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We consider a system of N spiking neurons with random synaptic connections which
take values 1 with equal probability. The resulting system of equations has a stationary
solution equal to 1 for the fraction of neurons having potential  at time ¢. This solution
describes an asynchronous state. We study the stability of such a state in a perturbative
way and find a threshold for the parameters of the model such that for values larger
than this threshold the stationary asynchronous state is stable otherwise it is unstable.
In other terms the stability of the asynchronous state holds only for relatively small
random perturbations.
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1. Introduction and Main Results

This paper is dedicated to Professor Francesco Guerra for the celebration of his
60-th birthday. Francesco Guerra has given many important contributions to the
rigorous theory of disordered systems and it is a honor for us that this paper
is considered to share the same attitude : to find as many as possible rigorous
derivations about disordered systems. The disordered system we consider in this
work is a system of I& F' neurons and we deal with the question about the stability of
the asynchronous states of a system of neurons. The synchronized (or asynchronous)
behavior of systems of neurons is a central issue for the existence of biological
organisms. One example is the Parkinson’s disease which takes place mostly for the
synchronized activity of a particular system of neurons. The stability of synchronous
and asynchronous state of activity of neurons is as important as the existence of
such states. One way of treating the Parkinson’s disease is to send a bipolar electric
impulse to the firing neurons which makes the synchronized system unstable 2.

aAnother important example is synchronization of firing characteristics of epileptic activity (see
Ref. 1)
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The question of synchronization of activity states of neurons has bean treated
by means of models of interacting neurons by various authors (see Refs. 2-13).
Some authors considered the influence of excitatory and inhibitory coupling (see
Refs. 3, 11, 5,14) but usually it has been considered only one type of interaction:
either excitatory or inhibitory coupling. Thus Abbot et al* have found results on
the stability of synchronous and asynchronous state of firing neurons as a function
of the sign of the synaptic interaction. In Ref. 3 the authors show, for example, that
if the input to a neurons is inhibitory then the synchronous state is always stable.
This unexpected result makes the problem more appealing. In Ref. 4 it is studied
the stability of asynchronous state of N interacting IF neurons with excitatory
coupling.

An interesting problem is to describe the behavior of the membrane potential in
a network of neurons with both excitatory and inhibitory connections possibly ran-
domly distributed. This case is not dealt in the previous literature and we analyze
it in the present paper.

We consider the synaptic interaction as a variable E(t) characterizing the time
evolution of the current coming from the different neurons and multiply it by a
random variable 7); which takes values £1 with probability one half. This implies
that the dynamical equations of the IF system of neurons have a more complicated
structure because the right hand side contains a stochastic process generated by
the sum of the random contributions of the synaptic inputs.

The state analyzed in this paper is the case of asynchronous firing, i.e. a state
with uniform distribution of neural activities. We have to introduce another (
stochastic differential) equation for the synaptic interaction with respect to the
system treated in Ref. 4.

The stability of the system is derived by studying the dispersion of the stochastic
process defining the synaptic interaction. We study the simple case of the evolution
equations

zi(t) = F(z;) + £(6)G(w:) (1)

for 0 < z; <1,i=1,...,N and F(z) and G(z) being constant. We find that
the dispersion of £(t) remains always bounded and &(t) converges to a stationary
stochastic process. On the other hand, there is a threshold for F'/G such that above
it the dispersion of an arbitrary small perturbation & (¢) remains bounded and
below it the dispersion grows up to the infinity. In other words, if the random
interaction is small enough with respect to the deterministic part, then the system
is stable and the opposite takes place for large random interaction.

The system of equations (1) describes the behavior of a system of N IF neurons .
When z; reaches 1, it emits a spike and resets immediately to 0 in this case £(t), the
synaptic input to the neurons connected with the neuron reaching the threshold, is
incremented as follows:

£(t) = £(t) + aj—ﬁ<> (2)
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where o is a constant characterizing the strength of the synaptic coupling, ¢; is the
moment of the j-th spike, and {#;} are independent random variables for different
spikes, assuming values £1 with probability % The spike moments ¢; are dependent
random variables and their probability distribution for a finite number of neurons
is difficult to obtain. We think that it is possible to show that, for large values of
the number N of neurons, they become asymptotically independent, but we do not
use this in our consideration. Thus, the random interaction £(¢) has the form

Z 7a(t t;) (3)

By a standard way, denoting

N 1 1 dx’ _ .
va) =F | Fos B = [ 5 Do) = RGEF @),

we replace the system (1) by
y;(t) = Fo + &) D(yi), (4)

with the same condition at the point y = 1.
Let us define the function

~N(y,t) N Za yi(t )s (5)

where §(z) = 1 for z > 0 and §(z) = 0 for z < 0. Nn(y,t) is the ratio of the
number of neurons with y; > y and N. Then for any smooth function f(y) we have

1 & L
T 210 = | favi. ©
and
a 1 Al ]' J ! !
%N Zf(yi(t)) = sz (yi(t))y;(t)
|~ - (7)
= S PO F + €D = [ FG)Fs + €O D))

=1

Let us assume that for any y, ¢ there exists a limit
N—oco

this measure is absolutely continuous with respect to the Lebesgue measure and
the respective density p(y,t) is a smooth function in y,¢. Then (6) and (7) give us
in the limit N — oo:

/f oty = [ W)+ EODW. Dy
= [ 102 (B + €ODWI. 1)
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and since f(y) is an arbitrary function we obtain from (5), (4), defining the flow
function

J(y,t) = py, 1) (Fo + £(t) D(y)), (8)
the equation
0 3}
—p(y,t) = ——J(y,
5. 1) 3y J(y,1), (9)
with the periodic boundary conditions for J(y,t):
J(0,1) = J(1,1).
With above definitions representation (3) in the limit N — oo takes the form
t
) =a [ eI Dan(e)
0
t
= a [ e L) + @)D
0

where 7)(t) is a standard Gaussian white noise.
We study the simplest case when D(y) does not depend on y. Hence, in view of
the above discussion, we have to study the system of equations:

(10)

ap 0
— = —(F t)D)— t 0,t) = p(1,t
d(t) = —ag(t)dt + a\/p(1,t)(Fo + £(t)D)dn(t).
It is easy to see that this system has the solution
p(yat) =1, J(yat) = (FU +€0(t)D)a (12)
where the random process £y(t) is a solution of the stochastic differential equation
déo(t) = —ago(t)dt + an/Fo + &o(t) Ddn(t). (13)

We remark here that it is proven in Lemma 1 that the argument of the square root
is always positive.

Theorem 1: The process & (t) converge in probability, as ¢ — oc, to the stationary
diffusion process with the correlation function

R(t — 5) = Fo(2a) te (=9, (14)
To study the stability of solution (12) we take ¢ small and consider
ply,t) = L+epi(y. ), E(t) = &o(t) +&a(?). (15)
Then in the first order with respect to € we obtain the system:
0
= t) = —(F t)D)— t 0,t) = 1,
57 0 = ~(Fo + 6D i), m(0,0) = pr(1,0),

_ 4 ai (1) a
d& (t) = —a& (t)dt + D go(t)an(t) + 2/)1(1:t)\/F0 + &o(t) Ddn(t).
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Definition 2: We say that some solution (p, J, §) of the system of equations (8)-
(10) is stable, if for any perturbation p;(y,0) of the initial conditions, the pertur-
bation terms p1(y,t), & (¢) satisfy the inequalities:

1
E / |p1(y,t)|2dy}§ constE{max|p1(y,0)|2}

0 ! (17)
E ff(t)} < constE{ max, |p1(y,0)|2}.

Here and below we denote by the symbol E{...} the averaging with respect to all
random parameters of the problem.

F 1 F
Theorem 3: Solution (12) is stable if —_ >  and unstable if —

1
aD?2 ~ 4 oDz S 71

2. Proofs
Proof of Theorem 1: By using the representation

£(1) = e '6(0) + a / e -1) /(B + & @) D)dn(t), (18)

0
one can get easily that

E{&(t)} = e~ " E{&(0)},

so we get that the mean value of & (¢) tends to zero exponentially. Now for ¢ > s
let us write

t
&o(t) = fo(s)e_a(t_s) + a/ e_a(t_tl)\/Fo + & (¢)Ddn(t').

S

Multiplying this system by &y(s) and taking the expectation, we get
E{&(t)éo(s)} = E{&(s)éo(s)}e =2, (19)

because, as usually in the theory of stochastic integrals,
t
E{fg(s) / e~ t=t) JE fo(t’)an(t')}
t S
= E{ / e =) /Fy + & (') Ddn(t") fg(s)}E{fo(s)} =0.

Thus we are left to study E{&2(s)}. Using again formula (18), by the standard way
we get

B{éo(s)60(s)} = E{&(0)€a(0)}e 2% + E{ / 20l 4 D@(t'))dt'}

= E{&(0)&(0) ™20 + /0 | e 261 (Fy + DE{&(t)})dt’
= E{£(0)&(0)}e 225 + / e 206 (Fy + De ! E{&(0)})dt’
D

= B{&(0)6(0)}e > + 52 (1= e72%%) + —E{&(0)} (e — e ).

S
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Theorem 1 is proven. |
To prove Theorem 3 we need some additional information about &y(t).

Lemma 4: Denote v = 2(aD?) ' F,. Then
e = p{(Fy+ D) p < C <o (if7-150
and E(t) = o0, if y —1 < 0.

Proof: To simplify formulas below we make the change of variables

B = (aD?)~ !, t=(aD)%*

&(t) = Fo + DE(/(@D)?), (1) = p(t/(aD)?), n(t) = aD -n(t/(aD)?)
Then 4j(t) is again a standard white noise with respect to t. But to simplify the
notations below we write ¢ instead of ¢ and 7 instead of 7. Then (11) takes the form

9% -0
3; = ~(aD) 2Ea—yp(y,t)

dE(t) = —BE() — Fo)dt ++/a(L, DE®)dn(t) (21)
5(1,1

p(0,t) = p(1,1)

and (13) takes the form

(20)

déo(t) = —B(éo(t) — Fo)dt + \/ &o(t)dn (D), (22)

where & (t) = Fy + D& (t/(aD)?).
Let p(z,t|y, s) be the probability density of transition from y at time s to x at
time ¢ of the diffusion process generated by the solutions of the equation (22):

Prob{go(t) € ACR, |&(s) = y} = /Ap(a:,t ‘ y,8)dx. (23)

Then one can write the direct Kolmogorov equation or the Fokker-Planck equation
(see, e.g. Ref. 16) for the function p(z, tly, s):

%p Bon <($ - Fo)P) + %aa—; <:vp>- (24)

with the initial condition
p(x,s]y,s) = d(z —y). (25)
Taking the Fourier transform
ki tys) = [ *pia,s|y,5)dz,

we obtain from (24) the first order differential equation for p(k, t)

2A(k t )= (E —Bk)iA(k t )+ iBEokp(k,t ) (26)
8tp 0, Y,8) = 2 8kp 0, Y, S ? orRP\R, 1, Y,S
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with the initial and the boundary conditions
Let us make the change of variables

. 2BieB*
k=p"1l k=—=C

p Og_k+2z‘6 < eBk 1’
Pk, t) = eck:t),

Then we obtain the standard linear equation of the first order with respect to the
function c(k, t):

dc ¢ ., €

Therefore, by a standard method we get:

J /E Laprm 0,
C( ,t)—Co( —t+8)+/s B OW t (28)

=co(k—t+s)+20F, <10g(eﬁl~“ — 1) — log(eBk=t+s) _ 1)),

where the function ¢y should be found from the initial conditions:

QBeBk
eBk — 1

co(k) =iyk =y

So, we have from (28)

B 23eB(k—t+s)

C(k’,t) =y- W + QBF(] (10g(€ﬁk — 1) — log(eﬁ(k_t'i's) — 1)) .

k.t)

and putting p(k,t) = e“®! | we obtain :

Now, replacing Pl by kT
i

i . AT () ks (1)y
— 2B Fo 1 _
R e S s o S C)
with
2 2Be F7
M) = nm = 2

where 7 =1 — s.

We remark that one can get also another solution by separating the variables
of (26) which satisfies the initial condition in ¢ but doesn’t go to 0 for k — oo.

To find p(z,t|y,s) we have to take the inverse Fourier transform of (29):

A?ﬁFg (T)e—)\l (T)z—X2(1)y
t =
p(l', |y,3) 27T(2i,8)2BF0

X / dk(k + i) (1))~ 2PF0 exp{

i1 () Aa(T)y (30)

o+ i (7) —iz(k + i)\l(T))},
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We remark first that, by the standard method, i.e., taking the integral over the
contour |k| = R, Sk > 0 with R — oo instead of the real line, we get that for 2 < 0

p(z,t|y,s) = 0.
To take the integral in (30) for > 0 we observe that, if we define the function

w(z) =z"" / dk(k +i\) " Lexplia(k +i\) ! —i2%(k +i)\)}, (31)

then

2
1

w" = (V—2 +4a)w — —w' = 22w + 2w’ — (V? + 4az?)w = 0. (32)
2 2

Indeed, denoting for simplicity
7, = /dk(k i\ Y explialk+iN) " —i22(k+iN)}, @ =v—1uv+1),

we have

w=2z""Tyy1,
w = —vz VT — 2027V, (33)
w" = v(v+ 1) 27"y + 2020 — 1)2~"T, — 42T, _,.

From the second line we get

—2iz7 ", = w' + vz . (34)
Besides, integrating by parts, we obtain
/dk(— ia izz)exp{z’a(k +iA) "t —i22(k +iN)}
(k+1iX)? (k+ix)v—!
-1 dkexp{ia(k +iXN) 7 —iz2?(k + 1))}
(k + i\ (35)

= 22T, 1 = —aTl,4 +i(v - 1)1,
=27V, 1 = —aw+i(v—1)27VT,

- —aw-C" '+ Y

= —aw 5 (w' + zw).
Substituting (35) and (34) in (33) we obtain (32). Thus (see Ref. 15), w(z) =
I,(2a'/?z) (up to a multiplicative constant), where

z 2m

I, (2) = (§)V mz::(] 22mm)T(m + v + 1)

is the modified Bessel function.
Now, using representation (31) with a = A (T)\2(7)y, 22 =z, v = 28F, — 1 =
v —1, A = Ay one can obtain from (30) that for z > 0

)\1 (t).’E
AQ (t)y

where C' is some constant. One can see that this solution behaves like C27~1, as
x ~ 0 and that &y (t) takes positive values. m|

(v=1)/2
p(z,t|y,s) =Ch (t)e)‘l(t)z)‘2(t)y< > I (2 A1 (t))\2(t)$y) , (36)
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Proof of Theorem 3: Now we seek the solution of (21) in the form &(t) = &(t) +
e&1(t) and py(y,t) = 14 ep(t). Let us substitute these expressions in (21) and take
the first order terms with respect to €. Then, since the first equation of (21) has
the solution

py,t) = ply — (@D)%0,0) =1+ ep1(y — (aD)~0,0) + oe), (37)

t
with (o(t) = / &(t)dt', we get the system of three stochastic differential equa-
0

tions:
déo (1) =~—f3(£~o(t) — Fo)dt + /& (t)dn(t)
do(t) = G0 - 1 ~ 68)
déy(t) = P& (t)dt + —===dn(t) + 5p1(0(t))/ &o(t)dn(t),
24/&o(t)
where
p1(o) = pr(1 = (aD)~?0,0) (39)

The Kolmogorov equation in this case is too complicated, but using the fact,
that the third equation is linear with respect to & (t), we can solve this equation
directly. First we solve the homogeneous version of the equation.

6o (t) = —BGo(t)at + LI (40)
24/ (t)
We seek (o(t) in the form
Go(t) = &2 (), (41)

where E{|f'(t)|"} < oo for some small enough v. Then, by using the Ito formula
(see Ref. 16), one can write

déo(t &olt ~ ’
olt) = el = e+ €O el
_1 1/ B —F) 1,
= 3¢/ an(t)+ & 0! (- HUIZR) i p())ar

Here we have used the first equation of (38) for d&(t). Now we compare the coeffi-
cients of dn(t) and dt in the above expression for d(y(t) with those in (40). It is evi-
dent that the coefficients of dn(t) coincide, because in view of (41) 1e/ = %Cgfalﬂ.
Furthermore, comparing the coefficients of dt, we get

éé/Q(t)ef<— M 1 +f’(t)> = —55(1)/2(t)ef =

P 2{?01('5) 8¢ st a1t
iy B2y — _ Bt 2y— t
f0==3"%w /=373 /oéou')

ap i} _ﬁ_?}/—l tody }
= (o(t) =&/ (t)e p{ 2 8 /0 o(t)
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with 7 defined in Lemma 4. Now we seek & (t) - the solution of (38) in the form:
&(t) = )G (),
where (; (t) is an unknown Markov process with the stochastic differential
d¢y (t) = u(t)dt + v(t)dn(t).

Here u(t) and v(t) are unknown coefficients, which one can find, using the Ito
formula. Indeed, by this formula

€y (1) = G (1)dCo (1) + Go(1)dCy (1) + v(t) - ;10/(22 )dt

_ (s &i(1)

- (-6 (t)dt+( e o)

0

+(G(0ut + S 9+ o)a 00

Now by using the third equation in (38) we find
v(t)Go(t) _ 1 71/2
Co(t)u(t) + 2820 0, v(®)o(t) = 5p(a(1))&"" (1),

and so
o(t) = 3G WANE D), ult) = —16 o),
which gives us
)=~ 16l / G (5)p(o(9)ds + 3Colt / G ()30 ())& (s)dn(s). (42)

Now, one can find easily, that if 2y — 1 > 0, then we can bound the variance of
&1(t) as follows:

E{&(t }——E{Co [/ G ] } (43)
1elew [ GHor e }

Here the second integral satisfies the bound:

L= Q) / (2(5)P (0(5))o (s)ds

&0 [ oo {~sa-n-272] t gj(tt',) bi#(atsis

¢
< max; p? éo(t)/ dse=P1=9) < mtaxp"2 &(t)pt.
0
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And the first integral, by using the Schwartz inequality, can be estimated as
t
Glt) [ 6 ((o(s)ds
0
t t !
~ ’“1/2 ﬂ 2')/_1/ dt }~_1/2
< | max t ex —=(t—s) — = s)ds
< fmax, 7160 [ e { - 3¢ 175 [ gm)s
t 1/2
< | max, j| gé/Q(t) [/ e—ﬁ(t—s)/st]
0
t t ) 1/2
. 1) 2y—1 dt
¢ 1(s)exp{——(t—:s)— / = ds
[/0 ‘ 2 4 s &o(t')

= 488" (1) | max, | (1 — e74/2) - 1%,
Using the fact that

I =

- d [t dt
G0 =5 [ Fo
ds Js & (1)
one can integrate by parts in I3 and obtain
4 B 2y —1 /t dt' }
I3 = expy — =(t—s)— —
P2y p{ 2( ) 4 Js &(t) o
9 t 2y — 1 t !
__» /exp{—é(t—s)— 7 / ~dt }ds
2')/1 1 /o 2 4 s &)
< .
~—2y-1
Now let us recall that by definition j(o(t)) = p1(1 — (aD) 20(t),0). Therefore

t

| max p| = | max p1(y, 0)]-

Thus, we obtain from the above estimates that

E{&) < const|maxy p1 (4, 0) P E{& (1))
= const | max, p1(y, 0)?E{Fy + D& (aDt)},

were we have come back to our initial notations. Now Theorem 1 gives us the
statement of Theorem 3 for 2y —1 > 0.
Now, if 2y — 1 < 0, taking p; (y, 0) = e?*™, we get from (43) that

B0} 2 jE{aw [ oo {-jo0-0+ 152 [ EAal )

Let us choose == < BFj. Then, using Lemma 4 one can conclude that

B{&, ")) <C <00, E{§') = .

Thus, denoting by Iy the integral in (44) and using the Holder inequality with

p=c~! ¢g=(1-¢)"!, we obtain

E{(& (015)6°} < BY{& o} BY{& "}

= E{&I} > (E{IS}E(e—n{gas/(l,s)})1/5 . (45)
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t _ t dt’'
= [ exp{_%ﬂ“_s”l S £o<tﬂ)}

t/2 1 1—2y [t at
> ds ex — =0B(t—s)+ / = }
= p{ 2B( ) R

_ t !
> %B_le_ﬁt/Q exp { 1-2 / ~dt }
8 t/2 &o(t')

Now we get from (44) and (45) and the Jensen inequality

But

@0} 2 Ce P oxp {122 t B ) | = o
t/2

Here we have used Lemma 4, according to which E{& (')} =cofory < 1. 0O
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