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1. Introduction

In his recent paper [9] V. A. Marchenko reverts to the classical subject of periodic

Jacobi matrices. He gives an intrinsic description of polynomials with all their

˙2-points real and so obtains parametrization of the Hill discriminants of such

matrices. His argument is straightforward and makes no appeal to conformal

mappings.
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The Hill discriminants play a crucial role in the problem related to periodic

Jacobi matrices we address in this note. Recall that Jacobi matrices are two-sided,

infinite, three-diagonal matrices of the form

J D

2

6

6

6

6

6

6

6

4

: : :
: : :

: : :

a�1 b0 a0

a0 b1 a1

a1 b2 a2

: : :
: : :

: : :

3

7

7

7

7

7

7

7

5

; bj 2 R; aj > 0: (1.1)

J is said to be periodic of period p 2 N WD ¹1; 2; : : :º, if

aj Cp D aj ; bj Cp D bj ; j 2 Z WD ¹0; ˙1; ˙2; : : :º:

A p-periodic Jacobi matrix J (1.1) generates in an obvious way a bounded,

self-adjoint, linear operator J on the Hilbert space `2.Z/. Its spectrum �.J / is

known to have a banded structure, i.e., it is composed of p spectral bands (closed

intervals)

�.J / D
p�1
[

j D0

Œ�C
j ; ��

j C1�; �C
0 < ��

1 � �C
1 < � � � < ��

p�1 � �C
p�1 < ��

p ; (1.2)

some of them can merge. A convex hall of the spectrum (the least interval that

contains the whole spectrum) is L D Œ�C
0 ; ��

p �.

The bands are interspersed with (interior) gaps

j WD .��
j ; �C

j /; j D 1; 2; : : : ; p � 1; ��
j � �C

j ; (1.3)

of the length jj j D �C
j � ��

j , and ��
j D �C

j means that the gap is closed

(the adjacent bands merge). Yet it seems advisable viewing a closed gap as an

actual gap (of zero length) rather than dealing with two merging bands as a single

one. We stick to this viewpoint consistently throughout the paper. We observe the

situation, when the closed gaps arise, in the simplest example of constant Jacobi

matrices J0 with aj D a0, bj D b0, j 2 Z. Now all gaps are closed, and the

spectrum �.J0/ D Œb0 � 2a0; b0 C 2a0� is a single interval. Following the above

convention, we can (and will) view such matrices as periodic of period p 2 N.

The well-known result of Borg–Hochstadt [3, 4], (see [11, Theorem 5.4.21]),

states, that the converse is also true. Precisely, a periodic Jacobi matrix J with

all gaps closed is constant, J D J0. For a simple linear algebraic approach to

this result see [2]. The problem we address here is stability (or a quantitative
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version) of this result. Specifically, we show that for periodic Jacobi matrices

with a “small” variation of parameters a’s and b’s, the gaps in their spectra are

“small”, and vice versa. The quantitative stability in the original Borg’s theorem

for the Hill operators on the real line was studied in [5].

To be more formal, given a bounded sequence c D ¹cj ºj 2Z of real numbers,

its variation is defined by

!c WD sup
i;j 2Z

.ci � cj / � 0: (1.4)

Let  be a maximal gap in the spectrum of J , so

j j D max
1�j �p�1

jj j: (1.5)

Here is the main result of the paper.

Theorem 1.1. Let J be a periodic Jacobi matrix (1.1) of period p. Then

!b � .p � 1/j j; !a � p2p
p j j: (1.6)

Furthermore,

!b C !a � j j
4

: (1.7)

In particular, j j D 0 (all gaps are closed) if and only if !a D !b D 0 (J is

a constant Jacobi matrix), so the result of Borg–Hochstadt follows. In the case of

periodic Jacobi matrices the supremum in the definition (1.4) is obviously attained,

for the matrix entries take only a finite number of values.

A periodic Jacobi matrix is said to be normalized if

p
X

j D1

bj D 0: (1.8)

Clearly, each Jacobi matrix can be normalized by adding an appropriate constant

to all b’s. Under such transformation (shift) neither the variation of the entries

along diagonals, nor the length of the maximal gap alters, so throughout the paper

we assume (1.8) to hold.

As in [9], the argument is by and large elementary, and relies upon some basic

properties of the Hill discriminant with regard to the spectrum �.J /, see [10,

Chapter 7], [11, Chapter 5].

A key ingredient of the proof is the extremal problem “Ja la” the Chebyshev

Alternance Theorem, suggested by Korotyaev and Kutsenko [7, Lemma 2.2].
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Let x D .x1; : : : ; xn/ 2 R
n, n � 2, and put

X.�/ D X.�; x/ WD
n

Y

j D1

.� � xj /:

A set Pn.c/ � Rn is defined by imposing the following conditions:

x D .x1; : : : ; xn/ 2 Pn.c/ if and only if

(1) x1 C � � � C xn D 0;

(2) jX.�/j � c; � 2 Œminj xj ; maxj xj �.

The result of Korotyaev–Kutsenko states that

sup¹kxk2 D x2
1 C � � � C x2

nW x 2 Pn.c/º D 2n
�c

2

�2=n

: (1.9)

It is instructive to paraphrase this result in a quantitative form. An algebraic

polynomial P with the roots ¹xj º is balanced, if x1 C � � � C xn D 0.

Theorem KK. Let

P.x/ D
n

Y

j D1

.x � xj / D xn C �2xn�2 C � � � ; x1 � � � � � xn;

be a balanced polynomial with the real roots ¹xj º. Then

n
X

j D1

x2
j � 2n

�kP k
2

�2=n

; kP k WD max
x2Œx1;xn�

jP.x/j: (1.10)

Clearly, the equality prevails in (1.10) for the monic Chebyshev polynomials

of the first kind.

The work on this note was inspired to a large extent by a recent paper [8]. Up to

distinction in terminology and notation, [8] contains the upper bound for !b and

the lower bound (1.7). The main contribution of this note is a new upper bound

for !a in (1.6), providing thereby the quantitative stability in the Borg–Hochstadt

theorem in its full generality.

We illustrate our results on the example of 4-periodic Jacobi matrices.

Acknowledgement. The author thanks I. Egorova and A. Kutsenko for valuable

discussions.
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2. Proof of the main result: upper bounds

We recall some rudiments of the theory of Jacobi matrices [10, 11].

The basic recurrence relation for Jacobi matrices (1.1) is of the form

Jy D �y � an�1yn�1 C bnyn C anynC1 D �yn; � 2 C; n 2 Z; (2.1)

and a pair of special solutions of (2.1), ¹cn.�; m/ºn2Z and ¹sn.�; m/ºn2Z, m 2 Z,

with the initial data

sm�1.�; m/ D 0; sm.�; m/ D 1;

cm�1.�; m/ D �1; cm.�; m/ D 0;
(2.2)

is of particular concern. It is clear that smCj .�; m/ (cmCj .�; m/) is the algebraic

polynomial of degree j (j � 1), respectively.

The polynomial smCp�1 is crucial for the theory of periodic Jacobi matrices.

Its zeros ¹�.m/
j ºp�1

j D1 are known to be simple and real, and

apsmCp�1.�; m/ D
p�1
Y

j D1

.� � �
.m/
j / D �p�1 � �p�2

p�2
X

j D0

bmCj C � � � ;

a WD .a1 : : : ap/1=p:

(2.3)

In view of normalization (1.8) and periodicity,

p�1
X

j D1

�
.m/
j D

p�2
X

j D0

bmCj D �bmCp�1 D �bm�1;

so for each k; l 2 Z the following trace formula is valid

bk�1 � bl�1 D
p�1
X

j D1

.�
.l/
j � �

.k/
j /: (2.4)

On the other hand, for each m 2 Z the zero �
.m/
j 2 Nj D Œ��

j ; �C
j �, see, e.g.,

[10, formula (7.50)] and [11, Theorem 5.4.16], so

jbk�1 � bl�1j D
p�1
X

j D1

.�
.l/
j � �

.k/
j / � .p � 1/j j;

and the upper bound for !b in (1.6) follows.
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The upper bound for !a is much more intricate. Now the Hill discriminant D

appears on the central stage (see [11, Section 5.4] for a detailed account of discrim-

inants and their properties). This object arises in two guises: as a difference of the

special solutions of (2.1) (or, equivalently, the trace of the monodromy matrix)

D.�/ D smCp.�; m/ � cmCp�1.�; m/;

and as a characteristic polynomial of a certain Hermitian matrix

ap
D.�/ D det.� � ˆm/ D

p
Y

j D1

.� � dj /;

where a is defined in (2.3),

ˆm D

2

6

6

6

6

6

6

6

6

4

bm am amCp�1i

am bmC1 amC1

amC1 bmC2 amC2

: : :
: : :

: : :

amCp�2 bmCp�2 amCp�2

�amCp�1i amCp�1 bmCp�1

3

7

7

7

7

7

7

7

7

5

: (2.5)

As a matter of fact, D does not depend on m, and neither do its zeros ¹dj º. By

normalization (1.8) and (2.5), D is the balanced polynomial of degree p.

The zeros ¹dj ºp
j D1 of D (or, equivalently, the eigenvalues of ˆm) are known to

be real and simple. Evaluating of the trace of ˆ2
m in two ways provides, in view

of periodicity, another trace formula

tr ˆ2
m D

p
X

j D1

d 2
j D

p
X

j D1

.b2
j C 2a2

j /: (2.6)

There is a tight relation between the Hill discriminant and the spectrum of the

underlying Jacobi matrix J . Precisely,

�.J / D D
.�1/Œ�2; 2�; jD.�˙

j /j D 2;

so �.J / is the inverse image of the interval Œ�2; 2�, and jDj D 2 at all endpoints

of the spectrum. In other words, the set ¹�˙
j ºj constitutes the full collection of

˙2-points of the Hill discriminant.

Denote by 2M the sup-norm of the discriminant over the convex hall of the

spectrum

2M D kDk D kDkC.L/; L D Œ�C
0 ; ��

p �:
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Then, M � 1, and by the Borg–Hochstadt theorem, M D 1 if and only if j j D 0,

so J is the constant matrix. We exclude this case in what follows, so let M > 1.

The discriminant attains this extremum at some critical point �k 2 k D .��
k

; �C
k

/.

By the Taylor formula, there is � 2 Œ��
k

; �C
k

� so that for ��
k

� t � �C
k

the equality

D.t / D D.�k/ C D
0.�k/ .t � �k/ C D

00.�/

2
.t � �k/2

D D.�k/ C D
00.�/

2
.t � �k/2

holds. Putting t D �C
k

provides

2.M � 1/ D jD00.�/j
2

.�C
k

� �k/2;

or

.�C
k

� �k/2 D 4.M � 1/

jD00.�/j � 4.M � 1/

kD00k :

By A. Markov’s inequality for the interval L [1, Theorem 5.1.8],

kD00k � 4p4 M

jLj2 ;

and we end up with the lower bound for the length of the maximal gap

j j2 � .�C
k

� �k/2 � jLj2
p4

� M � 1

M
H) j j � jLj

p2
�
�M � 1

M

�1=2

: (2.7)

We distinguish two cases.

1. The case when M � 2 is simple. We show that not only the variation of aj ’s,

but the numbers aj ’s themselves are “small.” Indeed, it follows now from (2.7)

that

j j � jLjp
2p2

: (2.8)

Note that for an algebraic polynomial of degree p � 2 the sum of its ˛-points does

not depend on ˛. In particular, for a balanced polynomial the sum of its ˛-points

is zero. Hence, by (1.8),

�C
0 C ��

p C
p�1
X

j D1

.��
j C �C

j / D 2

p
X

j D1

bj D 0;

(the left-hand side being the sum of all ˙2-points of D), so �C
0 < 0 < ��

p . Since

dj 2 �.J /, we have

jdj j � jLj; j D 1; 2; : : : ; p;
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and the trace formula (2.6) implies

p
X

j D1

.b2
j C 2a2

j / D
p

X

j D1

d 2
j < p jLj2:

In view of (2.8), we come to the bound

max
j

aj <

r

p

2
jLj � p2p

p j j; (2.9)

as claimed.

2. Let us turn to the harder part 1 < M < 2. The extremal problem of

Korotyaev–Kutsenko comes into play here. We apply Theorem KK to the balanced

polynomial P D ap
D, a is defined in (2.3), to obtain

p
X

j D1

d 2
j � 2p

�1

2
kP kCŒd1;dp�

�2=p

� 2pa2M 2=p:

By the trace formula (2.6),

1

p

p
X

j D1

a2
j � a2M 2=p ;

and the arithmetic-geometric means (AGM for short) inequality yields

1

p

p
X

j D1

a2
j �

� 1

p

p
X

j D1

aj

�2

� 1

p

p
X

j D1

a2
j � a2 � a2.M 2=p � 1/: (2.10)

But the left-hand side of (2.10) is

1

p

p
X

j D1

a2
j �

� 1

p

p
X

j D1

aj

�2

D 1

p

p
X

j D1

.aj � sa/2; sa WD 1

p

p
X

j D1

aj :

To estimate the right-hand side of (2.10) from above, we apply the well-known

inequality

u� � 1 � �.u � 1/; u > 0; 0 < � � 1:

Thus, we come to the upper bound

1

p

p
X

j D1

.aj � sa/2 � 2a2

p
.M � 1/:
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To proceed further, recall the assumption 1 < M < 2. From (2.7) we derive

j j � jLjp
2p2

p
M � 1; M � 1 � 2p4

jLj2 j j2;

and so
1

p

p
X

j D1

.aj � sa/2 � 4a2p3

jLj2 j j2:

By [6, Lemma 2.2], jLj D ��
p � �C

0 � 4a, so, finally,

1

p

p
X

j D1

.aj � sa/2 � p3

4
j j2; jaj � saj � p2

2
j j (2.11)

for each j D 1; 2; : : : ; p. The latter inequality obviously implies (1.6) for !a. The

proof of the upper bounds in Theorem 1.1 is complete.

3. 4-periodic Jacobi matrices

Consider an instructive example of 4-periodic Jacobi matrices J with bj � 0,

j 2 Z. The Hill discriminant is now

D.�/ D smC4.�; m/ � cmC3.�; m/ D a�4.�4 � ˛�2 C ˇ/;

a4 D a1a2a3a4; ˛ WD a2
1 C a2

2 C a2
3 C a2

4; ˇ WD .a1a3/2 C .a2a4/2:

The equations D.�/ ˙ 2 D 0 are biquadratic, and their roots are

D.�/ � 2 D 0 H) � D ¹˙��
1 ; ˙�C

1 º;

D.�/ C 2 D 0 H) � D ¹˙��
2 ; ˙�C

2 º:

The above biquadratic equations can be solved explicitly

�˙
1 D

s

˛ ˙
p

DC

2
; �˙

2 D

s

˛ ˙
p

D�

2
;

where

DC WD ˛2 � 4.ˇ � 2a4/ D ˛2 � 4.a1a3 � a2a4/2

D ¹.a1 � a3/2 C .a2 C a4/2º¹.a1 C a3/2 C .a2 � a4/2º > 0;

D� WD ˛2 � 4.ˇ C 2a4/ D ˛2 � 4.a1a3 � a2a4/2

D ¹.a1 � a3/2 C .a2 � a4/2º¹.a1 C a3/2 C .a2 C a4/2º > 0:
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By the AGM inequality, p
D˙ � ˛; (3.1)

so all roots are real.

The spectrum is composed of four spectral bands symmetric with respect to

the origin

Sp.J / D Œ��
1 ; ��

2 � [ Œ�C
2 ; �C

1 � [ Œ���
2 ; ���

1 � [ Œ��C
1 ; ��C

2 �;

with 0 � ��
1 < ��

2 � �C
2 < �C

1 . The bands are separated with three gaps,

the interior one int D .���
1 ; ��

1 /, and two symmetric exterior ones, ˙ext,

ext D .��
2 ; �C

2 /. In view of (3.1), the length of ext is bounded from below by

p
2 jextj D

p
2.�C

2 � ��
2 /

D
q

˛ C
p

D� �
q

˛ �
p

D�

D 2
p

D�

p

˛ C
p

D� C
p

˛ �
p

D�

�
r

D�

2˛
:

Therefore,

2jextj �
r

D�

˛

D
p

.a1 � a3/2 C .a2 � a4/2

r

.a1 C a3/2 C .a2 C a4/2

˛

�
p

.a1 � a3/2 C .a2 � a4/2;

(see the definition of ˛), and so

max.ja1 � a3j; ja2 � a4j/ � 2jextj: (3.2)

In particular, if the exterior gaps are closed, then a1 D a3, a2 D a4, and the actual

period is 2.

As far as the interior gap goes, we see that

1

2
jintj D ��

1 D

s

˛ �
p

DC

2
D

p
2

ja1a3 � a2a4j
p

˛ C
p

DC
� ja1a3 � a2a4jp

˛
:

Note that if the interior gap is closed, then a1a3 D a2a4 (the period may still be 4).
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Assume with no loss of generality, that a1 C a2 � a3 C a4. Since

1 � a1 C a2 C a3 C a4p
˛

� 2;

we come to the bounds

1

2
� a1 C a2 C a3 C a4

2
p

˛
� a1 C a2p

˛
� a1 C a2 C a3 C a4p

˛
� 2: (3.3)

By (3.3),

ja1 � a2j
2

� a1 C a2p
˛

ja1 � a2j D ja2
1 � a2

2jp
˛

:

On the other hand, we write

a2
1 � a2

2 D .a1a3 � a2a4/ C a1.a1 � a3/ C a2.a4 � a2/;

to obtain, in view of (3.2), (3.3),

ja2
1 � a2

2jp
˛

� ja1a3 � a2a4jp
˛

C a1p
˛

ja1 � a3j C a2p
˛

ja2 � a4j

� 1

2
jintj C 2jextj

a1 C a2p
˛

� 1

2
jintj C 4jextj:

Hence,

ja1 � a2j � jintj C 8jextj � 9j j; j j WD max.jintj; jextj/

is the length of the maximal gap in the spectrum.

Next, by (3.2),

ja3 � a4j � ja3 � a1j C ja1 � a2j C ja2 � a4j � jintj C 12jextj;

and we end up with the following bound for the variation of the a’s diagonal

!a � jintj C 12jextj � 13j j: (3.4)

The opposite inequalities can be proved along the same line of reasoning.

Indeed,

jintj D 2
p

2
ja1a3 � a2a4j
p

˛ C
p

DC
� 2

p
2p

˛
.ja3 � a4ja1 C ja1 � a2ja4/ � 4

p
2 !a;
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and

jextj D
p

2D�

p

˛ C
p

D� C
p

˛ �
p

D�

�
r

2D�

˛

D
p

2
p

.a1 � a3/2 C .a2 � a4/2

r

.a1 C a3/2 C .a2 C a4/2

˛

� 2
p

2 max.ja1 � a3j; ja2 � a4j/
� 2

p
2 !a:

(3.5)

4. Proof of the main result: lower bound

We suggest here a proof of the lower bound (1.7), alternative to one in [8, Theorem

3.2]. It has nothing to do with periodicity and applies to arbitrary bounded Jacobi

matrices. The argument is based on some general facts from the perturbation

theory (perturbation of the spectra).

We say that .�; �0/ is a gap in the spectrum of a bounded, self-adjoint operator

T on a Hilbert space, if

.�; �0/
\

�.T / D ;; �; �0 2 �.T /:

The result below is likely to be well known. We provide its proof for the sake

of completeness.

Lemma 4.1. Let T0 be a bounded, self-adjoint operator on a Hilbert space with

the spectrum �.T0/ D Œu0; v0�, a single interval. Let T be a bounded, self-adjoint

operator so that kT � T0k � ı. Then the length of each gap .��; �C/ in �.T /

does not exceed 2ı.

Proof. Denote by Œu; v� the convex hall of �.T /, i.e., the least closed interval,

which contains �.T /. By the hypothesis on the perturbation, we have

u0 � u C ı; v0 � v � ı:

Assume, on the contrary, that �C � �� > 2ı. Take the middle point of the gap

w D .�� C �C/=2, so

w � �� > ı H) w � u > ı; w > u C ı � u0;

�C � w > ı H) v � w > ı; w < v � ı � v0;

and therefore, w 2 Œu0; v0� D �.T0/.



Borg–Hochstadt theorem 1519

Pick a positive number � so that

0 < � <
�C � �� � 2ı

2ı
;

�C � ��

2
> .1 C �/ı: (4.1)

We invoke the resolvent operators R.z; T0/ D .T0 � z/�1, R.z; T / D .T � z/�1,

and write the equalities

R.z; T / � R.z; T0/ D �R.z; T /.T � T0/R.z; T0/;

R.z; T / D .I � R.z; T /.T � T0// R.z; T0/:

Put z D w C i", " > 0 so, by (4.1),

kR.z; T /k�1 D dist.z; �.T // �
p

.1 C �/2ı2 C "2 > .1 C �/ı;

kR.z; T /k <
1

.1 C �/ı
:

Then

kR.z; T /.T � T0/k <
1

1 C �
;

and the operator I � R.z; T /.T � T0/ is invertible with

k.I � R.z; T /.T � T0//�1k � 1 C �

�
:

Consequently,

R.z; T0/ D .I � R.z; T /.T � T0//�1 R.z; T /;

kR.z; T0/k � k.I � R.z; T /.T � T0//�1k kR.z; T /k � 1

�ı
:

On the other hand, w 2 �.T0/ implies

kR.w C i"; T0/k D "�1 ! C1; " ! 0 C :

The contradiction completes the proof. �

Proposition 4.2. Let J be a bounded Jacobi matrix (1.1), and .��; �C/ be a gap

in its spectrum. Then

�C � �� � 2.!b C 2!a/:
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Proof. We apply Lemma 4.1 for the case T D J , T0 D J˛;ˇ , a constant Jacobi

matrix with ˛’s along the main diagonal and ˇ’s along the off-diagonals, where ˛

and ˇ are suitable constants. Then

J � J˛;ˇ D

2

6

6

6

6

6

6

6

4

: : :
: : :

: : :

a�1 � ˛ b0 � ˇ a0 � ˛

a0 � ˛ b1 � ˇ a1 � a

a1 � ˛ b2 � ˇ a2 � ˛

: : :
: : :

: : :

3

7

7

7

7

7

7

7

5

;

and, as is well known (see, e.g., [11, formula (1.3.29)]),

kJ � J˛;ˇ k � sup
j

jbj � ˇj C 2 sup
j

jaj � ˛j:

Take infj bj � ˇ � supj bj , infj aj � ˛ � supj aj , so for each k 2 Z

jbk � ˇj � max.bk � inf
j

bj ; sup
j

bj � bk/ � !b;

jak � ˛j � max.ak � inf
j

aj ; sup
j

aj � ak/ � !a:

It follows that kJ � J˛;ˇ k � !b C 2!a, and application of Lemma 4.1 completes

the proof. �

The lower bound (1.7) is a straightforward consequence of the latter result.

Remark 4.3. The Borg–Hochstadt theorem is known to hold for a wider class

of reflectionless Jacobi matrices [10, Corollary 8.6]. One may conjecture that its

quantitative form, Theorem 1.1, remains valid in this setting (at least in the finite-

gap case) as well.

Furthermore, the following extended version of the Borg–Hochstadt theorem

is known to hold, see [4], [11, Theorem 5.13.9].

Let J be a periodic Jacobi matrix (1.1) of period p D kq with k and q integral.

Suppose that all the gaps j are closed for j 6D k; 2k; : : : ; .q � 1/k. Then J is

periodic at period q.

It is quite conceivable that this version of the Borg–Hochstadt theorem is stable

in the above sense. Precisely, one may conjecture that

c1 max¹jj jW j 6� 0.mod k/º � max
ji�j jDq

.ai � aj / C max
ji�j jDq

.bi � bj /

� c2 max¹jj jW j 6� 0.mod k/º

holds. We observed such phenomenon for p D 4 D 2 � 2 in (3.2) and (3.5).
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