

On a Local Darlington Synthesis Problem

L. Golinskii¹

Received: 9 March 2017 / Accepted: 1 April 2017 / Published online: 10 April 2017 © Springer International Publishing 2017

Abstract The Darlington synthesis problem (in the scalar case) is a problem of embedding a given contractive analytic function to an inner 2×2 matrix function as an entry. A fundamental result of Arov–Douglas–Helton relates this algebraic property to a purely analytic one known as a pseudocontinuation of bounded type. We suggest a local version of the Darlington synthesis problem and prove a local analog of the ADH theorem.

Keywords Darlington synthesis · Pseudocontinuation · Inner matrix function · Unitary matrix · Nevanlinna, Schur and Smirnov classes

Mathematics Subject Classification 30H05 · 30H15 · 30C80

1 Introduction

The Darlington synthesis with its origin in electrical engineering has a long history. The synthesis of non-lossless circuits was a hard problem at the time when computers were unavailable. The idea of the Darlington synthesis was to reduce any such problem to a lossless one.

A mathematical setup in the simplest scalar case looks as follows, see [1-3,5], [6, Section 8.6] and [7, Section 6.7].

Communicated by Vladimir Bolotnikov.

L. Golinskii golinskii@ilt.kharkov.ua

¹ B. Verkin Institute for Low Temperature Physics and Engineering, 47 Science Ave., Kharkov 61103, Ukraine

An analytic function *s* on the unit disk \mathbb{D} is called a *Schur* (*contractive*) function, $s \in S$, if $|s| \le 1$ in \mathbb{D} . Similarly, an analytic on $\mathbb{D} 2 \times 2$ matrix function *S* (throughout this note we deal only with matrices of order 2) is a Schur (contractive) matrix function, $S \in S^{(m)}$, if

$$I - S^*(z)S(z) \ge 0, \quad z \in \mathbb{D},$$

I is a unity matrix. A function $s \in S$ (a matrix function $S \in S^{(m)}$) is said to be *inner* (*matrix*) function if its boundary values, which exist almost everywhere on the unit circle \mathbb{T} , are unimodular (unitary). Given $s \in S$, the Darlington synthesis problem asks whether there exists an inner matrix function $S \in S^{(m)}$ so that

$$S(z) = \|s_{ij}(z)\|_{i,j=1}^2 : \quad s_{22}(z) = s(z).$$
(1.1)

A seminal result of Arov [1] and Douglas–Helton [3] states that a Schur function admits the Darlington synthesis if and only if it possesses a pseudocontinuation of bounded type across \mathbb{T} . Recall that a meromorphic function of bounded type on a region Ω is the quotient of two bounded (or contractive) analytic on Ω functions

$$f(z) = \frac{f_1(z)}{f_2(z)}, \quad f_j \in \mathcal{S}(\Omega).$$

$$(1.2)$$

Such functions constitute the Nevanlinna class $N(\Omega)$.

The goal of this note is to suggest a local version of the Darlington synthesis problem and to prove a local analog of the Arov–Douglas–Helton theorem. As usual, \mathbb{D}_e stands for the exterior of the unit disk with respect to the extended complex plane \mathbb{C} .

Definition 1.1 Let γ be an arc of the unit circle (the case $\gamma = \mathbb{T}$ is not excluded). A function $f \in N(\mathbb{D})$ admits a *pseudocontinuation of bounded type across* γ if there is a function $\tilde{f} \in N(\mathbb{D}_e)$ so that their boundary values agree

$$f(t) = f(t) \text{ a.e. on } \gamma. \tag{1.3}$$

We write $f \in PC_{\gamma}$ for such functions. The class PC_{γ} is nontrivial, see Example 2.1 in Sect. 2.

Theorem 1.2 *Let* $s \in S$. *The following conditions are equivalent.*

- (1) There is a matrix function $S = ||s_{ij}||_{i,j=1}^2$ so that $s_{ij} \in S$, $s_{22} = s$, and S is unitary *a.e.* on the arc γ ;
- (2) $s \in PC_{\gamma}$.

In the case $\gamma = \mathbb{T}$, the above matrix function *S* is inner due to the Maximum Norm Principle, and we come to the Arov–Douglas–Helton theorem.

Given an arc γ , we denote by $S_{\gamma}(N_{\gamma})$ the class of the Schur (Nevanlinna) functions, unimodular a.e. on γ . Similarly, $S_{\gamma}^{(m)}$ stands for the class of the Schur matrix functions unitary a.e. on γ .

It is clear that a matrix function with contractive entries does not necessarily belong to $S^{(m)}$. So the question arises naturally whether the matrix *S* in Theorem 1.2 can be taken from $S_{\gamma}^{(m)}$. If $s \in S_{\gamma}$, the answer is affirmative: the matrix function

$$S(z) = \begin{bmatrix} s_{11}(z) & 0\\ 0 & s(z) \end{bmatrix}$$
(1.4)

with an arbitrary inner function s_{11} belongs to $S_{\gamma}^{(m)}$. But, in general, the answer is negative. The reason is that *s* being an entry of a contractive, nondiagonal matrix function is supposed to obey a *global* condition

$$\int_{\mathbb{T}} \log(1 - |s(t)|^2) \, m(dt) > -\infty, \tag{1.5}$$

m is the normalized Lebesgue measure on \mathbb{T} . As it turns out, this condition is also sufficient.

Theorem 1.3 Let $s \in S'_{\gamma} = S \setminus S_{\gamma}$. The following conditions are equivalent.

(1) There is a matrix function $V = ||v_{ij}||_{i,j=1}^2 \in S_{\gamma}^{(m)}$ so that $v_{22} = s$; (2) $s \in PC_{\gamma}$ and (1.5) holds.

In contrast to the case $\gamma = \mathbb{T}$ of the whole unit circle, we have neither the model spaces theory nor the Douglas–Shapiro–Shields theorem at hand. So the argument is by and large straightforward and relies upon explicit (in a sense) expressions for the matrix entries of the matrices in question.

2 Local Pseudocontinuation and Darlington Synthesis

Let us begin with the classes S_{γ} and N_{γ} , which play the same role as the class of inner functions does in the classical setting of the Darlington synthesis problem.

Example 2.1 Let $a \in N_{\gamma}$. Write

$$\tilde{a}(\zeta) := \frac{1}{a(1/\bar{\zeta})}, \quad \zeta \in \mathbb{D}_e.$$
(2.1)

Then $\tilde{a} \in N(\mathbb{D}_e)$ and $\tilde{a} = a$ a.e. on γ , so $N_{\gamma} \subset PC_{\gamma}$. In particular, $s \in S_{\gamma}$ implies $s \in PC_{\gamma} \setminus PC_{\mathbb{T}}$, as soon as *s* is not an inner function.

Proof of Theorem 1.2 (1) \Rightarrow (2). The argument here is standard. By the hypothesis, det $S \neq 0$, so we write

$$U(\zeta) := (S^{-1})^* (1/\bar{\zeta}) = \frac{1}{\det S(1/\bar{\zeta})} \left[\frac{\overline{s(1/\bar{\zeta})}}{-s_{12}(1/\bar{\zeta})} \frac{-\overline{s_{21}(1/\bar{\zeta})}}{s_{11}(1/\bar{\zeta})} \right], \quad \zeta \in \mathbb{D}_e.$$
(2.2)

It is clear that all entries of U belong to $N(\mathbb{D}_e)$, and U = S a.e. on γ . Hence, s admits the pseudocontinuation of bounded type across γ , $s \in PC_{\gamma}$, with

$$\tilde{s}(\zeta) = \frac{s_{11}(1/\bar{\zeta})}{\det S(1/\bar{\zeta})}.$$

Note that in fact each entry of the bounded matrix function S, unitary a.e. on γ , is in the class PC_{γ} .

(2) \Rightarrow (1). If $s \in S_{\gamma}$, the result follows immediately from (1.4). So we assume further that $s \in S'_{\gamma} = S \setminus S_{\gamma}$.

Define a pair of functions on \mathbb{D}

$$g(z) := \overline{\tilde{s}(1/\overline{z})} \in N(\mathbb{D}), \quad h(z) := 1 - g(z)s(z) \in N(\mathbb{D}), \tag{2.3}$$

where \tilde{s} is the pseudocontinuation of bounded type of s across γ . Now, $s \notin S_{\gamma}$ implies $h \neq 0$, so $\log |h| \in L^1(\mathbb{T})$, see [4, Theorem 2.2], and

$$\int_{\gamma} \log |h(t)| \, m(dt) = \int_{\gamma} \log(1 - |s(t)|^2) \, m(dt) > -\infty.$$
(2.4)

We see that $\log(1-|s|^2) \in L^1(\gamma)$ as long as $s \in PC_{\gamma} \setminus S_{\gamma}$, which is a local counterpart of the relation (1.5).

In view of (2.4), the function

$$\sigma_{\gamma}(z) := \exp\left\{\frac{1}{2} \int_{\gamma} \frac{t+z}{t-z} \log(1-|s(t)|^2) m(dt)\right\}$$
(2.5)

is a well-defined, outer Schur function, $\sigma_{\gamma} \in S_{out}$, with the boundary values

$$|\sigma_{\gamma}(t)|^{2} = 1 - |s(t)|^{2} \text{ a.e. on } \gamma, \quad |\sigma_{\gamma}(t)| = 1 \text{ a.e. on } \gamma' := \mathbb{T} \setminus \gamma.$$
(2.6)

We choose $s_{12} := \sigma_{\gamma}$.

Going back to the Nevanlinna functions g, h in (2.3), we write

$$g(z) = \frac{g_1(z)}{g_2(z)} = \frac{I_{g_1}(z)O_{g_1}(z)}{I_{g_2}(z)O_{g_2}(z)}, \quad g_j \in \mathcal{S},$$

$$h(z) = \frac{h_1(z)}{h_2(z)} = \frac{I_{h_1}(z)O_{h_1}(z)}{I_{h_2}(z)O_{h_2}(z)}, \quad h_j \in \mathcal{S},$$

where $f = I_f O_f$ is the standard inner-outer factorization of a Schur function f. We proceed with the further factorization of the outer factors with respect to γ , precisely,

$$O(z) = O(z, \gamma)O(z, \gamma'),$$

$$O(z, \Gamma) := \exp\left\{\frac{1}{2} \int_{\Gamma} \frac{t+z}{t-z} \log|O(t)| m(dt)\right\}$$
(2.7)

for the arc $\Gamma = \gamma, \gamma'$. We have $O(\cdot, \Gamma) \in S_{out}$ and

$$|O(t,\gamma)| = 1 \text{ a.e. on } \gamma', \quad |O(t,\gamma')| = 1 \text{ a.e. on } \gamma.$$
(2.8)

Hence,

$$g(z) = \frac{I_{g_1}(z) O_{g_1}(z, \gamma) O_{g_1}(z, \gamma')}{I_{g_2}(z) O_{g_2}(z, \gamma) O_{g_2}(z, \gamma')},$$

$$h(z) = \frac{I_{h_1}(z) O_{h_1}(z, \gamma) O_{h_1}(z, \gamma')}{I_{h_2}(z) O_{h_2}(z, \gamma) O_{h_2}(z, \gamma')}.$$
(2.9)

Put

$$p(z) := I_{g_2}(z) I_{h_2}(z) O_{g_2}(z, \gamma') O_{h_2}(z, \gamma'), \qquad (2.10)$$

so |p| = 1 a.e. on γ . Our choice of s_{11} and s_{21} is

$$s_{11}(z) := -p(z)g(z) = -I_{g_1}(z)I_{h_2}(z) O_{g_1}(z,\gamma')O_{h_2}(z,\gamma') \frac{O_{g_1}(z,\gamma)}{O_{g_2}(z,\gamma)},$$

$$s_{21}(z) := p(z) \frac{h(z)}{\sigma_{\gamma}(z)} = I_{g_2}(z)I_{h_1}(z) O_{g_2}(z,\gamma')O_{h_1}(z,\gamma') \frac{O_{h_1}(z,\gamma)}{O_{h_2}(z,\gamma)\sigma_{\gamma}(z)}.$$
(2.11)

It is clear that $s_{22} = s$ and $s_{12} = \sigma_{\gamma}$ in (2.5) are contractive functions. As for s_{11} and s_{21} (2.11), we note that they belong to an important subclass $N^+(\mathbb{D}) \subset N(\mathbb{D})$ of the Nevanlinna class, which is usually referred to as the Smirnov class, see [4, Section 2.5]. It is characterized by the denominator in (1.2) being an outer Schur function, which is exactly the case in (2.11). The main feature of this class is the Smirnov maximum modulus principle, [4, Theorem 2.11], which states that

$$f \in N^+(\mathbb{D}), \quad |f(t)| \le 1 \text{ a.e. on } \mathbb{T} \implies f \in \mathcal{S}.$$
 (2.12)

In view of (2.8), we obtain $|s_{11}| \le 1$, $|s_{21}| \le 1$ a.e. on γ' . Next, as we have already mentioned, |p| = 1 a.e. on γ , so

$$|s_{11}(t)| \le |g(t)| = |s(t)| \le 1, \quad |s_{21}(t)| \le \frac{|h(t)|}{|\sigma_{\gamma}(t)|} = (1 - |s(t)|^2)^{1/2} \le 1$$

a.e. on γ , and the first claim of the Theorem follows from (2.12).

To show that S is unitary a.e. on γ , we put

$$S^{*}(t)S(t) = \begin{bmatrix} |s_{11}(t)|^{2} + |s_{21}(t)|^{2} & \overline{s_{11}(t)}s_{12}(t) + \overline{s_{21}(t)}s(t) \\ s_{11}(t)\overline{s_{12}(t)} + s_{21}(t)\overline{s(t)} & |s_{12}(t)|^{2} + |s(t)|^{2} \end{bmatrix}.$$

By (2.6),

$$|s_{12}(t)|^{2} + |s(t)|^{2} = |\sigma_{\gamma}(t)|^{2} + |s(t)|^{2} = 1 - |s(t)|^{2} + |s(t)|^{2} = 1$$

a.e. on γ . Next, |p| = 1 a.e. on γ implies

$$|s_{11}(t)|^{2} + |s_{21}(t)|^{2} = |g(t)|^{2} + \frac{|h(t)|^{2}}{|\sigma_{\gamma}(t)|^{2}} = |s(t)|^{2} + 1 - |s(t)|^{2} = 1.$$

Finally, by (2.6) and the definition of h,

$$s_{11}(t)\overline{s_{12}(t)} + s_{21}(t)\overline{s(t)} = p(t)\left(-g(t)\overline{\sigma_{\gamma}(t)} + \frac{h(t)}{\sigma_{\gamma}(t)}\overline{s(t)}\right)$$
$$= p(t)\overline{s(t)}\left(-\overline{\sigma_{\gamma}(t)} + \frac{h(t)}{\sigma_{\gamma}(t)}\right) = 0$$

a.e. on γ . So, $S^*S = I$, as claimed. The proof is complete.

Proof of Theorem 1.3 (1) \Rightarrow (2). By Theorem 1.2, $s \in PC_{\gamma}$, so we should verify condition (1.5). Note that at least one of the functions v_{12} , v_{21} is not identically zero (otherwise, $s \in S_{\gamma}$). Assume that $v_{12} \neq 0$ and write

$$I - V^*(t)V(t) = \begin{bmatrix} * & * \\ * & 1 - |v_{12}(t)|^2 - |s(t)|^2 \end{bmatrix} \ge 0, \quad t \in \mathbb{T},$$

so $1 - |s(t)|^2 \ge |v_{12}(t)|^2$. Since $\log |v_{12}| \in L^1(\mathbb{T})$, the condition (1.5) follows.

(2) \Rightarrow (1). The matrix *V* arises as an appropriate modification of the matrix *S* from Theorem 1.2. By (1.5), the function

$$\sigma_{\gamma'}(z) := \exp\left\{\frac{1}{2} \int_{\gamma'} \frac{t+z}{t-z} \log(1-|s(t)|^2) m(dt)\right\}$$

is well-defined and lies in S_{out} . Denote by *e* the outer Schur function with

|e(t)| = 1 a.e. on γ , $|e(t)| = \varepsilon$ a.e. on γ' ,

where $0 < \varepsilon < 1/3$ is a small enough positive constant, and put $r := e\sigma_{\gamma'}$. Take the matrix V in question as

$$V(z) = \begin{bmatrix} r(z) & 0 \\ 0 & 1 \end{bmatrix} S(z) \begin{bmatrix} r(z) & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} r^2(z)s_{11}(z) & r(z)s_{12}(z) \\ r(z)s_{21}(z) & s(z) \end{bmatrix},$$

As both *e* and $\sigma_{\gamma'}$ are unimodular on γ , then so is *r*, and thereby *V* is unitary a.e. on γ .

It remains to check that $V \in S^{(m)}$. To this end we put for $t \in \gamma'$

$$W(t) = \begin{bmatrix} w_{11}(t) & w_{12}(t) \\ w_{21}(t) & w_{22}(t) \end{bmatrix} := I - V^*(t)V(t)$$
$$= \begin{bmatrix} 1 - |r^2s_{11}|^2 - |rs_{21}|^2 & -\bar{r}|r|^2s_{12}\overline{s_{11}} - \overline{rs_{21}}s \\ -r|r|^2s_{11}\overline{s_{12}} - rs_{21}\overline{s} & 1 - |rs_{12}|^2 - |s|^2 \end{bmatrix}.$$

Since

$$r(z)s_{12}(z) = e(z)\sigma_{\gamma'}(z)\sigma_{\gamma}(z) = e(z) \exp\left\{\frac{1}{2}\int_{\mathbb{T}}\frac{t+z}{t-z}\log(1-|s(t)|^2)m(dt)\right\},\$$

then $|rs_{12}|^2 = \varepsilon^2 (1 - |s|^2)$, and so

$$w_{22}(t) = 1 - |r(t)s_{12}(t)|^2 - |s(t)|^2 = (1 - \varepsilon^2)(1 - |s(t)|^2) \ge 0$$
(2.13)

a.e. on γ' . Next, the functions r, s_{11}, s_{21} are contractive, hence,

$$w_{11}(t) = 1 - |r^{2}(t)s_{11}(t)|^{2} - |r(t)s_{21}(t)|^{2} = 1 - |r(t)|^{2} (|r(t)s_{11}(t)|^{2} + |s_{21}(t)|^{2})$$

= $1 - \varepsilon^{2} (1 - |s(t)|^{2}) (|r(t)s_{11}(t)|^{2} + |s_{21}(t)|^{2}) \ge 1 - 2\varepsilon^{2} (1 - |s(t)|^{2})$

and for $0 < \varepsilon < 1/3$

$$w_{11}(t) \ge 1 - 2\varepsilon^2 (1 - |s(t)|^2) > \frac{7}{9}$$
 (2.14)

a.e. on γ' . Finally,

$$-w_{21}(t) = r(t)\left(s_{21}(t)\overline{s(t)} + |r(t)|^2 s_{11}(t)\overline{s_{12}(t)}\right) = r(t)v(t), \quad |v(t)| \le 2,$$

and thereby,

$$W(t) \ge \begin{bmatrix} \frac{7}{9} & -\overline{r(t)v(t)} \\ -r(t)v(t) & (1-\varepsilon^2)(1-|s(t)|^2) \end{bmatrix} = \widetilde{W}(t) = \|\widetilde{w}_{ij}(t)\|_{i,j=1}^2.$$

To show that $\widetilde{W} \ge 0$ a.e. on γ' , given $\widetilde{w}_{11} \ge 0$, $\widetilde{w}_{22} \ge 0$, we compute the determinant of \widetilde{W} , keeping in mind $0 < \varepsilon < 1/3$:

$$\tilde{w}_{11}(t)\tilde{w}_{22}(t) - |\tilde{w}_{12}(t)|^2 = \frac{7}{9}(1-\varepsilon^2)(1-|s(t)|^2) - |\varepsilon v(t)|^2(1-|s(t)|^2)$$
$$\geq \left(\frac{7}{9}(1-\varepsilon^2) - 4\varepsilon^2\right)(1-|s(t)|^2) \geq \frac{2}{9}(1-|s(t)|^2) \geq 0$$

a.e. on γ' . So, $V \in \mathcal{S}_{\gamma}^{(m)}$, and the proof is complete.

We complete this note with some properties of the pseudocontinuation of bounded type across an arc.

Proposition 2.2 Let $s_1, s_2 \in S$ and $|s_1| = |s_2|$ a.e. on an arc γ . Then s_1 and s_2 belong to PC_{γ} simultaneously.

Proof Let $s_1 \in PC_{\gamma}$. We have the canonical factorization

$$s_k(z) = I_k(z)O_k(z, \gamma)O_k(z, \gamma'), \quad k = 1, 2,$$

and, by the assumption, $O_1(\cdot, \gamma) = O_2(\cdot, \gamma)$. Hence,

$$s_2(z) = a(z)s_1(z), \quad a(z) := \frac{I_2(z)O_2(z,\gamma')}{I_1(z)O_1(z,\gamma')}.$$

The function $a \in N_{\gamma}$, so, see Example 2.1, $a \in PC_{\gamma}$. The later class is closed under multiplication, so $s_2 \in PC_{\gamma}$, which is our claim.

Recall that σ_{γ} is defined in (2.5) under the condition (2.4).

Proposition 2.3 Let $s \in S$ and $\log(1 - |s|^2) \in L^1(\gamma)$. Then

$$s \in PC_{\gamma} \Leftrightarrow \sigma_{\gamma} \in PC_{\gamma}.$$

Proof As we mentioned earlier in the proof of Theorem 1.2, each entry of the bounded matrix function *S*, unitary a.e. on γ , is in the class PC_{γ} . If $s \in PC_{\gamma}$, the matrix function *S* in Theorem 1.2 contains both *s* and σ_{γ} as its entries, and we are done.

Conversely, let $\sigma_{\gamma} \in PC_{\gamma}$. By Theorem 1.2, there is a matrix function Σ with contractive entries, unitary a.e. on γ , and

$$\Sigma(z) = \begin{bmatrix} \sigma_{11}(z) & \sigma_{12}(z) \\ \sigma_{21}(z) & \sigma_{\gamma}(z) \end{bmatrix}.$$

In particular, $|\sigma_{12}|^2 + |\sigma_{\gamma}|^2 = 1$, and so $|\sigma_{12}| = |s|$ a.e. on γ . The function σ_{12} , being the entry of Σ , belongs to the class PC_{γ} . By Proposition 2.2, so does *s*, as claimed.

Remark 2.4 The fact that γ is the arc of the unit circle is obviously immaterial. The argument works for an arbitrary Borel set $\gamma \subset \mathbb{T}$ of positive Lebesgue measure.

Acknowledgements I thank the participants of the Analysis Seminar at Kharkiv National University for valuable discussions.

References

- Arov, D.Z.: Darlington's method in the study of dissipative systems. Dokl. Akad. Nauk SSSR 201(3), 559–562 (1971)
- Arov, D.Z.: Realization of matrix-valued functions according to Darlington. Izv. Akad. Nauk SSSR Ser. Mat. 7(6), 1295–1326 (1973)
- Douglas, R.G., Helton, J.W.: Inner dilations of analytic matrix functions and Darlington synthesis. Acta Sci. Math. (Szeged) 34, 61–67 (1973)
- Duren, P.: Theory of H^p Spaces, Pure and Applied Mathematics, vol. 38. Academic Press, New York (1970)
- 5. Garcia, S.R.: Inner matrices and Darlington synthesis. Methods Funct. Anal. Topol. 11(1), 37–47 (2005)
- Garcia, S.R., Mashreghi, J., Ross, W.T.: Introduction to Model Spaces and Their Operators, Cambridge Studies in Advanced Mathematics, vol. 148. Cambridge University Press, Cambridge (2016)
- Ross, W.T., Shapiro, H.S.: Generalized Analytic Continuation, University Lecture Series, vol. 25. AMS, Providence (2002)