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Abstract TheDarlington synthesis problem (in the scalar case) is a problemof embed-
ding a given contractive analytic function to an inner 2×2 matrix function as an entry.
A fundamental result of Arov–Douglas–Helton relates this algebraic property to a
purely analytic one known as a pseudocontinuation of bounded type. We suggest a
local version of the Darlington synthesis problem and prove a local analog of the ADH
theorem.
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1 Introduction

The Darlington synthesis with its origin in electrical engineering has a long history.
The synthesis of non-lossless circuits was a hard problem at the time when computers
were unavailable. The idea of theDarlington synthesis was to reduce any such problem
to a lossless one.

A mathematical setup in the simplest scalar case looks as follows, see [1–3,5], [6,
Section 8.6] and [7, Section 6.7].
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An analytic function s on the unit disk D is called a Schur (contractive) function,
s ∈ S, if |s| ≤ 1 inD. Similarly, an analytic onD 2× 2 matrix function S (throughout
this notewe deal onlywithmatrices of order 2) is a Schur (contractive)matrix function,
S ∈ S(m), if

I − S∗(z)S(z) ≥ 0, z ∈ D,

I is a unity matrix. A function s ∈ S (a matrix function S ∈ S(m)) is said to be inner
(matrix) function if its boundary values, which exist almost everywhere on the unit
circle T, are unimodular (unitary). Given s ∈ S, the Darlington synthesis problem
asks whether there exists an inner matrix function S ∈ S(m) so that

S(z) = ‖si j (z)‖2i, j=1 : s22(z) = s(z). (1.1)

A seminal result of Arov [1] and Douglas–Helton [3] states that a Schur function
admits the Darlington synthesis if and only if it possesses a pseudocontinuation of
bounded type across T. Recall that a meromorphic function of bounded type on a
region � is the quotient of two bounded (or contractive) analytic on � functions

f (z) = f1(z)

f2(z)
, f j ∈ S(�). (1.2)

Such functions constitute the Nevanlinna class N (�).
The goal of this note is to suggest a local version of theDarlington synthesis problem

and to prove a local analog of the Arov–Douglas–Helton theorem. As usual,De stands
for the exterior of the unit disk with respect to the extended complex plane C̄.

Definition 1.1 Let γ be an arc of the unit circle (the case γ = T is not excluded). A
function f ∈ N (D) admits a pseudocontinuation of bounded type across γ if there is
a function f̃ ∈ N (De) so that their boundary values agree

f (t) = f̃ (t) a.e. on γ. (1.3)

We write f ∈ PCγ for such functions. The class PCγ is nontrivial, see Example 2.1
in Sect. 2.

Theorem 1.2 Let s ∈ S. The following conditions are equivalent.

(1) There is a matrix function S = ‖si j‖2i, j=1 so that si j ∈ S, s22 = s, and S is unitary
a.e. on the arc γ ;

(2) s ∈ PCγ .

In the case γ = T, the above matrix function S is inner due to the Maximum Norm
Principle, and we come to the Arov–Douglas–Helton theorem.

Given an arc γ , we denote bySγ (Nγ ) the class of the Schur (Nevanlinna) functions,

unimodular a.e. on γ . Similarly, S(m)
γ stands for the class of the Schur matrix functions

unitary a.e. on γ .
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It is clear that a matrix function with contractive entries does not necessarily belong
to S(m). So the question arises naturally whether the matrix S in Theorem 1.2 can be
taken from S(m)

γ . If s ∈ Sγ , the answer is affirmative: the matrix function

S(z) =
[
s11(z) 0
0 s(z)

]
(1.4)

with an arbitrary inner function s11 belongs to S(m)
γ . But, in general, the answer is

negative. The reason is that s being an entry of a contractive, nondiagonal matrix
function is supposed to obey a global condition

∫
T

log(1 − |s(t)|2)m(dt) > −∞, (1.5)

m is the normalized Lebesgue measure on T. As it turns out, this condition is also
sufficient.

Theorem 1.3 Let s ∈ S ′
γ = S\Sγ . The following conditions are equivalent.

(1) There is a matrix function V = ‖vi j‖2i, j=1 ∈ S(m)
γ so that v22 = s;

(2) s ∈ PCγ and (1.5) holds.

In contrast to the case γ = T of the whole unit circle, we have neither the model
spaces theory nor the Douglas–Shapiro–Shields theorem at hand. So the argument is
by and large straightforward and relies upon explicit (in a sense) expressions for the
matrix entries of the matrices in question.

2 Local Pseudocontinuation and Darlington Synthesis

Let us begin with the classes Sγ and Nγ , which play the same role as the class of inner
functions does in the classical setting of the Darlington synthesis problem.

Example 2.1 Let a ∈ Nγ . Write

ã(ζ ) := 1

a(1/ζ̄ )
, ζ ∈ De. (2.1)

Then ã ∈ N (De) and ã = a a.e. on γ , so Nγ ⊂ PCγ . In particular, s ∈ Sγ implies
s ∈ PCγ \PCT, as soon as s is not an inner function.

Proof of Theorem 1.2 (1) ⇒ (2). The argument here is standard. By the hypothesis,
det S �≡ 0, so we write

U (ζ ) := (S−1)∗(1/ζ̄ )

= 1

det S(1/ζ̄ )

[
s(1/ζ̄ ) −s21(1/ζ̄ )

−s12(1/ζ̄ ) s11(1/ζ̄ )

]
, ζ ∈ De. (2.2)
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It is clear that all entries ofU belong to N (De), andU = S a.e. on γ . Hence, s admits
the pseudocontinuation of bounded type across γ , s ∈ PCγ , with

s̃(ζ ) = s11(1/ζ̄ )

det S(1/ζ̄ )
.

Note that in fact each entry of the bounded matrix function S, unitary a.e. on γ , is in
the class PCγ .

(2) ⇒ (1). If s ∈ Sγ , the result follows immediately from (1.4). So we assume
further that s ∈ S ′

γ = S\Sγ .
Define a pair of functions on D

g(z) := s̃(1/z̄) ∈ N (D), h(z) := 1 − g(z)s(z) ∈ N (D), (2.3)

where s̃ is the pseudocontinuation of bounded type of s across γ . Now, s /∈ Sγ implies
h �≡ 0, so log |h| ∈ L1(T), see [4, Theorem 2.2], and

∫
γ

log |h(t)|m(dt) =
∫

γ

log(1 − |s(t)|2)m(dt) > −∞. (2.4)

We see that log(1−|s|2) ∈ L1(γ ) as long as s ∈ PCγ \Sγ , which is a local counterpart
of the relation (1.5).

In view of (2.4), the function

σγ (z) := exp

{
1

2

∫
γ

t + z

t − z
log(1 − |s(t)|2)m(dt)

}
(2.5)

is a well-defined, outer Schur function, σγ ∈ Sout , with the boundary values

|σγ (t)|2 = 1 − |s(t)|2 a.e. on γ, |σγ (t)| = 1 a.e. on γ ′ := T\γ. (2.6)

We choose s12 := σγ .
Going back to the Nevanlinna functions g, h in (2.3), we write

g(z) = g1(z)

g2(z)
= Ig1(z)Og1(z)

Ig2(z)Og2(z)
, g j ∈ S,

h(z) = h1(z)

h2(z)
= Ih1(z)Oh1(z)

Ih2(z)Oh2(z)
, h j ∈ S,

where f = I f O f is the standard inner-outer factorization of a Schur function f . We
proceed with the further factorization of the outer factors with respect to γ , precisely,

O(z) = O(z, γ )O(z, γ ′),

O(z, �) := exp

{
1

2

∫
�

t + z

t − z
log |O(t)|m(dt)

}
(2.7)
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for the arc � = γ, γ ′. We have O(·, �) ∈ Sout and

|O(t, γ )| = 1 a.e. on γ ′, |O(t, γ ′)| = 1 a.e. on γ. (2.8)

Hence,

g(z) = Ig1(z)Og1(z, γ )Og1(z, γ
′)

Ig2(z)Og2(z, γ )Og2(z, γ
′)

,

h(z) = Ih1(z)Oh1(z, γ )Oh1(z, γ
′)

Ih2(z)Oh2(z, γ )Oh2(z, γ
′)

.

(2.9)

Put
p(z) := Ig2(z)Ih2(z) Og2(z, γ

′)Oh2(z, γ
′), (2.10)

so |p| = 1 a.e. on γ . Our choice of s11 and s21 is

s11(z) := −p(z)g(z) = −Ig1(z)Ih2(z) Og1(z, γ
′)Oh2(z, γ

′)
Og1(z, γ )

Og2(z, γ )
,

s21(z) := p(z)
h(z)

σγ (z)
= Ig2(z)Ih1(z) Og2(z, γ

′)Oh1(z, γ
′) Oh1(z, γ )

Oh2(z, γ )σγ (z)
.

(2.11)
It is clear that s22 = s and s12 = σγ in (2.5) are contractive functions. As for s11

and s21 (2.11), we note that they belong to an important subclass N+(D) ⊂ N (D) of
the Nevanlinna class, which is usually referred to as the Smirnov class, see [4, Section
2.5]. It is characterized by the denominator in (1.2) being an outer Schur function,
which is exactly the case in (2.11). The main feature of this class is the Smirnov
maximum modulus principle, [4, Theorem 2.11], which states that

f ∈ N+(D), | f (t)| ≤ 1 a.e. on T ⇒ f ∈ S. (2.12)

In view of (2.8), we obtain |s11| ≤ 1, |s21| ≤ 1 a.e. on γ ′. Next, as we have already
mentioned, |p| = 1 a.e. on γ , so

|s11(t)| ≤ |g(t)| = |s(t)| ≤ 1, |s21(t)| ≤ |h(t)|
|σγ (t)| = (1 − |s(t)|2)1/2 ≤ 1

a.e. on γ , and the first claim of the Theorem follows from (2.12).
To show that S is unitary a.e. on γ , we put

S∗(t)S(t) =
[ |s11(t)|2 + |s21(t)|2 s11(t)s12(t) + s21(t)s(t)
s11(t)s12(t) + s21(t)s(t) |s12(t)|2 + |s(t)|2

]
.

By (2.6),

|s12(t)|2 + |s(t)|2 = |σγ (t)|2 + |s(t)|2 = 1 − |s(t)|2 + |s(t)|2 = 1
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a.e. on γ . Next, |p| = 1 a.e. on γ implies

|s11(t)|2 + |s21(t)|2 = |g(t)|2 + |h(t)|2|
|σγ (t)|2 = |s(t)|2 + 1 − |s(t)|2 = 1.

Finally, by (2.6) and the definition of h,

s11(t)s12(t) + s21(t)s(t) = p(t)
(
−g(t)σγ (t) + h(t)

σγ (t)
s(t)

)

= p(t)s(t)
(
−σγ (t) + h(t)

σγ (t)

)
= 0

a.e. on γ . So, S∗S = I , as claimed. The proof is complete. 
�
Proof of Theorem 1.3 (1) ⇒ (2). By Theorem 1.2, s ∈ PCγ , so we should verify
condition (1.5). Note that at least one of the functions v12, v21 is not identically zero
(otherwise, s ∈ Sγ ). Assume that v12 �≡ 0 and write

I − V ∗(t)V (t) =
[∗ ∗
∗ 1 − |v12(t)|2 − |s(t)|2

]
≥ 0, t ∈ T,

so 1 − |s(t)|2 ≥ |v12(t)|2. Since log |v12| ∈ L1(T), the condition (1.5) follows.
(2) ⇒ (1). The matrix V arises as an appropriate modification of the matrix S from

Theorem 1.2. By (1.5), the function

σγ ′(z) := exp

{
1

2

∫
γ ′

t + z

t − z
log(1 − |s(t)|2)m(dt)

}

is well-defined and lies in Sout . Denote by e the outer Schur function with

|e(t)| = 1 a.e. on γ, |e(t)| = ε a.e. on γ ′,

where 0 < ε < 1/3 is a small enough positive constant, and put r := eσγ ′ . Take the
matrix V in question as

V (z) =
[
r(z) 0
0 1

]
S(z)

[
r(z) 0
0 1

]
=

[
r2(z)s11(z) r(z)s12(z)
r(z)s21(z) s(z)

]
,

As both e and σγ ′ are unimodular on γ , then so is r , and thereby V is unitary a.e. on
γ .

It remains to check that V ∈ S(m). To this end we put for t ∈ γ ′

W (t) =
[
w11(t) w12(t)
w21(t) w22(t)

]
:= I − V ∗(t)V (t)

=
[
1 − |r2s11|2 − |rs21|2 −r̄ |r |2s12s11 − rs21s
−r |r |2s11s12 − rs21s 1 − |rs12|2 − |s|2

]
.
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Since

r(z)s12(z) = e(z)σγ ′(z)σγ (z) = e(z) exp

{
1

2

∫
T

t + z

t − z
log(1 − |s(t)|2)m(dt)

}
,

then |rs12|2 = ε2(1 − |s|2), and so

w22(t) = 1 − |r(t)s12(t)|2 − |s(t)|2 = (1 − ε2)(1 − |s(t)|2) ≥ 0 (2.13)

a.e. on γ ′. Next, the functions r, s11, s21 are contractive, hence,

w11(t) = 1 − |r2(t)s11(t)|2 − |r(t)s21(t)|2 = 1 − |r(t)|2(|r(t)s11(t)|2 + |s21(t)|2
)

= 1 − ε2(1 − |s(t)|2)(|r(t)s11(t)|2 + |s21(t)|2) ≥ 1 − 2ε2(1 − |s(t)|2)

and for 0 < ε < 1/3

w11(t) ≥ 1 − 2ε2(1 − |s(t)|2) >
7

9
(2.14)

a.e. on γ ′. Finally,

−w21(t) = r(t)
(
s21(t)s(t) + |r(t)|2s11(t)s12(t)

) = r(t)v(t), |v(t)| ≤ 2,

and thereby,

W (t) ≥
[ 7

9 −r(t)v(t)
−r(t)v(t) (1 − ε2)(1 − |s(t)|2)

]
= W̃ (t) = ‖w̃i j (t)‖2i, j=1.

To show that W̃ ≥ 0 a.e. on γ ′, given w̃11 ≥ 0, w̃22 ≥ 0, we compute the
determinant of W̃ , keeping in mind 0 < ε < 1/3:

w̃11(t)w̃22(t) − |w̃12(t)|2 = 7

9
(1 − ε2)(1 − |s(t)|2) − |εv(t)|2(1 − |s(t)|2)

≥
(7
9

(1 − ε2) − 4ε2
)
(1 − |s(t)|2) ≥ 2

9
(1 − |s(t)|2) ≥ 0

a.e. on γ ′. So, V ∈ S(m)
γ , and the proof is complete. 
�

We complete this note with some properties of the pseudocontinuation of bounded
type across an arc.

Proposition 2.2 Let s1, s2 ∈ S and |s1| = |s2| a.e. on an arc γ . Then s1 and s2 belong
to PCγ simultaneously.

Proof Let s1 ∈ PCγ . We have the canonical factorization

sk(z) = Ik(z)Ok(z, γ )Ok(z, γ
′), k = 1, 2,
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and, by the assumption, O1(·, γ ) = O2(·, γ ). Hence,

s2(z) = a(z)s1(z), a(z) := I2(z)O2(z, γ ′)
I1(z)O1(z, γ ′)

.

The function a ∈ Nγ , so, see Example 2.1, a ∈ PCγ . The later class is closed under
multiplication, so s2 ∈ PCγ , which is our claim. 
�

Recall that σγ is defined in (2.5) under the condition (2.4).

Proposition 2.3 Let s ∈ S and log(1 − |s|2) ∈ L1(γ ). Then

s ∈ PCγ ⇔ σγ ∈ PCγ .

Proof Aswementioned earlier in the proof of Theorem 1.2, each entry of the bounded
matrix function S, unitary a.e. onγ , is in the class PCγ . If s ∈ PCγ , thematrix function
S in Theorem 1.2 contains both s and σγ as its entries, and we are done.

Conversely, let σγ ∈ PCγ . By Theorem 1.2, there is a matrix function � with
contractive entries, unitary a.e. on γ , and

�(z) =
[
σ11(z) σ12(z)
σ21(z) σγ (z)

]
.

In particular, |σ12|2 + |σγ |2 = 1, and so |σ12| = |s| a.e. on γ . The function σ12, being
the entry of �, belongs to the class PCγ . By Proposition 2.2, so does s, as claimed.


�
Remark 2.4 The fact that γ is the arc of the unit circle is obviously immaterial. The
argument works for an arbitrary Borel set γ ⊂ T of positive Lebesgue measure.
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