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Abstract  The problem of finding the volume of the intersection of the N dimen-
sional sphere with p = aN random half spaces when « is less than a
critical value a. and when IV, p — oo is solved rigorously. The asymp-
totic expression coincides with the one found by E. Gardner ([4]), using
non rigorous replica calculations in neural network theory. When « is
larger than a. the volume of the intersection goes to 0 more rapidly
than exp(—N const ). We use the cavity method. The convexity of the
volume and the Brunn Minkowski theorem ([3]) have a central role in
the proof.
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1. Introduction

For very large integer N consider the IN-dimensional sphere Sy of
radius N'/2 centered in the origin and a set of p = aN independent
random half spaces. IT, = {J € RN : N=1/2(¢W) J) >k} (u=1,...p),
where £€(®) are i.i.d. random vectors with i.i.d. Bernoulli components
§§-“) and £k is the distance of II,, from the origin. The problem is to find
the maximum value of « such that the volume of the intersection of Sy
with NII,, behaves like e ¥ COHStUN, where o is the volume of Sy.

This geometrical question is motivated by the problem of the retrieval
of patterns in neural networks. The retrieval of patterns depends on the
neural dynamic. The neural dynamic is defined as an evolution of the
space of neural activities 0 = (01,...,0n), 0; = +1, generated by the
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threshold dynamics

oi(t + 1) = sign{ }: Jijoit)} (i=1,...,N), (1)
J=1j#1

where o(t),0(t+1) are the vectors of neural activities at time ¢ and ¢+ 1
respectively. The value +1 for o; represents an ”active neuron” while
—1 is a quiescent neuron. In this language the retrieval means that the
a((:ti)vities o(t) converge, for suitable initial conditions, to some pattern
g,

The interaction ( or synaptic) matrix {.J;;} (not necessarily symmet-
ric) depends on the concrete model, but usually it satisfies the conditions

N
> Ji=NR (i=1,....N), (2)
J=Li#i
where R is some fixed number which could be taken equal to 1.
The problem is to find an interaction matrix {J;;} such that some set
¢ of chosen vectors ¢ = {£() }ﬁzl (patterns) are the fixed points of the
dynamics (1). This implies the conditions:

N
S e >0 (i=1,...,N). (3)

=1,

Sometimes condition (3) is not sufficient to have £(#) as the end points
of the dynamics. To have some ”basin of attraction” (that is some neigh-
bourhood of &(#) starting from which we for sure arrive in g(#)) one
should introduce some positive parameter k£ and impose the conditions:

N
e 3 T >k (i=1,...,N). (4)
=1
So in this paper we consider only k > 0.

Gardner [4] was the first who solved this kind of inverse problem. She
asked the question: for which & = £ the interaction {J;;}, satisfying (2)
and (4) exists? What is the typical fractional volume of these interac-
tions? Since all the conditions (2) and (4) are factorised with respect to
1, this problem, after a simple transformation, can be replaced by the fol-
lowing. For the system of p ~ aN i.i.d. random patterns £ = {g(#) }Zzl

with i.i.d. fg”) (1 =1,...,N) assuming values +1 with probability %,
consider

Ok =o' [ dJHo SUEW,3)~ k), ()

El



Converzity 3

where the function 6(z), as usually, is zero in the negative semi-axis
and 1 in the positive and oy is the Lebesgue measure of N-dimensional
sphere of radius N'/2. Then, the question of interest is the behaviour of
1 log Oy p(&, k) in the limit N, p — oo, £ — a. Gardner [4] had solved
this problem by using the so-called replica trick, which is completely
non-rigorous from the mathematical point of view but sometimes very
useful in the physics of spin glasses (see [7] and references therein). She
obtained that for any a < a(k), where

ac(k) = (\/% /o:(u + k)Qe_“Q/Qdu)_l,

the volume of the space of synaptic couplings which have the patterns
£ ag fixed points decays exponentially with N while for & > a, the
volume of the intersection decays as N — oo faster than e~V with any
positive L. Our main goal is to prove rigorously the results of [4]. The
methods used by us is typical of statistical mechanics of the disordered
systems which are systems of N variables (in our case J;) with some ran-
dom function of these variables, which define the “interaction” between
them. Since the randomness of the interaction induces the randomness
of integrals, which appear in the problem, a natural question arises about
the dependence of the integrals from the choice of the random patterns.
For this reason we introduce the operation of expectation F with respect
to the random patterns. We define, according to statistical mechanics,
the free energy of the system Fy ,(¢, k)

1
Fyp(&F) = 5 105 Onp(€, F)
and the self-averaging of the free-energy as
lim E(Fy (& k) — EFy (& k))? = 0.
N—o0

In other words the free energy is self averaging if, in the limit of large
N.it tends in probability to its average E with respect to the patterns.

To formulate our main theorem we should remark that since Oy (&, k)
can be zero with nonzero probability (e.g., if for some p # v e =
—¢W )), we cannot, as usually in statistical mechanics, just study

log On (&, k).

To avoid this difficulty, we take some large enough M and replace
the log- function by the function log(y;y), defined as logn X =

log max {X, e_MN}.
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Theorem 1 For anya < a.(k) N~! log(any On,p (& k) is self-averaging
in the limit N,p — oo, p/N — « and for M large enough there exists

limy 5500 E{N " logyn) Onp(E, k)Y

. k 6
= ming<g<i [aE {logH(u\/%)}—l—%l’%q—i—%log(l—q)] , (6)
where H(x) = %ﬂffo e~/2dt, u is a Gaussian random variable with

zero mean variance 1 and E{..} is the averaging with respect to u.
For a > a.(k) E{N~! log(arn) ONnp(€: k) — —00, as N — o and
then M — oo.

We remark here that the self-averaging of N~ !log Oy ,(¢, k) was proven
also in [17]. In the next two sections we explain the main ideas under-
lying the proof.

A complete analysis will be presented elsewhere ([13]).

2. Convexity and Decay of Correlations

It can be easily seen that the Gardner problem (5) is very similar to
problems of statistical mechanics, where the integrals with respect to N
variables in the limit N — oo are studied. But due to technical reasons it
is not convenient to study directly the model (5) with 6 functions. That
is why we use a common trick: substitute the #-functions appearing in
the expression of the partition function (5) by some smooth functions
which depend on a small parameter ¢ and tend, as € — 0, to the 6-
functions. We choose for this purpose H(ze~'/?) with H(z) defined in
Theorem 1 but the particular form of this function is not important for
us. The most important fact is that its logarithm should be a convex
function. To substitute in (5) the integration over Sy by the integration
over the whole R we use another well known trick in statistical me-
chanics. We add to the Hamiltonian a term depending on the additional
free parameter z. At the end of our considerations we can choose this
parameter in order to provide the condition that for large N only a small
neighborhood of Sy gives the main contribution to our integral. Thus,
we consider the Hamiltonian of the form

HN,p(Jafakahazag) = - ZZ:I IOgH
+5(J,J) + h(h,J).

k—(E(”’),J)Nl/2>
Ve

(7)

Here the last term h(h,J) is the scalar product of the variables J with
some vector h with independent random components introduced for get-
ting the self averaging of the order parameters of the theory (see below)
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[6], [8], [9]. The free energy and the Gibbs average for this Hamiltonian
are

Znp(& ks hy2,6) = oy / dJ e MvalJ Ehbize),

e Hnp(J Ekhze)

(.)= /(- -)dJ Znp(E ko hyz,)

1
FN,p(éLa ka ha Z, 6) = N IOg ZN,p(§7 ka h,Z,S)-

Now we have the typical problem of statistical mechanics which we
solve by a method usually called the cavity method. The idea of the
cavity method is to choose one variable, e.g. Jy and to try to ex-
press (Jy) through the Gibbs average of the others J;, and then, using
the symmetry of the Hamiltonian, write the self-consistent equations
for the so-called order parameters of the problem ¢ = % (J;)? and
R = % 32(J?). This procedure allows us to reduce the problem to a
finite number of nonlinear equations. The rigorous version of the cav-
ity method was proposed in [8] and developed in [9], [10],[11],[12]. The
key problem of the application of the cavity method is the proof of the
vanishing of the correlation functions (J;J;) — (J;)(J;) as N — co. We
derived this property from a geometrical statement contained in theorem
2. This result is the analogous of the result of [2], which allows to prove
the vanishing of the correlation functions for a large class of models of
statistical mechanics which are generated by convex hamiltonians and so
also for the model with the hamiltonian Hy ,(J, €, k, h,z,€). Thus we
use general definitions in order to show the generality of this theorem.

Let {®n(J)}F_, (J € RY) be a system of convex functions which
have third derivatives bounded in any compact set. Consider also a sys-
tem of convex domains {T'x}%_; (I'y C RY) whose boundaries consist
of a finite number (may be depending on N) of smooth pieces. Define
the Gibbs measure and the free energy, corresponding to @ (J) in T'y:

(- ey = Z]_Vl dJ(---)e_(I)N(J)a In(@N) = dJe= 4~ )
Ty 'y

fN(q)N) = %log EN(Q)N).

Denote Qn(U) = {J : dn(J) < U},

Qn(U) = Qn(U) N Ty, (8)



Dn(U) = Dy(U) N Ty, where Dy (U) is the boundary of Qy(U).
Define also 1
fr(U) = =log dJe NY.
N JEDN(U)

Theorem 2 Let the functions ®n(J) satisfy the conditions:

d2

@‘I’N(J +te)|i=0 > Co > 0,

On(J) > C1(J,J) — NCy, (9)
VOn(J)] < NV2Co(U) (€ (D)), (10)

where e is an arbitrarily direction (|e| = 1), Cy, C1,Co,C5(U) are some
positive N-independent constants and C3(U) is continuous in U, (U >
Umin = minger, N~10n(J) = N710 N (J¥)).

Assume also that there exists some finite N-independent Cy such that

In(®n) > —Cy.
Then for any U > Upin

fx(U) = min{fn(2®n) +2U} + O(N " log N), (11)

and for any e € RN (le| = 1) and any natural p

(5.0 SO0 35 iy < O (i =i~ (e

1,J
(12)
with some positive N-independent C(p).

Let us explain the role of convexity in the proof of theorem (2). The
Gibbs average of any function of the linear combination (J,e) (Je| = 1)
can be expressed in terms of a two-dimensional integral with respect to
the energy U (the value of the hamiltonian) and ¢ = (J,e)N /2. The
additional function, which appears under this change of variables is the
"partial entropy”, given by the logarithm of the volume of the inter-
sections of the level surfaces of the Hamiltonian with the hyperplanes
(J,e) = cN'/2. We study these intersections using a theorem of classical
geometry known since the nineteenth century as the Brunn-Minkowski
theorem [3]. From this theorem we obtain that the ”partial entropy” is
a concave function of (U, c¢). Thus we can apply the Laplace method to
evaluate the Gibbs averages. So we obtain the vanishing of the correla-
tion functions, which allows us to find the expression for the free energy.
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A similar idea was used in [1] where the results of [2] (also based on the
Brunn-Minkowski theorem) have been used. We would like to remark
that, differently from [1], we cannot just use the results of [2] because
they are true for RY while the most nontrivial part of our proof (i.e. the
limiting transition e — 0) is based on similar results for the intersections
of p random half spaces.

We show now more explicitly how to realize the above ideas. For any
U > 0 consider the set Qx(U) defined in (8). Since @y (J) is a convex
function, the set Qn (U) is also convex and Qn(U) C Qn(U'), if U < U'.
Let

VN(U) = mes(Qn(U)), Sn(U) =mes(Dn(U)), (13)
FN(U) = fJEDN(U) |V@N(J)|71dSJ.

Here and below the symbol mes(...) means the Lebesgue measure of
the correspondent dimension.

Then it is easy to see that the partition function X can be repre-
sented in the form

SN=N fyop,. eV Ey(U)dU = Josu,,, € NV VN (U)dU (14)
= N fyap,. e NUVN(U)dU.

Here we have used the relation Fy(U) = Nfl%VN(U) and the inte-
gration by parts.

Besides, for a chosen direction e € RY (Je| = 1), and any real ¢
consider the hyper-plane

Alc,e) = {J eERY:(J,e) = Nl/%}

and denote

Qn(U,c) =Qn(U) N A(c,e), Vn(U,c) =mes(Qn(U,c)),
DN(U, C) = DN(U) N .A(C, e), FN(U, C) = IJGDN(U,C) |V@N(J)|_1dSJ.

(15)
Then, since Fy(U,c) = N~' 2. Vy(U,¢), we obtain
YN =N [dedUe NV Fy(U,¢) = N [dedUe NVVn (U, ),
_ N2/2 [ dedUcPe=NUVy (U,c) (16)

<(J7 e)p><I>N - f dedUe=NUVy (Uye)
Denote

sN(U)E%bgVN(U), sN(U,c)E%bgVN(U,c). (17)
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The functions sy(U) and sy(U,c) are the complete and the ”partial”
entropies mentioned before and formula (16) is the two dimensional in-
tegral on the energy levels U and on the hyper planes A(c, e). Then the
relations (14), (16) give us

Yy =N [exp{N(sy(U) — U)}dU,

j — NP2 {(c — (18)
(Fep), =N (e~ wal) .,
where 1l (...)exp{N(sn(U,c)-U)}
| dUdc(...)exp{N(sn(U,c)-U
(e = [ aUdcexp{N(sn (U,e)-U)} (19)

The equations (11) and (12) can be obtained by the standard Laplace
method, if we prove that sy (U) and sy (U, ¢) are concave functions and
they are strictly concave in the neighbourhood of the points U* and
(U*,¢*) of maximum of the functions (sy(U) — U) and (sy(U,c¢) — U).
To prove this we apply the theorem of Brunn-Minkowski from classi-
cal geometry (see e.g. [3]) to the functions sy(U) and sy(U,c). To
formulate this theorem we need some extra definitions.

Consider two bounded sets in A, B C RY. For any positive o and f3
aAx pB={s:s=aa+ fb,ac A b c B}.

aA x BB is the Minkowski sum of aA = and SB.

The one-parameter family of bounded sets {.A(t)}qgtgt; is a convex
one- parameter family, if for any positive @ < 1 and t12 € [t],t35] they
satisfy the condition

Alat; + (1 — a)tz) D aA(t) x (1 — a)A(t).

Theorem of Brunn-Minkowski Let {A(?)}i:<i<iz be some convex

one-parameter family. Consider R(t) = (mesA(t))N. Then O] <0

dt?
and deIfz(t) =0 fort € [t},t5] if and only if all the sets A(t) for t € [t},t}]

are homothetic to each other.

For the proof of this theorem see, e.g., [3].

To use this theorem for the proof of (11) let us observe that the family
{Qn(U))}u>v,,,, 1s a convex one-parameter family and then, according
to the Brunn-Minkowski theorem, the function R(U) = (Vy(U))/V is a
concave function. We get that sy (U) is a concave function:

d2 B d2 _ R”(U) RI(U) 2 RI(U) ?
g2 (U) = Zrp log R(U) = R(U) ~ <R(U)> =- <R(U)> '
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B3 = dbsn(U) > 1for U < U*, and even if sn(U) = 0 for U > U”,
we obtain that %(SN(U) —U) = —1. Thus, using the standard Laplace
method, we get

IN(@N) = sn(U*) = U* + 0("%&N) = Llog Viy(U*) — U* + O(*& ),

%
U, = %(q)N)Q’N =U* +O(1)
(20)

Using the condition (10), and taking J*, which is the minimum point
of & (J), we get

VN(U) > N7 [5epy ) (J =T Ven(I)[Ven(T)|dSy

* min — —1/2 * * (21)
2 Sn(U )maXJeDMU*)IWN(JM N=ESN(UT)ewr).

On the other hand, for any U < U*

A 2 mingep o [VON () A

N
x ~ (22)
> N1/2mmJeDN(U) [‘]JU:;’| % NU) > C%SN U)>C.

Here we have used (15) and (9). Thus the same inequality is valid
also for U = U*. Inequalities (22) and (21) imply that

log N

1 1
—log SNy (U*) = Nlog VN (U*) 4+ O( ).

N
Combining this relation with (20) we get (11).
Let us observe also that for any (Uy, ¢p) and (dy, d.) the family {Qxn (Up+
t0y, €o + tdc}iefo,1] is a convex one-parameter family and then, accord-

ing to the Brunn-Minkowski theorem the function Ry (t) = VN (U, +
tdy, co + td.) is concave. But since in our consideration N — 0o, to ob-
tain that this function is strictly concave in some neighbourhood of the
point (U*, ¢*) of maximum of sy(U,¢) — U, we shall use some lemma,
which is the corollary from the theorem of Brunn-Minkowski.

Lemma Consider the convex set M C RN whose boundary consists of
a finite number of smooth pieces. Let the convex one-parameter family
{A() hz<t<t; be given by the intersections of M with the parallel the
hyper-planes B(t) = {J : (J,e) = tN'/?}. Suppose that there is some
smooth piece D of the boundary of M, such that for any J € D the
minimal normal curvature satisfies the inequality Nl/Qﬁmm(J) > Ky,
and the Lebesgue measure S(t) of the intersection D N A(t) satisfies the

bound
S(t) > N'PV(1)C (1), (23)
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where V (t) is the volume of A(t). Then %Vl/N(t) < —KoC()VYN(#).

As far as we know, the Gardner problem is one of the first problems
of spin glass theory completely solved (i.e. for all values of & and k) in a
rigorous way. The explanation is that the problem (5) can be reduced to
the problem with the convex Hamiltonian (7) in a convex configuration
space. It is just this convexity that allows us to prove the vanishing
of all correlation functions for all values of « and k, while e.g. in the
Hopfield and Sherrington-Kirkpatrick models the vanishing is valid only
for small enough « or for high temperatures (see [7] for the physical
theory and [11], [12], [14], [15] for the respective rigorous results). Also
for the Gardner-Derrida [5] model there is only a justification of the
Replica Simmetry solution in a certain region of parameters (see [16]).

3. The Cavity Method and the Limit € — 0

As it was mentioned in Section 2, the vanishing of correlation functions
is the key problem of applying of the cavity method to the model (7). Tt
allows us to derive the selfconsistent equations for the order parameters
of the model (7) and then find the expression for the free energy, which
we use for deriving the result of Theorem 1 when ¢ — 0.

Theorem 3 For any o,k > 0 and z > 0 the functions Fn p(&. k, h, 2, ¢€)
are self-averaging in the limit N,p — oo, any = & — o

E{(Fnp(& k. hze) = BFyp(&khze)})’ ) =0 (24)

and, if € is small enough, o < 2 and z < £='/3, then there exists

Hmy psoc,an—a BE{FNp(& kb, 2,6)} = F(a, k. h, z,€),

F(o,k,h,z €) = maxpsoming<g<r [ozE {logH (;%)}

2
+igk; + Hlog(R—q) — 3R+ (R —q)],

(25)

where u 18 a Gaussian random variable with zero mean and variance 1.

Let us note that the bound a < 2 is not important for us, because
for any o > a.(k) (ac(k) < 2 for any k) the free energy of the partition
function Oy (&, k) tends to —oo, as N — oo (see Theorem 1 for the
exact statement). The bound z < e /3 also is not a restriction for
us. We could need to consider z > ¢~ /3 only if, applying the result on
[ (U) of theorem 2 to the Hamiltonian Hy ,(J, &, k, h, 2, €), we obtain
that the point of minimum 2,,;,(¢) does not satisfy this bound. But it
is shown in theorem 1, that for any a < a.(k) zmin(e) < Z with some
finite Z depending only on k£ and «.
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Our last step is the limiting transition ¢ — 0, i.e. the proof that 6-
functions in (5) can be replaced by H(\%) with a small difference when

¢ is small enough. It is the most difficult step from the technical point
of view. It is rather straightforward to obtain that the free energy of (7)
is an upper bound of % log On, p(&, k). But the estimate from below is
much more complicated. The problem is that to estimate the difference
between the free energies corresponding to the two Hamiltonians we, as
a rule, need to have them defined in a common configuration space, or
at least, we need to know some a priori bounds for some Gibbs averages.
In the case of the Gardner problem we do not possess this information.
That is why we need to apply our geometrical theorem not only to the
model (7) (for these purposes it would be enough to apply the results of
[2]) but also to some models, interpolating between (7) and (5), with a
complicated random (but convex) configuration space.
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