
n→∞ λn(ζ) = lim

n→∞
1

Kn(ζ, ζ)
=

⎛⎜⎜⎜⎜⎜⎝
∞∑

n=0

|φn(ζ)|2
⎞⎟⎟⎟⎟⎟⎠
−1

= μ{θ} (9.3.11)

for all ζ = eiθ ∈ T. A much more delicate result is due to Máté, Nevai, and Totik (1991).

Theorem 9.3.9 For an arbitrary measure μ from the Szegő class one has

lim
n→∞

n
Kn(ζ, ζ)

= μ′(θ), ζ = eiθ,

a.e. on [−π, π].
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There are two natural ways to proceed from the Szegő theory. The first one is to consider
proper subclasses of the Szegő class, and refine the above asymptotic results by imposing
additional assumptions on the orthogonality measure, Verblunsky coefficients, . . . , etc. For
instance, one may ask whether the basic formula (9.3.6) holds on the unit circle (uniformly,
pointwise, almost everywhere, etc.). Here is the classical result due to Szegő (see Grenander
and Szegő, 1958, Theorem 3.5), which gives a rate of convergence in (9.3.6) on T.

Given a continuous function g ∈ C(T), define its modulus of continuity by

ω(δ; g) = sup{|g(hζ) − g(ζ)| : |h − 1| ≤ δ, h ∈ T}.
Theorem 9.3.10 Let μ be absolutely continuous, μ = 1

2πμ
′(θ) dθ, with a positive and contin-

uous density μ′. Assume also that

ω(δ; μ′) ≤ C

(
log

1
δ

)−(1+ε)

, ε > 0. (9.3.12)

Then

sup
T

|φ∗n(ζ) − D−1(ζ)| ≤ C1
(
log n

)−ε .

Assumption (9.3.12) was relaxed by B. Golinskii (Golinskii, 1967) to

a∫

0

ω(t; μ′)
t

dt < ∞,

and some rate of convergence was found in this case.
The uniform convergence in (9.3.6) in the closed unit disk can be guaranteed by certain

assumptions on Verblunsky coefficients αn(μ) (see Geronimus, 1961, Chapter 8).

Theorem 9.3.11 Let the Verblunsky coefficients αn of the orthogonality measure μ satisfy

∞∑

n=0

|αn(μ)| < ∞. (9.3.13)

Then

max
|z|≤1

|φ∗n(z) − D−1(z, μ)| ≤ C
∞∑

k=n

|αk(μ)|, n ∈ N. (9.3.14)

In the latter two results the property μ′ > 0 is crucial. Indeed, the asymptotic formula (9.3.6)
cannot hold uniformly on T as long as μ′ has zeros on [−π, π]. Badkov (1985) suggested a
modified asymptotic formula, wherein φ∗n(ζ) is compared with D−1(rnζ) with rn ↑ 1 as n → ∞.
More precisely, he proved that in a variety of situations, when μ′ has algebraic zeros on T, the
limit relation

φ∗n(ζ) = D−1((1 − cn−1)ζ)[1 + o(1)]

holds uniformly on T.
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Denote by E(μ) the subset of [−π, π] on which D−1(ζ) = limr→1−0 D−1(rζ), ζ = eiθ. Clearly,
the normalized Lebesgue measure of this set is 1. The existence of the limit in (9.3.6) at ζ can
be viewed as a tauberian problem: under what conditions does

lim
n→∞ φ

∗
n(ζ) = lim

n→∞ lim
r→1−0

φ∗n(rζ) = lim
r→1−0

lim
n→∞ φ

∗
n(rζ) = D−1(ζ)? (9.3.15)

The following result is due to Geronimus (1961, Theorem 5.1). Put

δn(μ) =
∞∑

k=n

|αk(μ)|2. (9.3.16)

Theorem 9.3.12 Assume that μ′ ≥ c > 0 a.e., and δn(μ) = o(n−1). Then on the whole unit
circle,

|φ∗n(ζ) − D−1(ζ)| ≤ |D−1(ζ) − D−1(rnζ)| +C(nδn)1/3, rn = 1 −
(
δn

n

)2/3
.

In particular, (9.3.15) holds on E(μ).

Let us now turn to the boundedness of OPUC. The simplest bound comes out of the Szegő
recurrences (9.2.1)/(9.2.3).

Theorem 9.3.13 For ζ ∈ T one has

n−1∏

j=0

(1 − |α j|) ≤ |Φn(ζ)| ≤
n−1∏

j=0

(1 + |α j|). (9.3.17)

Moreover,

sup
|z|≤1

|Φn(z)| ≤ exp

⎛⎜⎜⎜⎜⎜⎜⎝
n−1∑

j=0

|α j|
⎞⎟⎟⎟⎟⎟⎟⎠ , (9.3.18)

so under assumption (9.3.13),

sup
n

sup
|z|≤1

|Φn(z)| < ∞, (9.3.19)

that is, the system Φn is uniformly bounded in the closed unit disk. If B = sup j |α j| < 1, then

inf
ζ∈T |Φn(ζ)| ≥ exp

⎛⎜⎜⎜⎜⎜⎜⎝
n−1∑

j=0

|α j| − 1
2(1 − B)2

n−1∑

j=0

|α j|2
⎞⎟⎟⎟⎟⎟⎟⎠ . (9.3.20)

One can relax (9.3.13) and get some divergent (but still useful) estimates. For instance,

∞∑

n=0

n|αn|2 < ∞ implies
∥∥∥(Φ∗n)±1

∥∥∥∞ ≤ C exp(D
√

log n ),

where ‖ · ‖∞ is the L∞-norm on T, and C and D are suitable constants.
The uniform boundedness (9.3.19) holds under certain assumptions on the measure μ.
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Theorem 9.3.14 Let μ be absolutely continuous, and one of the following holds:

(i) 0 < c ≤ μ′ ≤ C < ∞ a.e., and the moments μn = O(1/n), n → ∞;
(ii) 0 < c ≤ μ′ a.e., and μ′ is of bounded variation.

Then Φn is uniformly bounded in the closed unit disk.

The study of the uniform boundedness (9.3.19) has a long history going back at least to
Geronimus (1961). The uniform boundedness and uniform asymptotic representation for or-
thogonal polynomials is discussed in Golinskii and Golinskii (1998).

It was a conjecture of Steklov that the only condition μ′ ≥ c > 0 yields the uniform
boundedness of orthogonal polynomials. This was proven false by Rakhmanov (1980, 1982a),
who showed that for any δ < 1

2 , there are examples with lim supn→∞ |φn(1)|n−δ = ∞. On the
other hand,

μ′ ≥ c > 0 a.e. implies ‖φn‖∞ ≤ c−1/2
√

n + 1 . (9.3.21)

Statement (9.3.21) is sometimes called the Szegő estimate.
The second way to proceed from the Szegő theory is to go beyond the Szegő class and ex-

tend the above results to the case when the Szegő condition fails. The following three notable
classes of measures, each of which contains the Szegő class as a proper subclass, come in
naturally. These are

the Erdös class E of measures μ with μ′ > 0 a.e.;

the Nevai class N of measures μ with limn→∞ αn(μ) = 0;

the Rakhmanov class R of measures μ with

lim
n→∞

π∫

−π
f (ζ)|φn(ζ)|2 dμ(θ) =

1
2π

π∫

−π
f (ζ) dθ, ζ = eiθ, for all f ∈ C(T); (9.3.22)

in other words, |φn|2 dμ→ dm in the *-weak topology of the space of measures.
As it turns out, each class contains the former one as a proper subclass.
The first two classes were characterized by Máté, Nevai, and Totik (1985, 1987b) (see also

Nevai, 1991) by means of the quantity

bn,k =
1

2π

π∫

−π

∣∣∣∣∣∣
∣∣∣∣∣
φn(ζ)
φn+k(ζ)

∣∣∣∣∣
2

− 1

∣∣∣∣∣∣ dθ.

Their argument is based on the relation, which holds for arbitrary nontrivial probability mea-
sure μ,

lim
n→∞

1
2π

π∫

−π

∣∣∣|φn(ζ)|2μ′(θ) − 1
∣∣∣2 dθ ≤ lim sup

k→∞
bn,k.

Theorem 9.3.15 The following are equivalent:

(i) μ ∈ E;
(ii) limn→∞ supk≥1 bn,k = 0.
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Theorem 9.3.16 The following are equivalent:

(i) μ ∈ N;
(ii) limn→∞ infk≥1 bn,k = 0.

As a simple consequence one has E ⊂ N (Rakhmanov’s theorem). Moreover, a quantitative
version of this relation was proved by Denisov (2004):

lim sup
n→∞

|αn(μ)| ≤ 2
√

2
[
1 − m2(Ω)

]1/2
, (9.3.23)

where Ω = {θ ∈ [−π, π] : μ′(θ) > 0}, and m(Ω) is its normalized Lebesgue measure.
The next result is also due to Máté, Nevai, and Totik (1987b).

Theorem 9.3.17 Let μ ∈ E. Then

lim
n→∞

π∫

−π

∣∣∣|φn(ζ)|2μ′(ζ) − 1
∣∣∣ dθ = 0. (9.3.24)

Moreover,

lim
n→∞

π∫

−π

(
|φn(ζ)|−1 − √μ′(θ)

)2
dθ = 0

if and only if μ is absolutely continuous.

Later on, Khruschev (2001) showed that (9.3.24) in fact characterizes the class E, and
suggested another characteristic property, namely

lim
n→∞

1
2π

π∫

−π

[
|φn(ζ)|2μ′(θ)

]a
dθ = 1 for all 0 < a < 1.

There is another characterization of the Nevai class (Máté, Nevai, and Totik, 1987a).

Theorem 9.3.18 Let μ ∈ N . Then

lim
n→∞max

|z|≤1

|φn(z)|2∑n
k=0 |φk(z)|2 = 0.

Moreover, if the latter relation holds at least at one point z0 ∈ D then μ ∈ N .

One of the most important results due to Máté, Nevai, and Totik (1987a) is the so-called
comparative asymptotics outside the Szegő class.

Theorem 9.3.19 Let μ ∈ E. Suppose

ν = gμ, g ≥ 0,
∫

g dμ = 1,

and there is a polynomial Q so that Qg±1 ∈ L∞(μ). Then uniformly for z,w in compact subsets
of D we have
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(1) lim
n→∞

φ∗n(z, ν)
φ∗n(z, μ)

= exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝−
1

4π

π∫

−π

ζ + z
ζ − z

log g(ζ) dθ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ = D(z, g−1);

(2) lim
n→∞

K∗
n(z,w; ν)

K∗
n(z,w; μ)

= D(w, g−1)D(z, g−1);

(3) lim
n→∞

κn(ν)
κn(μ)

= exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝−
1

4π

π∫

−π
log g(ζ) dθ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Moreover,

lim
n→∞

π∫

−π

∣∣∣φn(ζ; ν)D(ζ, g) − φn(ζ; μ)
∣∣∣2 μ′(θ) dθ = 0.

We now come to Rakhmanov’s class, and give a characterization due to Khruschev (2001).
We say that a sequence of Verblunsky coefficients obeys the Máté–Nevai condition if for
each fixed k ∈ N,

lim
n→∞αn(μ)αn+k(μ) = 0. (9.3.25)

Let us also introduce the probability measures

dνn,k =
1

2π

[ |φn(ζ)|2
|φn+k(ζ)|2

]
dθ. (9.3.26)

Theorem 9.3.20 The following are equivalent:

(i) μ ∈ R;
(ii) the Máté–Nevai condition holds for αn(μ);

(iii) νn,k converges weakly to the normalized Lebesgue measure as n → ∞ for all k ∈ N;
(iv) uniformly on compact subsets of D, we have

lim
n→∞
Φ∗n+1(z)

Φ∗n(z)
= 1. (9.3.27)

It is obvious from this theorem that N ⊂ R. It is also easy to manufacture examples of
measures off the Nevai class which obey (9.3.25). Indeed, these are measures with sparse
Verblunsky coefficients. Furthermore, the Rakhmanov measures which do not belong to the
Nevai class are necessarily singular (Khruschev, 2001, Corollary 2.6).

Relation (9.3.27) is known as the ratio asymptotics of OPUC. As a matter of fact, there
is a way to describe all possible limits for the ratio in (9.3.27). The result below is due to
Khruschev (2002) and Barrios and López (1999).

Theorem 9.3.21 Suppose

lim
n→∞
Φ∗n+1(z, μ)

Φ∗n(z, μ)
= G(z) (9.3.28)
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exists uniformly on compact subsets of D. Then either G ≡ 1 or

G(z) = Ga,λ(z) =
1 + λz +

√
(1 − λz)2 + 4a2λz

2

hold for some λ ∈ T and a ∈ (0, 1]. Equation (9.3.28) holds with G = Ga,λ if and only if αn(μ)
obeys the López condition

lim
n→∞ |αn| = a, lim

n→∞
αn+1

αn
= λ. (9.3.29)

In this case the essential support of μ is a closed subinterval of [−π, π], and (9.3.28) holds
uniformly on compact subsets of C\ exp{supp μ}.

The following extension of the above result, which can be viewed as the relative ratio
asymptotics, is in Golinskii and Zlatoš (2007).

Theorem 9.3.22 Let μ and ν be two nontrivial probability measures on T. Let {αn(μ)} and
{αn(ν)}, respectively, be their Verblunsky coefficients, and let Φ∗n(μ) and Φ∗n(ν), respectively,
be their reverse monic orthogonal polynomials. Then

Φ∗n+1(z; μ)

Φ∗n(z; μ)
− Φ

∗
n+1(z; ν)

Φ∗n(z; ν)
→ 0 (9.3.30)

uniformly on compact subsets of D as n → ∞ if and only if for any k ∈ N,

lim
n→∞
[
αn(μ)ᾱn−k(μ) − αn(ν)ᾱn−k(ν)

]
= 0. (9.3.31)

A closely related subject is the description of all possible limits in the Rakhmanov condition
(9.3.22). A comprehensive study of this problem is in Khruschev (2002).

We conclude with a theorem of Bello and López (1998), which is analogous to Rakhmanov’s
theorem (E ⊂ N) but for any arc. Define

θa = 2 arcsin(a), 0 < a < 1, (9.3.32)

so 0 < θa < π. For λ ∈ T we let

Γa,λ = {ζ ∈ T : | arg(λζ)| > θa}. (9.3.33)

Theorem 9.3.23 Let exp{supp(μ)} = Γa,λ and μ′ > 0 a.e. Then

lim
n→∞ |αn(μ)| = a, lim

n→∞ ᾱn+1(μ)αn(μ) = aλ2. (9.3.34)

An essential extension of this result due to Simon (2004b, Theorem 13.4.4) claims that supp
can be relaxed to ess supp.
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9.4 Zeros of OPUC

The structure of the zero sets for OPUC is another fascinating topic of the theory. Given
a nontrivial probability measure μ, denote by Zn(μ) = {z jn}nj=1 the zero set for the monic
orthogonal polynomial Φn(μ):

Φn(z, μ) =
n∏

j=1

(z − z jn), |znn| ≤ |zn−1,n| ≤ · · · ≤ |z1,n|.

As we have already seen, Zn(μ) ⊂ D. Conversely, the following analogue of Wendroff’s theo-
rem was proved by Geronimus (1946).

Theorem 9.4.1 Let πn be any monic polynomial of degree n which has all its zeros inside D.
Then πn = Φn(μ) is a monic orthogonal polynomial for some μ ∈ P. Moreover, if μ and ν are
any two such measures, we have

(i) Φ j(μ) = Φ j(ν), j = 0, 1, . . . , n;
(ii) α j(μ) = α j(ν), j = 0, 1, . . . , n − 1;

(iii) μ j(μ) = μ j(ν), j = 0, 1, . . . , n.

It is clear that, unlike the case of orthogonal polynomials on the real line, the zeros need not
be simple. The free case (dμ = dm = dθ

2π , the normalized Lebesgue measure on [−π, π]), where
Φ j(z, dm) = z j, illustrates this situation. Note also that the explicit measure in Theorem 9.4.1
can be easily constructed. Namely, the Bernstein–Szegő measure

dσ =
C

|πn(ζ)|2 dθ

is one, which satisfies α j(σ) = 0, j ≥ n.
The fact that Zn(μ) ⊂ D reflects the following quite general situation (Fejér, 1922).

Theorem 9.4.2 (Fejér’s theorem) Let μ be a nontrivial probability measure on C so that
∫
|z|k dμ(z) < ∞, k = 0, 1, . . . , 2n − 1.

Let Φn be the monic polynomial of degree n orthogonal to {1, . . . , zn−1} in L2(C, μ). Then all
of the zeros of Φn lie in the convex hull of supp(μ). Suppose further that supp(μ) is compact.
Then no extreme point of the hull is a zero, and if support does not lie in the straight line, all
zeros lie in the interior of the convex hull.

Fejér’s theorem is optimal in the following sense. For the unit circle,Φ1(z) = z− ᾱ0 = z− μ̄1

has its zero at μ̄1. But
∫

K
ζ dμ runs through a dense set of the convex hull of K as μ runs through

all probability measures on K.
If supp(μ) ⊂ T, the interior of the convex hull is a subset of D, so the zeros of Φn lie in D.

If supp(μ) is a proper subset of T, then Fejér’s theorem gives more information. For example,
if ζ0 ∈ T and d = dist(ζ0, supp(μ)) > 0, then a little geometry shows that the distance of zeros
of Φn from ζ0 is at least d2/2.
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Here is the result by Denisov–Simon (Simon, 2004a, Theorem 1.7.20) which provides some
information about the zeros near isolated points of support.

Theorem 9.4.3 Let μ and Φn be as in the above theorem, and ζ0 be an isolated point of
supp(μ). Let Γ = supp(μ)\{ζ0} and ch(Γ) its convex hull. Suppose

δ = dist(ζ0, ch(Γ)) > 0.

Then Φn has at most one zero in {|z − ζ0| < δ/3}. In particular, if μ is supported on T and
d = dist(ζ0,Γ) > 0, there is at most one zero in the circle of radius d2/6 about ζ0.

If μ is an even measure with support {0} ∪ [1, 2] ∪ [−2,−1], one can show that for n large
enough and even, Pn has two zeros near 0. Thus, it is not enough that ζ0 be isolated from Γ; it
must be isolated from ch(Γ).

If supp(μ) = T, the zeros of Φn may stay away from the support (take, for example, dμ =
dm). But when this set is a proper subset of the unit circle, it attracts zeros in the following
sense (see Simon, 2004a, Theorems 8.1.11 and 8.1.12).

Theorem 9.4.4 Suppose ζ0 is an isolated point of supp(μ). Then for any δ > 0, there is Nδ

so {|z− ζ0| < δ} has exactly one zero of Φn for n > Nδ. If this zero is called zn, there is an a > 0
so for all large enough n, |zn − ζ0| ≤ e−an.

Theorem 9.4.5 Let supp(μ) � T, and ζ0 be a nonisolated point of supp(μ). Then for each
δ > 0,

�{z : |z − ζ0| < δ, Φn(z) = 0} → ∞, n → ∞.
The following question arises naturally: Is possible that a bulk of zeros still stay away from

the support in the latter case? A negative answer was given by Widom (1967).

Theorem 9.4.6 (Widom’s zero theorem) Let supp μ � T. Then, for any compact set K ⊂ D,
there is a positive integer nK, so that for each j ∈ N,

�{z : z ∈ K, Φ j(z) = 0} ≤ nK .

Here is another theorem on zeros of OPUC, which appeared in Alfaro and Vigil (1988).

Theorem 9.4.7 (Alfaro–Vigil theorem) Let {zn}∞n=1 be a sequence of numbers in D. Then
there exists a unique nontrivial probability measure μ on [−π, π] with Φn(zn, μ) = 0.

Alfaro and Vigil were answering the following question from P. Turán (Turán, 1980): Can
the set Z∞(μ) = ∪nZn(μ) of all zeros of the Φn be dense in D? The answer is clearly yes,
and follows from this theorem. Such measures are called Turán measures. It is proved in
Khruschev (2003) that there are absolutely continuous Turán measures with μ′ a C∞ function.
This is especially interesting since if μ′ is real analytic and nonvanishing then Z∞(μ) � D (see
below).

It is known (Saff and Totik, 1992) that zeros of Φn(μ) cluster to supp(μ) as long as this set
is a proper subset of the whole circle. The situation changes dramatically if supp(μ) = T (see,
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for example, dμ = dm). By the Alfaro–Vigil theorem, zeros of Φn can cluster to all points of
D. Denote by

Zw(μ) :=
{
z ∈ D : lim infn→∞ dist(z,Zn) = 0

}

the set of limit points for the zeros of all Φn (weakly attracting points). Let Zw = {Zw(μ)}μ be
the class of all such point sets. So D ∈ Zw. It turns out that Zw is rich enough. More precisely,
each compact subset K of D belongs to Zw, and the same is true if K ⊃ T (Simon and Totik,
2005, Theorem 4). On the other hand, K = [1/2, 1] is not in Zw.

Similarly, denote by

Zs(μ) :=
{
z ∈ D : limn→∞ dist(z,Zn) = 0

}

the point set of strongly attracting points, and Zs the class of all such point sets. The structure
of the latter is quite different from that of Zw. For instance, it is proved in Alfaro et al. (2005)
that if 0 ∈ Zs(μ) for some measure μ, then Zs(μ) is at most a countable set which converges to
the origin. So the disk {|z| ≤ 1/2} is not in Zs.

A significant generalization of the Alfaro–Vigil theorem is due to Simon and Totik (2005).

Theorem 9.4.8 For an arbitrary sequence of points {zk} in D and an arbitrary sequence of
positive integers 0 < m1 < m2 < · · · , there exists a measure μ on [−π, π] such that

Φmk (z j, μ) = 0, j = mk−1 + 1, . . . ,mk.

The following consequence of this result is surprising. Given a measure μ, consider the
sequence {νn(μ)}n≥1 of normalized counting measures for zeros of Φn, that is,

supp νn = Zn, νn{z jn} = l(z jn)

n
(9.4.1)

with l(z jn) equal to the multiplicity of the zero z jn. Let M+(D̄) be a space of probability
measures on D̄ endowed with the weak* topology. A measure μ is called universal if for each
σ ∈ M+(D̄) there is a sequence of indices n j such that νn j (μ) converges to σ as j → ∞ in
the weak* topology. The existence of universal measures is proved in Simon and Totik (2005,
Corollary 3).

A remarkable theorem of Mhaskar and Saff (1990) provides some information about the
limit points (in the space M+(D̄)) of the sequence of counting measures of zeros associated
with a measure μ in the case when Verblunsky coefficients tend to zero fast enough.

Theorem 9.4.9 (Mhaskar–Saff theorem) Let

A := lim sup
n→∞

|αn(μ)| 1
n = lim

j→∞ |αn j (μ)| 1
n j . (9.4.2)

Suppose that either A < 1, or A = 1 and
∑n−1

j=0 |α j(μ)| = o(n) as n → ∞. Then {νn j (μ)}
converges to the uniform measure on the circle of radius A.

A crucial feature of the Mhaskar–Saff theorem is its universality. Under its assumption the
angular distribution is the same. To get certain quantitative bounds on the distance between



220 Orthogonal Polynomials on the Unit Circle

zeros, Simon studied various more stringent conditions, and among them the so-called
Barrios–López–Saff condition

αn(μ) = Cbn + O((bΔ)n), C ∈ C\{0}, 0 < b,Δ < 1. (9.4.3)

The following result is proved in Simon (2006).

Theorem 9.4.10 Under assumption (9.4.3) there is a bounded number J of “spurious” zeros
of Φn(μ) for all large n. Furthermore, for j = 1, 2, . . . , n − J let

z jn = |z jn|eiΘ jn , 0 = Θ0n < Θ1n < · · · < Θn−J,n < 2π = Θn−J+1,n

be the other zeros. Then the following limit relations hold:

sup
1≤ j≤n−J

∣∣∣|z jn| − b
∣∣∣ = O

(
log n

n

)
, n → ∞; (9.4.4)

sup
1≤ j≤n−J

n
∣∣∣∣∣Θ j+1,n − Θ jn − 2π

n

∣∣∣∣∣ = o(1), n → ∞; (9.4.5)

|z j+1,n|
|z jn| = 1 + O

(
1

n log n

)
, n → ∞. (9.4.6)

Note that (9.4.5)–(9.4.6) imply limn n|z j+1,n−z jn| = 2πb. Amazingly, the spurious zeros also
follow the clock pattern!

Simon (2005a) treats the more general case

αn(μ) =
m∑

k=1

CkeinΘk bn + O((bΔ)n).

The value A (9.4.2) is tightly related to some other characteristics in OPUC theory. Define
the following “radii”:

• R(D−1) is the radius of convergence of the Taylor series for the inverse Szegő function D−1

about the origin, if μs = 0 and the Szegő condition holds, and R(D−1) = 1 otherwise;
• R∗ = sup{r : supn,|z|≤r |Φ∗(z, μ)| < ∞}, if the Szegő condition holds, and R∗ = 1 otherwise.

Let Nn(r) be a number of zeros of Φn(μ) in {r < |z| < 1}. Define the Nevai–Totik radius RNT

by

RNT = inf{r : Nn(r) = O(1), n → ∞}.
The next result is proved in Nevai and Totik (1989).

Theorem 9.4.11 (Nevai–Totik theorem) For an arbitrary measure μ the following equalities
hold:

A = lim sup
n→∞

|αn(μ)| 1
n = RNT =

1
R(D−1)

=
1
R∗
. (9.4.7)

If A < 1, then φ∗n → D−1 uniformly on compact subsets of {z : |z| < A−1}.
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9.5 CMV Matrices – Unitary Analogues of Jacobi Matrices

One of the key tools in the case of the real line, especially in perturbation theory, is the
realization of a measure σ as the spectral measure of the Jacobi matrix, which comes in as a
matrix of multiplication by x on L2

σ(R). Of course, in the OPUC case, μ is the spectral measure
of multiplication by ζ on L2

μ(T). That alone is not enough because L2
μ(T) is μ-dependent, and

we cannot connect different μ. What we need is a suitable matrix representation; in other
words, we need to choose a convenient orthonormal basis. There is an “obvious” set to try,
namely, {φn(μ)}, but the corresponding matrix, called the GGT matrix in Simon (2004a), has
two defects. First, a fundamental theorem by Szegő–Kolmogorov–Krein states that {φn(μ)} is
a basis (complete, orthonormal system) if and only if μ is outside the Szegő class, that is,
log μ′ � L1, or equivalently,

∑∞
n=0 |αn(μ)|2 = ∞, and if it is not, the matrix G = ‖(ζφm, φn)‖

is not unitary. Second, even if it is, the matrix G is not of finite width measured from the
diagonal.

One of the most interesting developments in the theory of OPUC in recent years is the
discovery by Cantero, Moral, and Velázquez (2003) of a matrix realization for multiplication
by ζ = eiθ on L2

μ(T) which is of finite band size (that is, (ζχm, χn)μ = 0 if |m − n| > k for
some k); in this case, k = 2 is to be compared with k = 1 for the Jacobi matrices, which
correspond to the real line case. The CMV basis {χn} is obtained by orthonormalizing the
sequence 1, ζ, ζ−1, ζ2, ζ−2, . . . , and the matrix

C(μ) = ‖cn,m‖∞m,n=0, cn,m = (ζχm, χn)μ,

called the CMV matrix, is unitary and pentadiagonal. Remarkably, the χ can be expressed in
terms of φ and φ∗ by

χ2n(z) = z−nφ∗2n(z), χ2n+1(z) = z−nφ2n+1(z), n ∈ Z+,

and the matrix entries in terms of α and ρ:

C = LM, (9.5.1)

where L, M are 2 × 2 block diagonal matrices

L = Θ0 ⊕ Θ2 ⊕ Θ4 ⊕ · · · , M = 1 ⊕ Θ1 ⊕ Θ3 ⊕ · · · , (9.5.2)

with

Θ j =

(
α j ρ j

ρ j −α j

)
, j ∈ Z+ . . . (9.5.3)

(the first block of M is 1 × 1). By C0 we will denote the CMV matrix for the Lebesgue
measure 1

2π dθ. For an exhaustive exposition of the theory of CMV matrices see Simon (2004a,
Chapter 4) and Simon (2007a).
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Expanding out the matrix product (9.5.1)–(9.5.3) is rather laborious and leads to a quite
rigid structure

C(μ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ +

+ ∗ ∗
∗ ∗ ∗ +

+ ∗ ∗ ∗
∗ ∗ ∗ + · · ·
+ ∗ ∗ ∗ · · ·

· · · · · · · · · · · · · · · · · · · · · · · ·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9.5.4)

where + represents strictly positive entries, and ∗ generally nonzero ones. The entries marked
+ and called the exposed entries of the CMV matrix are precisely (2, 1) and those of the form
(2 j − 1, 2 j + 1) and (2 j + 2, 2 j) with j ∈ N. Matrices of the form (9.5.4) are said to have
CMV shape. Naturally, CMV matrices have CMV shape, and, what is more to the point, any
unitary matrix (9.5.4) is actually a CMV matrix (9.5.1)–(9.5.3). Matrices (9.5.4) (of zigzag
pentadiagonal form) appeared first in Watkins (1993), who outlined the connection of such
matrices with OPUC.

Yet, expanding out (9.5.1)–(9.5.3) can be carried out, and explicit formulas for the matrix
entries cnm in terms of the Verblunsky coefficients are available (cf. Golinskiı̆, 2006). Let
2λm := 1 − (−1)m, m ∈ Z+, and λ−1 = 1, so

{λm}m≥0 = {0, 1, 0, 1, . . . },

λm + λm+1 = 1, λmλm+1 = 0, λm − λm+1 = (−1)m+1.

One has

cmm = −αmαm−1,

cm+2,m = ρmρm+1λm, cm,m+2 = ρmρm+1λm+1,
(9.5.5)

and

cm+1,m = αm+1ρmλm − αm−1ρmλm+1,

cm,m+1 = αm+1ρmλm+1 − αm−1ρmλm.
(9.5.6)

Given an arbitrary sequence {αn} ∈ D∞ one can construct a matrix C = C(αn) by (9.5.1)–
(9.5.3) (which generates a unitary operator in �2(N)), and make sure that a distinguished unit
vector e0 = (1, 0, 0, . . . )′ is cyclic, that is, finite linear combinations of {Cne0}∞n=−∞ are dense
in �2(N). So, C is unitarily equivalent to the multiplication by ζ on L2

μ(T), μ being a spectral
measure associated to C and e0.

Theorem 9.5.1 For an arbitrary sequence {αn} ∈ D∞ a matrix C of (9.5.4)–(9.5.6) is the
CMV matrix associated to the measure μ, that is, C takes the form (9.5.1)–(9.5.3) and αn =

αn(μ).
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Clearly, it is just as natural to take the ordered set 1, ζ−1, ζ, ζ−2, ζ2, . . . in place of 1, ζ, ζ−1,
ζ2, ζ−2, . . . , and come to what is called the alternate CMV basis {xn} and the alternate CMV
representation

c̃i j(μ) = (ζx j, xi)μ.

As it turns out, C̃ is just the transpose of C.
To state the analogue of Stone’s self-adjoint cyclic model theorem, consider a cyclic unitary

model, that is, a unitary operator U on a separable Hilbert space H with dimH = ∞, along
with a cyclic unit vector v0. Two cyclic unitary models (H ,U, v0) and (H̃ , Ũ, ṽ0) are called
equivalent if there is a unitary W form H onto H̃ so that

WUW−1 = Ũ, Wv0 = ṽ0.

Theorem 9.5.2 Each cyclic unitary model is equivalent to a unique CMV model (�2(N),C, e0).

There is an important relation between CMV matrices and monic orthogonal polynomials
akin to the well-known property of orthogonal polynomials on the real line:

Φn(z) = det(zIn − C(n)), (9.5.7)

where C(n) is the principal n × n block of C. Note that C(n) is no more a unitary matrix. As
a matter of fact, it is quite close to unitary in the sense that C(n) is a contraction with one-
dimensional defect. So its eigenvalues (zeros of monic orthogonal polynomial Φn) are inside
the disk.

There is another property of CMV matrices similar to the well-known property of Jacobi
matrices. Given ζ0 ∈ T, let

ν = {νn}∞n=0 = {χn(ζ0)}∞n=0.

Then Cν = ζ0ν, which means
∑

j ck jν j = ζ0νk for all k (because of the pentadiagonal structure
of C this sum always makes sense). In general, ν � �2, but if it is, then ζ0 = eiθ0 is an eigenvalue
of C, or equivalently, θ0 is a mass point of the measure μ (cf. (9.3.11)). Furthermore, we have
the following theorem.

Theorem 9.5.3 Let ν � �2 but lim inf |φn(ζ0)|1/n ≤ 1. Then ζ0 ∈ σ(C) and it is a nonisolated
point of the support of μ.

There is an explicit formula for the resolvent of the CMV matrix C in the CMV basis. It
has already proved useful in some applications of CMV matrices (see Golinskiı̆, 2006). By
the spectral theorem,

(C − zI)−1
mn =

π∫

−π

χn(ζ)χm(ζ)
ζ − z

dμ(θ).
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Let φn and ψn be orthonormal polynomials of the first and second kind, respectively, and F
the Carathéodory function. Define

p2k(z) = z−k(F(z)φ2k(z) + ψ2k(z)), p2k−1(z) = z−k(F(z)φ∗2k−1(z) − ψ∗2k−1(z)),

π2k(z) = z−k(F(z)φ∗2k(z) − ψ∗2k(z)), π2k−1(z) = z−k+1(F(z)φ2k−1(z) + ψ2k−1(z)).

The following result is in Simon (2004a, Theorem 4.4.1).

Theorem 9.5.4 For z ∈ D,

[(C − zI)−1]mn =

⎧⎪⎪⎨⎪⎪⎩
(2z)−1χn(z)pm(z), m > n,

(2z)−1πn(z)xm(z), n > m,
(9.5.8)

and
[(C − zI)−1]2n−1,2n−1 = (2z)−1χ2n−1(z)p2n−1(z),

[(C − zI)−1]2n,2n = (2z)−1π2n(z)x2n(z).
(9.5.9)

9.6 Differential Equations

This section is based on Ismail and Witte (2001). It will be assumed that μ is absolutely
continuous, that is, the orthogonality relation becomes

∫

|ζ |=1

φm(ζ)φn(ζ)w(ζ)
dζ
iζ
= δm,n. (9.6.1)

Following the notation in Section 2.8, we set

w(z) = e−v(z), (9.6.2)

and assume that w(z) is differentiable in a neighborhood of the unit circle, has moments of all
integral orders, and the integrals

∫

|ζ |=1

v′(z) − v′(ζ)
z − ζ ζnw(ζ)

dζ
iζ

exist for all integers n. Let

An(z) = n
κn−1

κn
+ i

κn−1

φn(0)
z
∫

|ζ |=1

v′(z) − v′(ζ)
z − ζ φn(ζ)φ∗n(ζ)w(ζ) dζ, (9.6.3)

Bn(z) = −i
∫

|ζ |=1

v′(z) − v′(ζ)
z − ζ φn(ζ)

[
φn(ζ) − κn

φn(0)
φ∗n(ζ)

]
w(ζ) dζ. (9.6.4)

For future reference we note that A0 = B0 = 0 and

A1(z) = κ1 − φ1(z)v′(z) − φ2
1(z)

φ1(0)
M1(z), (9.6.5)

B1(z) = −v′(z) − φ1(z)
φ1(0)

M1(z), (9.6.6)
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where M1 is defined by

M1(z) =
∫

|ζ |=1

ζ
v′(z) − v′(ζ)

z − ζ w(ζ)
dζ
iζ
. (9.6.7)

Theorem 9.6.1 Under the above stated assumptions on w, the corresponding orthonormal
polynomials satisfy the differential relation

φ′n(z) = An(z)φn−1(z) − Bn(z)φn(z). (9.6.8)

Define differential operators Ln,1 and Ln,2 by

Ln,1 =
d
dz
+ Bn(z), (9.6.9)

and

Ln,2 = − d
dz
− Bn−1(z) +

An−1(z)κn−1

zκn−2
+

An−1(z)κnφn−1(0)
κn−2φn(0)

. (9.6.10)

Then the operators Ln,1 and Ln,2 are annihilation and creation operators in the sense that they
satisfy

Ln,1φn(z) = An(z)φn−1(z),

Ln,2φn−1(z) =
An−1(z)

z
φn−1(0)κn−1

φn(0)κn−2
φn(z).

(9.6.11)

This establishes the second-order differential equation

Ln,2

(
1

An(z)
Ln,1

)
φn(z) =

An−1(z)
z

φn−1(0)κn−1

φn(0)κn−2
φn(z). (9.6.12)

Note that, unlike for polynomials orthogonal on the line, L∗n,1 is not related to Ln,2.
When v(z) is a meromorphic function in the unit disk then the following functional equation

holds:

Bn + Bn−1 − κn−1

κn−2

An−1

z
− κn

κn−2

φn−1(0)
φn(0)

An−1 =
1 − n

z
− v′(z). (9.6.13)

Using (9.6.13) we simplify the expanded form of (9.6.12) to

φ′′n −
{

A′n
An
+ v′(z) +

n − 1
z

}
φ′n

+

{
B′n −

BnA′n
An
+ BnBn−1 − κn−1

κn−2

An−1Bn

z
− κn

κn−2

φn−1(0)
φn(0)

An−1Bn

+
κn−1

κn−2

φn−1(0)
φn(0)

An−1An

z

}
φn = 0.

(9.6.14)

Recall that the zeros of the polynomial φn(z) are denoted by
{
z jn
}
1≤ j≤n and are confined

within the unit circle |z| < 1. One can construct a real function |T (z1n, . . . , znn)| from

T (z1n, . . . , znn) =
n∏

j=1

z−n+1
jn

e−v(z jn)

An(z jn)

∏

1≤ j<k≤n

(
z jn − zkn

)2
, (9.6.15)

such that the zeros are given by the stationary points of this function.
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This function has the interpretation of being the total energy function for n mobile unit
charges in the unit disk interacting with a one-body confining potential, v(z) + ln An(z), an
attractive logarithmic potential with a charge n − 1 at the origin, (n − 1) ln z, and repulsive
logarithmic two-body potentials, − ln

(
zi − z j

)
, between pairs of charges. However, all the

stationary points are saddle points, a natural consequence of analyticity in the unit disk.
For more details and examples we refer the interested reader to Ismail (2005b, Chapter 8).

9.7 Examples of OPUC

In this section a number of examples are discussed, most of which are “exactly soluble” in
the sense that there are explicit formulas for both moments and Verblunsky coefficients and,
in most cases there are also explicit formulas for the actual orthogonal polynomials. A nice
collection of examples is in Simon (2004a, Chapter 1.6); see also Ismail (2005b, Chapters 8
and 17).

Example 9.7.1 (Free case) Let μ = 1
2π dθ; then for the moments, Verblunsky coefficients,

and orthogonal polynomials we have, respectively,

μn = δn0, αn ≡ 0, Φn = φn = zn, n ∈ Z+.
In this case φ∗n = 1 for all n, so the Szegő function D(z, dm) = 1.

Example 9.7.2 (Bernstein–Szegő measures and polynomials) Let T be a positive trigono-
metric (Laurent) polynomial of degree n on T. By the Fejér–Riesz theorem there is a unique
algebraic polynomial pn of degree n with a positive leading coefficient and all zeros inside
D so that T (ζ) = |pn(ζ)|2. The measures μ = cT−1(ζ) dθ, ζ = eiθ constitute the class of
Bernstein–Szegő measures, c > 0 is a normalizing constant,

c−1 =
1

2π

π∫

−π

dθ
|pn(ζ)|2 .

The orthonormal polynomials and Verblunsky coefficients are

φk(z, μ) = c−1/2zk−n pn(z), αk(μ) = 0, k = n, n + 1, . . . .

Since φ∗k = c−1/2 p∗n, k ≥ n, we have D(μ) =
√

c (p∗n)−1.
An important particular case is p1(z) = z − w̄, w ∈ D. Now c = 1 − |w|2,

φk(z, μ) =
zk − w̄zk−1

√
1 − |w|2

, dμ(ζ) =
1 − |w|2
|1 − wζ |2 dm, D(z, μ) =

√
1 − |w|2
1 − wz

.

The Verblunsky coefficients are α0 = w, α j = 0 for j ≥ 1. The moments μ j = wj for j ≥ 0 and
μ j = w̄|n| for n ≤ 0.

The Bernstein–Szegő measures had already arisen in Szegő’s work in the early 1920s
(Szegő, 1920, 1921). Translated to the real line, they were studied by Bernstein about 10
years later.
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Example 9.7.3 (Single nontrivial moment) This example goes back to Grenander and Szegő
(1958, Section 5.3).

Let μ = |1 − ζ |2 dθ
4π and Φn(μ) be monic orthogonal polynomials that satisfy

π∫

−π
Φn(ζ)ζ− j(2 − ζ − ζ−1) dθ = 0, j = 0, 1, . . . , n − 1.

If

Φn(z, μ) =
n∑

k=0

fknzk, fnn = 1,

we come to a simple boundary value problem for the second-order difference equation

2 fkn = fk−1,n + fk+1,n, k = 0, 1, . . . , n − 1, f−1,n = 0, fnn = 1,

so fkn = (k + 1)(n + 1)−1, and

Φn(z, μ) =
1

n + 1

n∑

k=0

(k + 1)zk, αn(μ) = − 1
n + 2

, n ∈ Z+.

By (9.2.4),

‖Φn‖2 =

n−1∏

k=0

(1 − |αk |2) =
n + 2

2(n + 1)

so

φn(z, μ) = kn

n∑

k=0

(k + 1)zk, φ∗n(z, μ) = kn

n∑

k=0

(n − k + 1)zk, kn =

√
2

(n + 1)(n + 2)
,

and

D−1(z, μ) = lim
n→∞ φ

∗
n(z, μ) =

√
2

∞∑

k=0

zk =

√
2

1 − z
,

initially in the sense of Taylor coefficients, but then using the Szegő limit theorem, on all of
D. The Szegő function is D(z, μ) = (1 − z)/

√
2 .

The general case μ = |1− rζ |2 dθ
2π(1+r2) , 0 < r ≤ 1 can be handled in the same way (cf. Simon,

2004a, Example 1.6.4). For instance,

αn(μ) = − r−1 − r
r−n−2 − rn+2

so αn decays exponentially,

Φn(z, μ) =
1

d−n

n∑

k=0

d−k zk, d−k =
r−k−1 − rk+1

r−1 − r
,

the Szegő function is D(z, μ) = (1 + r2)−1/2(1 − rz).
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Example 9.7.4 (Circular Jacobi polynomials) Let μ = w(ζ) dθ with

w(ζ) =
Γ2(a + 1)

2πΓ(2a + 1)
|1 − ζ |2a, a > −1

which for a = 1 is Example 9.7.3. Now the orthogonal polynomials are expressed in terms of
the hypergeometric function

φn(z, μ) =
(a)n√

n!(2a + 1)n
2F1(−n, a + 1;−n + 1 − a; z), (a)n = a(a + 1) . . . (a + n − 1),

and the Verblunsky coefficients are

αn(μ) = − a
n + a + 1

, n ∈ Z+.

Example 9.7.5 (Rogers–Szegő polynomials) The example is from Szegő (1926) and the
name comes from earlier consideration of Rogers (1894, 1895). Ismail (2005b) has a whole
Chapter 17 on this example (see also Simon, 2004a, Example 1.6.5). This class of polynomials
is parametrized by a number q ∈ (0, 1) (although the extension to q ∈ D is easy). The weight
function is a “wrapped Gaussian.” Let

q = e−a, a = log
1
q
> 0.

The Gaussian measure on the real line of variance a is given by

dνa(x) = (2πa)−1/2e−x2/2a dx.

The wrapped Gaussian measure on [−π, π] is defined by

μ = μ(q, ζ) = vq(ζ) dθ, vq(eiθ) =
1√
2πa

∞∑

j=−∞
e−(θ−2π j)2/2a. (9.7.1)

It is a matter of direct calculation to find the moments μn = qn2/2.
Identifying the orthogonal polynomials depends on the use of q-binomial coefficients de-

fined by
[
n
j

]

q

=
[n]q

[ j]q[n − j]q
, [n]q = (1 − q)(1 − q2) · · · (1 − qn), [0]q = 1.

The monic orthogonal with respect to the wrapped Gaussian measure (9.7.1) polynomials,
known as the Rogers–Szegő polynomials, are

Φn(z, μ) =
n∑

j=0

(−1)n− j

[
n
j

]

q

q(n− j)/2z j, (9.7.2)

so

αn(μ) = (−1)nq(n+1)/2, ‖Φn‖2 = [n]q.
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The Szegő function is now

D(z, μ) =
∞∏

j=1

(1 − q j)1/2
∞∏

j=0

(1 + zq j+1/2).

An amazing property of zeros of the Rogers–Szegő polynomials (9.7.2) is proved in Mazel,
Geronimo, and Hayes (1990): all of them have their zeros on the same circle |z| = q1/2.

Example 9.7.6 (Geronimus measures and polynomials) This example is perhaps the most
notable example of a measure outside the Szegő class. In this (and the next) examples it is
more convenient to view a measure as one supported on the unit circle T.

The Geronimus polynomials are those associated with constant Verblunsky coefficients
αn ≡ α, α ∈ D\{0}. By Verblunsky’s theorem (see Section 9.8) the corresponding measure
μα, called the Geronimus measure, is uniquely determined. The measures and polynomials
appeared in Geronimus (1977), and have been extensively studied over the past fifteen years
(see Simon, 2004a, Example 1.6.12).

The Szegő recurrence relations (9.2.9) for orthonormal Geronimus polynomials and their
reverse take the form

[
φn(z)
φ∗n(z)

]
= T n(z, α)

[
1
1

]
, T (z, α) =

1√
1 − |α|2

[
z −ᾱ
−zα 1

]
. (9.7.3)

It is not hard now to derive the expressions for Geronimus polynomials and their reverse.
Denote by r1,2 the eigenvalues of matrix T (cf. (9.7.3)), which are the roots of characteristic
equation

r2 − z + 1
ρ

r + z = 0, ρ =
√

1 − |α|2 ,
so

r1,2(z) =
z + 1 ± √(z + 1)2 − 4ρ2z

2ρ
=

z + 1 ± √(z − ζτ)(z − ζ−1
τ )

2ρ
(9.7.4)

with ζτ = eiτ and sin τ
2 = |α|, 0 < τ < π, and the branch of the square root is taken so that

r2(0) = 0. It is clear that the spectrum of T depends only on |α|. Define a circular arc Δτ
closely related to T by

Δτ = {ζ = eit : τ ≤ t ≤ 2π − τ} (9.7.5)

so

|r2(z)| < 1 < |r1(z)|, z ∈ C\Δτ; |r2(ζ)| = |r1(ζ)| = 1, ζ ∈ Δτ,
and r1 = r2 only at the endpoints of Δτ. It follows from (9.7.3) that

φn(z, μα) =
z − ᾱ
ρ

rn
1 − rn

2

r1 − r2
− z

rn−1
1 − rn−1

2

r1 − r2
, (9.7.6)

φ∗n(z, μα) =
1 − αz
ρ

rn
1 − rn

2

r1 − r2
− z

rn−1
1 − rn−1

2

r1 − r2
. (9.7.7)
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There is another expression for Geronimus polynomials which holds on the arc Δτ. Indeed,
for eit ∈ Δτ,

r1,2(eit) =
ei t

2

ρ

⎛⎜⎜⎜⎜⎝cos
t
2
± i

√
cos2 τ

2
− cos2 t

2

⎞⎟⎟⎟⎟⎠ = ei t
2 (cos λ ± i sin λ), cos λ =

cos t
2

cos τ
2

,

0 ≤ λ ≤ π, so one has

φn(eit, μα) = ein t
2

(
ei t

2 − ᾱe−i t
2

ρ
Un−1(cos λ) − Un−2(cos λ)

)
,

where Uk are the Chebyshev polynomials of the second kind. In particular, there is a bound
for Geronimus polynomials on Δτ,

|φn(ζ, μα)| ≤ C(α) min(n, v−1(ζ)), v(z) =
√

(z − ζτ)(z − ζ−1
τ ) , n ∈ Z+,

and hence they are uniformly bounded inside the arc Δτ and

|φn(e±iτ)| =
∣∣∣∣∣∣

(
ei τ2 − ᾱe−i τ2

ρ
∓ 1

)
n ± 1

∣∣∣∣∣∣ . (9.7.8)

It is clear from the definition that the second kind measures and polynomials are also Geron-
imus measures and polynomials for the parameter −α, so for ψn(z, μα), ψ∗n(z, μα) the same
formulas as (9.7.6) hold.

The Carathéodory function (9.2.18) can be now computed explicitly

F(z, μα) = 1 +
z + 2αz − 1 +

√
(z − ζτ)(z − ζ−1

τ )

(1 + α)(ζβ − z)
, ζβ = eiβ =

1 + ᾱ
1 + α

. (9.7.9)

Thus there is at most one mass point at ζβ � Δτ, and the actual value of this mass can be found
from (9.2.23) and (9.7.9):

μα{ζβ} =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2
|1+α|2

(∣∣∣α + 1
2

∣∣∣2 − 1
4

)
, |α + 1

2 | > 1
2 ,

0, |α + 1
2 | ≤ 1

2 .
(9.7.10)

As follows from (9.7.9), the measure μα is supported on Δτ along with a possible mass
point at ζβ, and μα = μ′α dm with

μ′α(eit) =
1

|1 + α|

√
cos2 τ

2 − cos2 t
2

sin t−β
2

, eit ∈ Δτ.

Example 9.7.7 (Perturbed Geronimus measures) A measure μ is called a perturbed Geron-
imus measure if

lim
n→∞αn(μ) = α, 0 < |α| < 1. (9.7.11)

The following fundamental result about such measures is due to Geronimus (1941).
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Theorem 9.7.8 Let μ be a perturbed Geronimus measure. Then Δτ (cf. (9.7.5)) belongs to
the support of μ, and the part of the support outside Δτ is at most a countable point set which
can accumulate only to the endpoints of Δτ.

Much more can be said about μ as long as some additional assumptions are imposed upon
the rate of convergence in (9.7.11). The following results are in Golinskii, Nevai, and Van
Assche (1995).

Theorem 9.7.9 Let μ be a perturbed Geronimus measure.

(i) If {αn(μ) − α} ∈ �1 then μ is absolutely continuous inside Δτ, and 1/μ′ ∈ L∞(Δ) for any
interior closed arc Δ ⊂ Δτ.

(ii) If {log n(αn(μ) − α)} ∈ �1 then μ satisfies the Szegő condition for the arc
∫

Δτ

| log μ′(ζ)|√|ζ − ζτ||ζ − ζ−1
τ | dm < ∞.

(iii) If {n(αn(μ) − α)} ∈ �1, then μ is absolutely continuous on the whole Δτ, and μ′(ζ) ≥
C|ζ − ζτ||ζ − ζ−1

τ | a.e. on Δτ.

The bounds for perturbed Geronimus polynomials are also available.

Theorem 9.7.10 Let {φn} be perturbed Geronimus polynomials. If {αn(μ) − α} ∈ �1, then

sup
n

max
ζ∈Δ

|φn(ζ, μ)| = C(Δ) < ∞

for any interior closed arc Δ ⊂ Δτ. If {n(αn(μ) − α)} ∈ �1, then

sup
n

max
ζ∈Δα

|φn(ζ, μ)|
n

< ∞.

Equation (9.7.8) shows that the latter bound is optimal.
The following result (Golinskii, 2000) provides a sufficient condition for the perturbed

Geronimus measure to have finitely many mass points outside Δτ.

Theorem 9.7.11 The portion of the support of μ outside Δτ is a finite set as long as {n(αn(μ)−
α)} ∈ �1.

9.8 Modification of Measures

By Verblunsky’s theorem each transformation in the class of nontrivial probability measures
on [−π, π] gives rise to a certain transformation in the space D∞ of the Verblunsky coeffi-
cients and vice versa. We consider here the simplest such transformations when the explicit
expressions are available. Again we will deal with measures on T rather than on [−π, π].
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Let S be a Borel transformation of T into itself. Such a transformation acts in the space
of measures by Sμ = μS , μS (E) = μ(S −1E). A key role is played by the change of variables
formula ∫

T

h(ζ) dμS =

∫

T

h(S (ζ)) dμ.

9.8.1 Rotation of the Circle and Parameters

Let λ ∈ T and S (ζ) = λζ. It is clear that

Φn(z, μS ) = λnΦn(λ̄z, μ), αn(μS ) = λ−n−1αn(μ)

for the monic orthogonal polynomials and Verblunsky coefficients, respectively. For the Cara-
théodory functions one has F(z, μS ) = F(λ̄z, μ).

Conversely, the rotation of parameters leads to Aleksandrov measures {μλ}λ∈T with αn(μλ) =
λαn. The second kind measure is included in the family with λ = −1. The rotation αn → λαn

can be viewed as a change of boundary conditions since (cf. (9.2.7))
[
Φn,λ(z)
λ̄Φ∗n,λ(z)

]
= Tn+1(z)

[
1
λ̄

]
, (9.8.1)

where Φn,λ are monic orthogonal polynomials for μλ. Since the space of solutions of (9.2.6)
is 2-dimensional, any solution can be written in terms of Φ and Ψ:

2Φn,λ(z) = (1 + λ̄)Φn(z) + (1 − λ̄)Ψn(z). (9.8.2)

For the corresponding Carathéodory functions one has

Fλ(z) =
(1 − λ) + (1 + λ)F(z)
(1 + λ) + (1 − λ)F(z)

, F−1(z) =
1

F(z)
. (9.8.3)

It is sometimes advisable to study spectral properties of the entire family of Aleksandrov
measures. The following result is in Simon (2004a, Theorem 3.2.16).

Theorem 9.8.1 Let the Lebesgue decomposition for Aleksandrov measures be

dμλ = wλ(ζ) dm + dμs,λ.

Then

(i) μλ have the same essential support, and {ζ : wλ(ζ) � 0} is a.e. independent of λ.
(ii) If supp(μ1) ∩ (ζ0, ζ1) is a finite set, the same is true for supp(μλ) ∩ (ζ0, ζ1) for each λ.

(iii) The singular components μλ,s and μλ′,s are mutually singular for λ � λ′.

There is another important property of Aleksandrov measures, known as the “spectral av-
eraging,” which states that roughly speaking the average of μλ over λ is always the Lebesgue
measure (Golinskii and Nevai, 2001). More precisely, for any Borel set B ⊂ T,

∫

T

μζ(B, ) dm(ζ) = m(B).
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9.8.2 Sieved Measures and Polynomials

Let N ≥ 2 be a positive integer, and S (ζ) = ζN . Now μS = μ(N) puts scaled copies of μ on
each of the arcs [ζ j, ζ j+1] with

ζ j = exp(2πi j/N), j = 0, 1, . . . ,N − 1.

One can easily show that for Verblunsky coefficients,

αn(μ(N)) =

⎧⎪⎪⎨⎪⎪⎩
αr(μ), n = rN + N − 1,

0, otherwise.

For the monic orthogonal polynomials one has

Φn(z, μ(N)) = zkΦr(z, μ), n = rN + k, k = 0, 1, . . . ,N − 1.

The Carathéodory function is F(z, μ(N)) = F(zN , μ).
A process in this example is known as sieving, and these Φ are the sieved polynomials.

They were systematically discussed in Badkov (1987) and Ismail and Li (1992b).
We complete with a particular example of the Al-Salam–Carlitz q-polynomials on the unit

circle. Let

An(x) =
U(−1)

n (x; q)

q
n(n−1)

4

√
(q; q)n

be orthonormal Al-Salam–Carlitz q-polynomials (see Section 6.7 of this volume). The or-
thogonality measure γ is concentrated on two sequences {±qj}, which converge to zero, and
is symmetric with respect to the origin: γ{q j} = γ{−q j}. The three-term recurrence relation is

xAn(x) = an+1An+1(x) + anAn−1(x), a2
n = qn−1(1 − qn).

Going over first to the unit circle by the Szegő mapping theorem we end up with μ ∈ P
concentrating on a discrete point set {e±iθ±j } with cos θ±j = ±q j, which has two limit points ±1.
The corresponding Verblunsky coefficients are

α2k(μ) = 0, α2k+1 = 1 − 2qk+1, k ∈ Z+.

9.8.3 Inserting Point Mass

There is an interesting problem of comparing Verblunsky coefficients and orthogonal poly-
nomials of two measures μ and ν. We consider here an obvious way of building ν from μ

by adding a mass point (finitely many mass points). Such a transformation is known as the
Jost–Kohn perturbation. Explicitly,

ν = tμ + (1 − t)σ, 0 < t < 1, σ =

p∑

j=1

k jδ(ζ j) (9.8.4)

is a finite linear combination of pure point masses adjusted so that σ is a probability measure.
Jost–Kohn theory for OPUC appeared in Golinskii (1966), Geronimus (1961), Cachafeiro



234 Orthogonal Polynomials on the Unit Circle

and Marcellán (1988, 1993), Marcellán and Maroni (1992), and Peherstorfer and Steinbauer
(1999). In particular, the phenomenon discovered in Peherstorfer and Steinbauer (1999) says
that it can happen that adding a point mass to a case with αn(μ) → a can result with a ν
obeying αn(ν) → a′ � a.

The relation between the Carathéodory functions is simple:

F(z, ν) = tF(z, μ) + (1 − t)
p∑

j=1

k j
ζ j + z

ζ j − z
.

For the case p = 1, ν = ν(t, ζ1) the relation between orthogonal polynomials was obtained in
Geronimus (1961, formula (3.30)),

Φn(z, ν) = Φn(z, μ) − sΦn(ζ1, μ)Kn−1(z, ζ1; μ)
1 + sKn−1(ζ1, ζ1; μ)

, s =
t

1 − t
, (9.8.5)

where Kn is the Christoffel kernel (9.2.24). By using the complex conjugate of (9.2.29) we
have for z = 0,

αn(ν) − αn(μ) =
sΦn+1(ζ1, μ)κnφn(ζ1, μ)

1 + sKn(ζ1, ζ1; μ)
. (9.8.6)

But

|Φn+1(ζ1, μ)| =
∣∣∣ζ1Φn(ζ1, μ) − ᾱn(μ)Φ∗n(ζ1, μ)

∣∣∣ ≤ 2 |Φn(ζ1, μ)|
so

|αn(ν) − αn(μ)| ≤ 2s|φn(ζ1, μ)|2
1 + sKn(ζ1, ζ1; μ)

. (9.8.7)

Let us say that a class X of nontrivial probability measures on T is invariant with regard
to addition of the mass points if μ ∈ X implies ν ∈ X for all 0 < t < 1 and ζ1 ∈ T. Clearly,
both Szegő and Erdös classes are invariant (the addition of a mass point does not affect the
absolutely continuous part of the measure). As a consequence of (9.8.7) and Theorem 9.3.18
one has a much more delicate result that the Nevai class is also invariant.

As far as the Rakhmanov class goes, the problem is still open. There is partial result in
this direction (Golinskii and Khrushchev, 2002) which claims that a proper subclass R0 ⊂ R,
which consists of measures μ ∈ R with supn |αn(μ)| < 1, is invariant with regard to addition of
the mass points.

9.8.4 Modification by a Rational Function

Let G be a rational function regular on T such that
π∫

−π
|G(ζ)|2 dμ(θ) = 1, ζ = eiθ.

Put ν = |G|2μ, also known as the Christoffel–Bargmann perturbation.
We start with the unit circle analogue of the Christoffel formula.
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Theorem 9.8.2 Let {φn} be orthonormal with respect to μ, and G2m be a polynomial of
precise degree 2m such that

ζ−mG2m(ζ) = |G2m(ζ)| , |ζ | = 1.

Let φ = φn+m. Define polynomials {ξn} by

G2m(z)ξn(z) (9.8.8)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ∗(z) zφ∗(z) · · · zm−1φ∗(z) φ(z) zφ(z) · · · zmφ(z)
φ∗ (z1) z1φ

∗ (z1) · · · zm−1
1 ζ∗ (z1) φ(z1) z1φ(z1) · · · zm

1 φ(z1)
φ∗ (z2) z2φ

∗(z2) · · · zm−1
2 φ∗(z2) φ(z2) z2φ(z2) · · · zm

2 φ(z2)
...

...
...

...
...

...

φ∗(z2m) z2mφ
∗(z2m) · · · zm−1

2m φ∗(z2m) φ(z2m) z2mφ(z2m) · · · zm
2mφ

∗(z2m)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where z1, z2, . . . , z2m are the zeros of G2m.
For zeros of multiplicity r, r > 1, replace the corresponding rows in (9.8.8) by derivatives

of order 0, 1, . . . , r − 1 of the polynomials in the first row evaluated at that zero.
Then {ξn(z)} are orthogonal with respect to C |G2m(ζ)| dμ(θ).

A similar result holds when G goes in the denominator.

Theorem 9.8.3 Let μ, {φn} be as in the above theorem. Let H2k be a polynomial of precise
degree 2k such that

ζ−kH2k(ζ) = |H2k(ζ)| > 0, |ζ | = 1,

and put φ = φn+k. Define a new system of polynomials {ηn}, n = 2k, 2k + 1, . . . by

ηn(z) (9.8.9)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ∗(z) zφ∗(z) · · · zk−1φ∗(z) φ(z) zφ(z) · · · zkφ(z)
Lw1 (φ∗) Lw1 (zφ∗) · · · Lw1 (zk−1φ∗) Lw1 (φ) Lw1 (zφ) · · · Lw1 (zkφ)
Lw2 (φ∗) Lw2 (zφ∗) · · · Lw2 (zk−1φ∗) Lw2 (φ) Lw2 (zφ) · · · Lw2 (zkφ)

...
...

...
...

...
...

Lw2k (φ
∗) Lw2k (zφ

∗) · · · Lw2k (z
k−1φ∗) Lw2k (φ) Lw2k (zφ) · · · Lw2k (z

kφ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where the zeros of H2k are w1,w2, . . . ,w2k, and we define

Lβ(p) :=

π∫

−π
p(ζ)

(
ζk

ζ − β
)

dμ(θ), β � T.

For zeros of multiplicity h, h > 1, we replace the corresponding rows in the determinant
(9.8.9) by

L j
β(p) :=

π∫

−π
p(ζ)

(
ζk

(ζ − β) j

)
dμ(θ), j = 1, 2, . . . , h

acting on the first row.
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Under the above assumptions, for n ≥ 2k, {ηn(z)} are orthogonal with respect to
C |H2k(ζ)|−1 dμ.

A combination of Theorems 9.8.2 and 9.8.3 leads to the following result which covers the
modification by a rational function.

Theorem 9.8.4 Let μ, {φn(z)}, G2m, H2k, and z1, . . . , z2m, w1, . . . ,w2k be as in Theorems 9.8.2
and 9.8.3. Let φ denote φn+m−k and s = m + k. For n ≥ 2k define ψn by

G2m(z)ψn(z) (9.8.10)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ∗(z) zφ∗(z) · · · zs−1φ∗(z) φ(z) zφ(z) · · · zsφ(z)
φ∗ (z1) z1φ

∗ (z1) · · · zs−1
1 φ∗ (z1) φ (z1) z1φ (z1) · · · zs

1φ (z1)
φ∗ (z2) z2φ

∗ (z2) · · · zs−1
2 φ∗ (z2) φ (z2) z2φ (z2) · · · zs

2φ (z2)
...

...
...

...
...

...

φ∗ (z2m) z2mφ
∗ (z2m) · · · zs−1

2m φ
∗ (z2m) φ (z2m) z2mφ (z2m) · · · zs

2mφ (z2m)
Lw1 (φ∗) Lw1 (zφ∗) · · · Lw1

(
zs−1φ∗

)
Lw1 (φ) Lw1 (zφ) · · · Lw1 (zsφ)

Lw2 (φ∗) Lw2 (zφ∗) · · · Lz2

(
zs−1φ∗

)
Lw2 (φ) Lz2 (zφ) · · · Lw2 (zs)

...
...

...
...

...
...

Lw2k (φ∗) Lw2k (zφ∗) · · · Lw2k

(
zs−1φ∗

)
Lw2k (φ) Lw2k (zφ) · · · Lw2k (zsφ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where we define

Lβ(p) :=

π∫

−π
p(ζ)

(
ζ s

ζ − β
)

dμ(θ), β � T.

For zeros of H2k of multiplicity h, h > 1, we replace the corresponding rows in the determinant
(9.8.10) by

L j
β(p) :=

π∫

−π
p(ζ)

(
ζ s

(ζ − β) j

)
ndμ(θ), j = 1, 2, . . . , h

acting on the first row.
For zeros of G2m of multiplicity h, h > 1, we replace the corresponding row in the determi-

nant (9.8.10) by the derivatives of order 0, 1, 2, . . . , h − 1 of the polynomials in the first row,
evaluated at that zero. (As usual, p∗r (z) = zr p̄r

(
z−1), for ψr a polynomial of degree r.)

Then {ψn} are orthogonal with respect to C|G2m/H2k | dμ on the unit circle.

The results of this section are in Ismail and Ruedemann (1992), which contains explicit
formulas for certain polynomials. For earlier partial results see Golinskii (1958), Mikaelyan
(1978), and Godoy and Marcellán (1991).
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9.8.5 Bessel Transformations and Schur Flows

Throughout the rest of the section we will view a nontrivial probability measure μ supported
on T. Define a family of measures which depends on parameter t ≥ 0 by

μ(ζ, t) = C(t)et(ζ+ζ−1)μ(ζ, 0), C−1(t) =
∫

T

et(ζ+ζ−1) dμ(ζ, 0) (9.8.11)

is a normalizing factor. We refer to (9.8.11) as the Bessel transformation of the initial mea-
sure μ = μ(·, 0). The main problem we deal with here is the dynamics of corresponding
orthogonal polynomials Φn(·, t) and Verblunsky coefficients αn(μ(t)) = αn(t).

As far as the polynomials go, the following result is proved in Golinskiı̆ (2006).

Theorem 9.8.5 The monic polynomials Φn(·, t) orthogonal with respect to μ(t) (cf. (9.8.11))
satisfy the first-order differential equation

d
dt
Φn(z, t) = Φn+1(z, t) − (z + αn(t)αn−1(t))Φn(z, t) − (1 − |αn−1(t)|2)Φn−1(z, t).

A comprehensive study of the asymptotic behavior of Verblunsky coefficients αn(t) for
each fixed n and t → ∞ is accomplished in Simon (2007b). Moreover, in Simon (2007b) the
asymptotics of the zeros {z j,n(t)}nj=1 of Φn is examined, which yields the information about αn

via

αn−1(t) = (−1)n−1
n∏

j=1

z j,n(t) (9.8.12)

The key tool is Theorem 9.1.2. As it turns out, the limit behavior of the αn depends heavily
on whether the point 1 belongs to the essential support of the initial measure μ(ζ, 0), that is,
any punctured neighborhood of 1 has nonempty intersection with the support of μ, or not. The
former case is rather simple, and here is the result.

Theorem 9.8.6 Let 1 ∈ suppess μ. Then

lim
t→∞ z j,n(t) = 1 for all n ∈ N, j = 1, 2, . . . , n implies lim

t→∞αn−1(t) = (−1)n−1.

The latter case is much more complicated, and a complete picture is available only for the
case when μ is symmetric (and then so are all μ(t)), and αn(t) are real-valued functions. Now,
there exists a unique open arc Γ(μ) =

(
Θ̄,Θ
)
, Θ = Θ(μ) so that �Θ > 0 and

(i) its endpoints Θ̄, Θ belong to the essential support of μ, and 1 ∈ Γ(μ);
(ii) the portion of supp μ on Γ(μ) is at most a countable set of mass points {ζ j}Nj=1, N ≤ ∞,

with no limit points inside Γ.

One can label ζ j so that �ζ1 ≥ �ζ2 ≥ · · · , and it is clear that this series of inequalities
cannot have two equality signs in a row. Specifically, �ζn = �ζn+1 if and only if ζn+1 = ζ̄n.

Theorem 9.8.7 Suppose that 1 � suppess μ, and Γ(μ) has an infinity of mass points ζ j.
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(i) If 1 ∈ supp μ, then 1 = �ζ1 > �ζ2 = �ζ3 > �ζ4 = �ζ5 > · · · and

lim
t→∞α2n(t) = 1, lim

t→∞α2n+1(t) = −�ζ2n+2, n ∈ Z+.

(ii) If 1 � supp μ, then 1 > �ζ1 = �ζ2 > �ζ3 = �ζ4 > · · · and

lim
t→∞α2n(t) = �ζ2n+1, lim

t→∞α2n+1(t) = −1, n ∈ Z+.
Theorem 9.8.8 Suppose that 1 � suppess μ, and Γ(μ) has N < ∞ mass points ζ j.

(i) If N = 2m + 1, then 1 ∈ supp μ,

1 = �ζ1 > �ζ2 = �ζ3 > · · · > �ζN−1 = �ζN > �Θ(μ)

and

lim
t→∞α2n(t) = 1, n ∈ Z+,
lim
t→∞α2n+1(t) = −�ζ2n+2, n = 0, 1, . . . ,m − 1,

lim
t→∞α2n+1(t) = −�Θ(μ), n = m,m + 1, . . . .

(ii) If N = 2m, then 1 � supp μ,

1 > �ζ1 = �ζ2 > �ζ3 = · · · > �ζN−1 = �ζN > �Θ(μ)

and

lim
t→∞α2n+1(t) = −1, n ∈ Z+,
lim
t→∞α2n(t) = −�ζ2n+1, n = 0, 1, . . . ,m − 1,

lim
t→∞α2n(t) = �Θ(μ), n = m,m + 1, . . . .

Some particular results for the general case are also obtained in Simon (2007b). For in-
stance, an example of a measure μ with Θ(μ) = i and no mass points in Γ(μ) is given for
which α0(t) has no limit as t → ∞.

Note that the distinguished role of the point 1 is quite obvious: this is the only global
maximum for the function �ζ on T. If 1 is in the essential support, it attracts all zeros of all
polynomials Φn. If 1 is an isolated mass point, it can attract only one zero by Theorem 9.4.4.
The behavior of other zeros is in general rather chaotic.

One can think of the Bessel transformation (9.8.11) as the unit circle analogue of a Toda-
type transformation from Theorem 2.5.3. Instead of Jacobi parameters and matrices the Verblun-
sky coefficients αn(t) and CMV matrices C(t) (9.5.1)–(9.5.3) appear on the central stage. So
(9.8.11) plays the same role in the theory of discrete integrable systems as the Toda transfor-
mation. The result below is in Golinskiı̆ (2006).

Theorem 9.8.9 (Schur flows) Let μ(·, t) be a family of measures that depend on a real param-
eter t ≥ 0, with Verblunsky coefficients αn(t). The following three statements are equivalent:
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(i) μ(·, t) satisfy (9.8.11);

(ii) αn(t) solve the system of differential-difference equations

d
dt
αn(t) = (1 − |αn(t)|2)(αn+1(t) − αn−1(t)), t > 0 (9.8.13)

known as the Schur flow;

(iii) the CMV matrices C(t) satisfy the Lax equation

d
dt
C(t) = [A,C], (9.8.14)

where A(t) is an upper-triangular and tridiagonal matrix

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�α0 ρ0Δ0 ρ0ρ1

−�α1α0 ρ1Δ1 ρ1ρ2

−�α2α1 ρ2Δ2 ρ2ρ3

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (9.8.15)

where Δn = αn+1(t) − αn−1(t).

There is an equivalent form of (9.8.14):

d
dt
C(t) = [B,C], (9.8.16)

B =
(C + C∗)+ − (C + C∗)−

2
=

1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 ρ0Δ0 ρ0ρ1

−ρ0Δ0 0 ρ1Δ1 ρ1ρ2

−ρ0ρ1 −ρ1Δ1 0 ρ2Δ2 ρ2ρ3
...

...
...

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= A − C + C∗
2

= −B∗,

(9.8.17)

where we use the standard notation X± for the upper (lower) projection of a matrix X. The
latter form of the Lax equation is closer to its counterpart in the Toda lattices setting.

Thereby, the solution of the initial–boundary value problem for the Schur flow (9.8.13) with
arbitrary initial data

|αn(0)| < 1, n ∈ Z+, α−1 ≡ −1 (9.8.18)

amounts to a combination of the direct and inverse spectral problems for the unit circle (from
Verblunsky coefficients to orthogonality measures and backwards) with (9.8.11) in between.

The Schur flow (9.8.13) appeared in Ablowitz and Ladik (1976a,b) under the name “dis-
crete modified KdV equation,” as a spatial discretization of the modified Korteweg–de Vries
equation

∂t f = 6 f 2∂x f − ∂3
x f .
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The name “Schur flow” is suggested in Faybusovich and Gekhtman (1999), where the authors
consider finite real Schur flows and suggest two more Lax equations based upon the Hessen-
berg matrix representation of the multiplication operator (see also Ammar and Gragg, 1994).
In Mukaihira and Nakamura (2000, 2002) the Bessel modification of measures appeared, and
a part of the results from Theorem 9.8.9 is proved. In Nenciu (2005) (see also Killip and Nen-
ciu, 2005) the authors deal with the Poisson structure and Lax pairs for the Ablowits–Ladik
systems closely related to the Schur flows. The latter can also be viewed as the zero-curvature
equation for the Szegő matrices (cf. Geronimo, Gesztesy, and Holden, 2005)

d
dt

Tn(z, t) + Tn(z, t)Wn(z, t) − Wn+1(z, t)Tn(z, t) = 0,

Wn(z, t) :=

(
z + 1 − αn−1αn −αn − αn−1z−1

−αn−1z − αn 1 − αn−1αn + z−1

)
.

It might be worth pointing out that some properties of Verblunsky coefficients for the Bessel
transformed measures (such as the rate of decay) are inherited from those of the initial data
(see Golinskiı̆, 2006).

Theorem 9.8.10 Let αn(t) solve the Schur flow equations (9.8.13). Then

(i) {αn(0)} ∈ �p implies {αn(t)} ∈ �p for all t > 0, p = 1, 2;
(ii) |αn(0)| ≤ Ke−an implies |αn(t)| ≤ K(t)e−an for all t > 0, α > 0.

Because of the boundary condition α−1 ≡ −1 the initial–boundary value problem (9.8.13)/
(9.8.18) with zero initial conditions

α0(0) = α1(0) = · · · = 0

has a nontrivial solution. We are now dealing with the Bessel transformation of the Lebesgue
measure

μ(ζ, t) = C(t)et(ζ+ζ−1) dm,

called the modified Bessel measures on the unit circle. Denote by βn(t) the Verblunsky coef-
ficients of μ(·, t), which are clearly real. The corresponding system of orthogonal polynomials
has arisen from studies of the length of longest increasing subsequences of random words
(Baik, Deift, and Johansson, 1999) and matrix models (Periwal and Shevitz, 1990).

Note first that the normalizing constant C(t) can be easily computed

C−1(t) =
∫

T

et(ζ+ζ−1) dm =
1

2π

2π∫

0

e2t cos x dx =
∞∑

n=0

t2n

(n!)2
= I0(2t),

where Ik is the modified Bessel function of order k. Similarly, for the moments of the measure
we have

μp(t) =
∫

T

ζ−p dμ(ζ, t) =
Ip(2t)

I0(2t)
, p ∈ Z+, μ−p = μp. (9.8.19)
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The explicit expression for Verblunsky coefficients as a ratio of two determinants follows from
(9.1.7) with z = 0 and (9.8.19),

βn(t) = (−1)n det ‖Ik− j−1(2t)‖0≤k, j≤n

det ‖Ik− j(2t)‖0≤k, j≤n
, n ∈ Z+. (9.8.20)

There is an important feature of the modified Bessel measures proved in Periwal and She-
vitz (1990).

Theorem 9.8.11 (Periwal–Shevitz) The Verblunsky coefficients βn(t) for the modified Bessel
measures satisfy a form of the discrete Painlevé II equation

−(n + 1)
βn(t)

t(1 − β2
n(t))

= βn+1(t) + βn−1(t), n ∈ Z+, (9.8.21)

with β−1 = −1, β0 = I1(2t)/I0(2t).

There are also differential relations satisfied by modified Bessel polynomials, their leading
coefficients, and Verblunsky coefficients, specific for this particular case. For instance (see
Ismail, 2005b, Lemma 8.3.6),

2
κn(t)

d
dt
κn(t) =

I1(t)
I0(t)

+ αn(t)αn−1(t),

d
dt
αn(t) =

I1(t)
I0(t)

+ αn+1(t) − (1 − |αn(t)|2)αn−1(t).

Concerning the long-time behavior of Verblunsky coefficients, the following result is proved
in Simon (2007b).

Theorem 9.8.12 Let μ(·, t) be the Bessel transformation (9.8.11). Suppose that μ(ζ, 0) =
w(ζ)dm, w is a positive and continuous function on T. Then for the Verblunsky coefficients
one has

(−1)nαn(t) = 1 − n + 1
4t
+ O

(
1
t

)
, t → ∞. (9.8.22)

In particular, (9.8.22) holds for βn(t). It might be a challenging problem to find an asymp-
totic series expansion for βn from (9.8.20) and the expansion for the modified Bessel function

Ik(t) � et

√
2πt

∞∑

j=0

(−1) j (4k2 − 12) · · · (4k2 − (2 j − 1)2)
j!(8t) j

, t → ∞.




