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Abstract The Darlington synthesis problem (in the scalar case) is a problem of embed-
ding a given contractive analytic function to an inner 2 x 2 matrix function as an entry.
A fundamental result of Arov—Douglas—Helton relates this algebraic property to a
purely analytic one known as a pseudocontinuation of bounded type. We suggest a
local version of the Darlington synthesis problem and prove a local analog of the ADH
theorem.
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1 Introduction

The Darlington synthesis with its origin in electrical engineering has a long history.
The synthesis of non-lossless circuits was a hard problem at the time when computers
were unavailable. The idea of the Darlington synthesis was to reduce any such problem
to a lossless one.

A mathematical setup in the simplest scalar case looks as follows, see [1-3,5], [6,
Section 8.6] and [7, Section 6.7].
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An analytic function s on the unit disk D is called a Schur (contractive) function,
s € §,if |s| < 1in D. Similarly, an analytic on D 2 x 2 matrix function S (throughout
this note we deal only with matrices of order 2) is a Schur (contractive) matrix function,
Sesm, if

I —8%(2)S(zx) =0, zeD,

[ is a unity matrix. A function s € S (a matrix function § € S) is said to be inner
(matrix) function if its boundary values, which exist almost everywhere on the unit
circle T, are unimodular (unitary). Given s € S, the Darlington synthesis problem
asks whether there exists an inner matrix function S € S so that

S@2) = lsijDIF jy : 522(2) = 5(2). (1.1)

A seminal result of Arov [1] and Douglas—Helton [3] states that a Schur function
admits the Darlington synthesis if and only if it possesses a pseudocontinuation of
bounded type across T. Recall that a meromorphic function of bounded type on a
region €2 is the quotient of two bounded (or contractive) analytic on €2 functions

_h@
f@) = @) fi € S(Q). (1.2)

Such functions constitute the Nevanlinna class N (£2).

The goal of this note is to suggest a local version of the Darlington synthesis problem
and to prove a local analog of the Arov—Douglas—Helton theorem. As usual, D, stands
for the exterior of the unit disk with respect to the extended complex plane C.

Definition 1.1 Let y be an arc of the unit circle (the case y = T is not excluded). A
function f € N(ID) admits a pseudocontinuation of bounded type across y if there is
a function f € N(D,) so that their boundary values agree

f@t) = f(t) a.e. ony. (1.3)

We write f € PC,, for such functions. The class PC), is nontrivial, see Example 2.1
in Sect. 2.

Theorem 1.2 Let s € S. The following conditions are equivalent.

(1) Thereis a matrix function S = ||s;; ||,.2_j:l sothats;j € S, sy = s, and S is unitary
a.e. on the arc y;
(2) s € PCy,.

In the case y = T, the above matrix function S is inner due to the Maximum Norm
Principle, and we come to the Arov—Douglas—Helton theorem.

Given an arc y, we denote by S,, (N,,) the class of the Schur (Nevanlinna) functions,
unimodular a.e. on y. Similarly, S](,m) stands for the class of the Schur matrix functions
unitary a.e. on y.
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It is clear that a matrix function with contractive entries does not necessarily belong
to S So the question arises naturally whether the matrix S in Theorem 1.2 can be

taken from S If s € S,,, the answer is affirmative: the matrix function

_|su@ 0
S(z) = [ 0 s(z):| (1.4)

with an arbitrary inner function s1; belongs to S](,'") . But, in general, the answer is
negative. The reason is that s being an entry of a contractive, nondiagonal matrix
function is supposed to obey a global condition

/log(l — |s()|?) m(dt) > —o0, (1.5)
T

m is the normalized Lebesgue measure on T. As it turns out, this condition is also
sufficient.

Theorem 1.3 Let s € S)’/ = S\S,. The following conditions are equivalent.

(1) There is a matrix function V = ||v;; ||i2,j:1 € S)(,m) so that vy, = s;
(2) s € PCy and (1.5) holds.

In contrast to the case y = T of the whole unit circle, we have neither the model
spaces theory nor the Douglas—Shapiro—Shields theorem at hand. So the argument is
by and large straightforward and relies upon explicit (in a sense) expressions for the
matrix entries of the matrices in question.

2 Local Pseudocontinuation and Darlington Synthesis

Let us begin with the classes S, and N,,, which play the same role as the class of inner
functions does in the classical setting of the Darlington synthesis problem.

Example 2.1 Leta € N,,. Write

1
ag) = ¢ € D,. 2.1

a(1/2)

Thena € N(D.) and @ = a a.e. on y, so N, C PC,. In particular, s € S, implies
s € PC,\PCr, as soon as s is not an inner function.

Proof of Theorem 1.2 (1) = (2). The argument here is standard. By the hypothesis,
det S £ 0, so we write

UE) = (SH* /¢

__ [ s(1/5). —s21<1/_;>] (. 0
det S(1/¢) | —s12(1/¢) s (1/¢)
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It is clear that all entries of U belong to N(D,),and U = S a.e. on y. Hence, s admits
the pseudocontinuation of bounded type across y, s € PC,,, with

s11(1/¢)

5() = ——.
det S(1/2)

Note that in fact each entry of the bounded matrix function S, unitary a.e. on y, is in
the class PC,,.

2) = (). If s € S, the result follows immediately from (1.4). So we assume
further that s € S, = S\S, .

Define a pair of functions on D

g(@)=5(1/2) e ND), h(z) :=1-g(2)s(z) € ND), (2.3)

where § is the pseudocontinuation of bounded type of s across y. Now, s ¢ S, implies
h #£ 0, solog |h| € LI(T), see [4, Theorem 2.2], and

/log|h(t)|m(dt)=/log(1 — s m(dt) > —oo. 2.4)
Y

14

We see thatlog(1—|s |2) elL! (y)aslongass € PC,\S,, whichis alocal counterpart
of the relation (1.5).
In view of (2.4), the function

2

oy (2) :=exp {l / rte log(1 — |s(t)|2)m(dt)} 2.5)
Y

is a well-defined, outer Schur function, o), € Sy, with the boundary values
lo, (D1 =1—|s1)> ae.ony, |o,(0)] =1 ae ony :=T\y. (2.6)

We choose 512 := 0.
Going back to the Nevanlinna functions g, & in (2.3), we write

_ 810 _ 15,204 ) .
922 Iy (2)04()" 7
h@z) Iy, (2)O0n (2)

— = . h; €S,
@ In@on@ S

8(2) €S,

h(z)

where f = IOy is the standard inner-outer factorization of a Schur function f. We
proceed with the further factorization of the outer factors with respect to y, precisely,

0(x) = 0(z, )0z, ¥,

1 2.7
0(z,T) ::exp{z/l:;i——ilogm(tﬂm(dt)} &0
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for the arc ' = y, y’. We have O(-,T") € S,,r and

|O(t,y)|=1 ae.ony’, |0, v) =1 ae.ony. (2.8)
Hence,
2(2) = I (2)Og (2, ¥) Oyg, (2, ¥
14,(2) g, (2, ) O0gy (2, ¥’ 2.9)
h(Z) _ Ihl(Z)Ohl(Z, V)Ohl(za )//) .
Iny(2) Oy (2, ¥) Opy (2, )
Put
P(2) = 1g,(2) I, (2) Ogy (2, ¥") Opy (2, ¥"), (2.10)

so |p] = 1 a.e. on y. Our choice of 511 and s> is

, 04z y)

s11(2) == =p(2)g(2) = —lgy (D) 1y (2) Og, (2, ¥') Oy (2, 77) OZ;(; J)j)’
h , 0 1 9

521(2) 1= p(2) © _ Iey (@11, () Ogy (2.7 On, (2. ¥') —— “D
oy (2)

On,(z, 7)oy (2)
.11

It is clear that so» = s and s12 = 0 in (2.5) are contractive functions. As for 511
and s71 (2.11), we note that they belong to an important subclass N*(D) ¢ N(D) of
the Nevanlinna class, which is usually referred to as the Smirnov class, see [4, Section
2.5]. Tt is characterized by the denominator in (1.2) being an outer Schur function,
which is exactly the case in (2.11). The main feature of this class is the Smirnov
maximum modulus principle, [4, Theorem 2.11], which states that

feNtTMD), |f@®)<1aeonT = feb. (2.12)

In view of (2.8), we obtain |s;1| < 1, |s21] < I a.e. on y’. Next, as we have already
mentioned, |p| = 1 a.e. on y, so

@]

_ 20172
o (O] (I—=I|s@mH' =<1

st < lg =Is@®] =1, [s0()] =

a.e. on y, and the first claim of the Theorem follows from (2.12).
To show that S is unitary a.e. on y, we put

% [ Isu®P + Isa01? s11()s12(8) + Szl(l)s(l)]
SO0 = [su(t>m(r>+s21(t>ﬁ s + s |

By (2.6),

Isi2(O1 + 1s()* = loy O + s> = 1 — |s@)* + s> = 1
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a.e.on y. Next, |p| = 1 a.e. on y implies

|h(®)I]
oy ()2

st (D1 + [s21 () = [g(0)]* + = s +1—[s()* =1.

Finally, by (2.6) and the definition of #,

N - - h _
SO0 + 5150 = ) (~2 (03, + 50

oy (1)
O (0,0 + 1) —g
= p S —0. =
’ oy (1)
a.e.on y. So, §*S = I, as claimed. The proof is complete. O

Proof of Theorem 1.3 (1) = (2). By Theorem 1.2, s € PC,, so we should verify
condition (1.5). Note that at least one of the functions vj2, v2; is not identically zero
(otherwise, s € S, ). Assume that v # 0 and write

b3 B3
1= lup@)?—1s@®))?

I —-V*)V() = [ } >0, teT,

so 1 — |s(1)|*> = |vi2(r)|?. Since log |v12| € L'(T), the condition (1.5) follows.
(2) = (1). The matrix V arises as an appropriate modification of the matrix S from
Theorem 1.2. By (1.5), the function

2

0y(2) = exp L log(1 — [s(t)|*) m(d1)
yl—z

is well-defined and lies in S,,;;. Denote by e the outer Schur function with
le(t)] =1 a.e.ony, l|e(t)|=-¢ a.e.ony,

where 0 < & < 1/3 is a small enough positive constant, and put r := eo,/. Take the
matrix V in question as

_[r@ o r@ 0] _[rP@s11(@) r@)si2(2)
V(Z)_[ 0 1} S(Z)[ 0 1}_[7(Z)sz1(z) 5(z) ]

As both e and o7,/ are unimodular on y, then so is r, and thereby V is unitary a.e. on

y.
It remains to check that V € S”. To this end we put for t € y’

wi () wi)
wa1 (1) waa(t)

_ [1 —r2si|? = |rsu > —Flr|?s10511 — VS21S1|

W) = [ } =1-V*®OV(@)

—r|r|?s11512 — rs215 1 — |rsia]?> — Is|?



On a Local Darlington Synthesis Problem 875

Since
r(2)s12(2) = e(z)oy/(2)0y (2) = e(2) eXp{ / oo og(l — |s(®)] )m(dt)}

then |rsi2|? = ¢2(1 — |s|?), and so
_ 2 2 _ 2 2
wnl)=1—[r@®sp® —ls@ =0 -e)(1 —[|s()]") =0 (2.13)
a.e. on y’. Next, the functions r, 511, s21 are contractive, hence,

wi (@) = 1= [r2(Os11 (O = 1r @511 = 1= [r@OP(Ir@)si @ + Is21(0)1?)
=1—&*(1 = [s@P)r®si O + 2105 = 1= 2621 — [s()[%)

andforO <e < 1/3
7
wi () > 1 =221 — |s()]?) > 5 (2.14)

a.e. on y’. Finally,

w21 (1) = r()(s21)s(0) + [r (O s11(Ds12(0) = rv(e),  v@)] < 2,
and thereby,

& —r () (r)

W= |:—r(t)v(t) (1 =eH)(1= s

} = W) = ;07 ;-

To show thatNVT/ > 0 ae. on y/, given wy; > 0, Wy > 0, we compute the
determinant of W, keeping in mind 0 < ¢ < 1/3:

7
W11 ()W (t) — [W1)|* = 51— e (1 —[s()*) — lev®)*(1 — [s(1)[*)
= (50— —4) A~ 5P 2 § (1~ 5P 20

ae.ony’.So,V e 8)(,’"), and the proof is complete. O

We complete this note with some properties of the pseudocontinuation of bounded
type across an arc.

Proposition 2.2 Let sy, so € Sand |s1| = |sz| a.e. onanarcy. Then sy and sy belong
to PC,, simultaneously.

Proof Let sy € PC,. We have the canonical factorization

sk(2) = (D) Ok(z, Y) Ok(z, v)), k=12,
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and, by the assumption, O1(-, y) = O3(-, y). Hence,

L(2)02(z, ¥")

52(2) = a(z2)s1(2), a(z) = m

The function a € N, so, see Example 2.1, a € PC, . The later class is closed under
multiplication, so s € PC,, which is our claim. O

Recall that o, is defined in (2.5) under the condition (2.4).

Proposition 2.3 Let s € S and log(1 — |s|?) € L'(y). Then
s € PC, &0, €PC,.

Proof As we mentioned earlier in the proof of Theorem 1.2, each entry of the bounded
matrix function S, unitary a.e. on y,isintheclass PC,.If s € PC,,the matrix function
S in Theorem 1.2 contains both s and o, as its entries, and we are done.

Conversely, let 0, € PC,. By Theorem 1.2, there is a matrix function ¥ with
contractive entries, unitary a.e. on y, and

$(2) = |:011(Z) 012(1)] .

021(2) 0y (2)

In particular, |o12|? 4 |0y |* = 1, and so |o12| = |s| a.e. on y. The function o1, being
the entry of X, belongs to the class PC,. By Proposition 2.2, so does s, as claimed.
O

Remark 2.4 The fact that y is the arc of the unit circle is obviously immaterial. The
argument works for an arbitrary Borel set y C T of positive Lebesgue measure.
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