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Abstract

We study eigenvalue distribution of the adjacency matrix A(N-?) of weighted random graphs
I' = I'yp. We assume that the graphs have N vertices and the average number of edges
attached to one vertex is p. To each edge of the graph e;; we assign a weight given by a random
variable a;; with zero mathematical expectation and all moments finite.

In the first part of the paper, we consider the moments of normalized eigenvalue counting
function o, of ANP). Assuming all moments of a finite, we obtain recurrent relations that
determine the moments of the limiting measure 0, = limy_,o on,p. The method developed is
applied to the Laplace operator Ar closely related with A(N:P), Using the recurrent relations,
we analyze the form of o, for the both of random matrix families.

In the second part of the paper we consider the resolvents G(42)(z) of A™?) and Ar of
I'np and study the functions fNA’A)(z,u) =4 chvzl exp{—uG%’A)(z)} in the limit N — oc.
We derive closed equations that uniquely determine the limiting functions f (A’A)(z, u). These
equations allow us to prove the existence of the limiting o, for adjacency matrix and the Laplace
operator under a rather weak condition that only the fourth moment of a;; is finite. Besides,
equations for f(4-4) (z,u) give us the asymptotic expansions for the Stieltjes transform of the
limiting o, with respect to z=* and p*.

1 Introduction

The spectral theory of graphs is an actively developing field of mathematics involving a variety
of methods and deep results (see the monographs [5, 6, 11]). Given a graph with N vertices, one
can associate with it many different matrices, but the most studied are the adjacency matrix
and the Laplacian matrix of the graph. Commonly, the set of N eigenvalues of the adjacency
matrix is referred to as the spectrum of the graph. In these studies, the dimension of the matrix
N is usually regarded as a fixed parameter. The spectra of infinite graphs is considered in
certain particular cases of graphs having a certain regular structure (see for example [13]).

Another large class of graphs, where the limiting transition N — oo provides a natural
approximation is represented by random graphs [3, 12]. In this branch, geometrical and topo-
logical properties of graphs are studied for a wide veriety of random graph ensembles. One of
the classes of the prime reference is the binomial random graph originating by P. Erdés (see,
e.g. [12]). Given a number pyx € (0, 1), this family of graphs G(N, pn) is defined by taking as
Q the set of all graphs on N vertices with the probability

P(G) = pilD (1 = pi)Z) (@), (1.1)
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where e(G) is the number of edges of G. Most of the random graphs studies are devoted to the
cases where py — 0 as N — oc.

Intersection of these two branches of the theory of graphs contains the spectral theory of
random graphs that is still poorly explored. However, a number of powerful tools can be
employed here, because the ensemble of random symmetric N x N adjacency matrices Ay is a
particular representative of the random matrix theory, where the limiting transition N — oo is
intensively studied during half of century since the pioneering works by E. Wigner [22]. Initiated
by theoretical physics applications, the spectral theory of random matrices has revealed deep
nontrivial links with many fields of mathematics.

Spectral properties of random matrices corresponding to (1.1) were examined in the limit
N — oo both in numerical and theoretical physics studies [7, 8, 9, 18, 20, 21]. There are two
major asymptotic regimes: py > 1/N and py = O(1/N) and corresponding models can be
called the dilute random matrices and sparse random matrices, respectively. The first studies
of spectral properties of sparse and dilute random matrices in the physical literature are related
with the works [20], [21], [18], where equations for the limiting density of states of sparse
random matrices were derived. In papers [18] and [10] a number of important results on the
universality of the correlation functions and the Anderson localization transition were obtained.
Unfortunately all these results were obtained with non rigorous replica and supersymmetry
methods.

On mathematical level of rigour, the eigenvalue distribution of dilute random matrices was
studied in [16]. It was shown that the normalized eigenvalue counting function of

L4y

— (1.2)

PN

converges in the limit N, py — oo to the distribution of explicit form known as the semicircle,
or Wigner law [22]. The moments of this distribution verify well-known recurrent relation for
the Catalan numbers and can be found explicitly. Therefore one can say that the dilute random
matrices represent explicitly solvable model (see also [20, 21]).

In the series of papers [2, 4, 3] and simultaneously in [15], the adjacency matrix and the
Laplace matrix of random graphs (1.1) with py = pN were studied. It was shown that this
sparse random matrix ensemble can also be viewed as the explicitly solvable model. In partic-
ular, one can derive recurrent relations that determine the moments of the limiting eigenvalue
distribution of Ax pn, N — oo depending on given value of p.

In the present paper we generalize the results of [4, 15] to the case of weighted random
graphs. We study also the resolvent of the adjacency matrix and the Laplace operator of large
weighted random graphs and derive rigorously equations for the Stieltjes transform g(z) of the
limiting eigenvalue distribution, obtained initially in [20], [21], [18] by using the replica and the
supersymmetry approaches. We stress that our approach allows us to prove the existence of the
limiting eigenvalue distribution under rather weak conditions, when only the fourth moment
of a;; is required to be bounded. Using our results it is not difficult to obtain the asymptotic
expansions for g(z) with respect to z—*. Since it is well known that the coefficients of this
expansion are the moments of the limiting IDS, we rediscover the recurrent formulas for the
moments. Besides, constructing the asymptotic expansion of g(z) with respect to p¥, it is easy
to show that this expansion is convergent for p < 1. Since in the case a;; = 1 the coefficients
of this expansion are the rational functions on z, we can conclude that the limiting spectrum is
pure point and consists of the spectra of finite blocks only.

2 Main results

Let Vn denotes the set of N vertices vy, va, ...,vn. We define the set Fy, = Vn — R of all real
functions f = (f(v1), f(v2),..., f(vn)). Let us assume that each pair of vertices of Vy is either



connected by one no-oriented edge or not connected. Let us denote by En the set of the edges
and by 'y = (Vn, En) the corresponding graph.
Assume that each edge e=(v;,v;) € En is assigned by the real weight {(e). Then one can

define a linear operator A(Fg) : Fyny — Fyy by relation

AP @) = Y €wi,v) - [F(vi) = fv3)], (2.1)

Jivj~vi

where the sum goes over all vertices v; adjacent to given v;. One can consider the operator Ag)
as a generalization of the discrete analogue of the Laplace operator on the graph I'y.

Clearly, A(g) is a real symmetric N x N matrix that can be represented in the form
A%ﬁ) BW:&) _ 4(N.&),
where AV4) is a weighted adjacency matrix of I'y

(N,E) _ f(viavj); if v; ~ Vj,
A= { 0, if v; £ v; (22)

and B4 is a diagonal matrix

N&) Z 5,0“1)]

Jivj~v;
Note that AZ(.ZN’Q =0 and
A%ﬁ) = diag[(MAN)] — A0, (2.3)
where ;
s 10, iti=y,
Mij =1 6”_{1, ifi # 7.

The set of eigenvalues \; < ... < Ay of AN:8) is referred to as the spectrum of the graph T.

With these definitions in hands, we can introduce the randomly weighted adjacency matrix
of random binomial graphs. In this case the weights £ are represented by the following family
of random variables. Let = = {a;;, i <j, i,j €N} be the set of jointly independent identically
distributed (i.i.d.) random variables defined on the same probability space and possessing the
moments

Eai'cj:Xk<Oo ViajakeNa (24)

where E denotes the mathematical expectation corresponding to 2. We set aj;=a;; for i<j .
Given 0 < p < N , let us define the family D p) = {d Nw) i< i€ 1, N} of jointly
independent random varlables

JNP) _ ﬁ, with probability p/N, (2.5)
4 0, with probability 1 — p/N,
We set dj; = d;; and assume that Aﬁ\’;) is independent of =.
Now one can consider the real symmetric matrix ANP)(w):
(AN =aydl)? (2.6)
ij

that has N real eigenvalues /\§N7p) < )\gN’p) <...< )\E\I,V’p).



The normalized eigenvalue counting function (or integrated density of states (IDS)) of A is
determined by the formula

BN <A

o ()\; A(N’p)) = N

Similarly we define o(\; A%g)).

In this paper we study the normalized eigenvalue counting functions by two complementary
approaches: the moments and the resolvent techniques. Corresponding results are represented
in the following two subsections.

2.1 Moment relations approach

The first group of results concerns the averaged moments

MNP ZE {/ Modo (/\; A(N’p))} :

Theorem 1. Assuming conditions (2.4), there exist limits

(p) _Nk : e
m Zu (N.p) — my, _Zi:(] S(k‘,’L), Zf §= Qka
]\;l—>00 { O, Zf s =2k — 15 ’ (27)

where numbers S(k,1) are determined by the system of recurrent relations

su,m:i(}j) ;(Qf IXSSl—u—f,r—f) i(f_;i11>.8(u,v) (2.8)

=1 v=0

with the initial condition S(1,0) = ;.

The next theorem deals with the moments

LgN@:E{/ASda (A Ar)}.

Theorem 2. Assume that (2.4) holds. Then given s € N, there exists the limit

lim LVP =) = ZS (s,1) (2.9)

N—oo

where numbers §(s,z) are determined by the system of recurrent relations

l’r‘1

~ L -1 ~
S(l,rl)zz <;1_1> . S(l—gl,’l“l—gl) 91/2 1 Z Sd’l‘l—gl)

g1=1 d=r1—g1

l—d—g1 l—d—g1—g2
g1+g2—1 X T2+ g2 —1\ &
-y ( g1 > 'p(glf;iyz,l > < S(l—d—g1—g2,7m2) | (2.10)

-1
g2=1 ro=1 92

with the initial condition

S(1,0) = b1.0.



We discuss these results later. Let us only note that if a;; = 1 and p = 1, then AN
)

becomes exactly the adjacency matrix of I' and Aifl
the graph. In this case formula (2.8) is reduced to

S(,r) :Jg <;:1) -iz;S(l—u—f,r—f)-zu: (f}rf;1> S(uv) (211

v=0

takes the form of the Laplace operator on

This system of recurrent relations is obtained for the first time in [15]. It is simpler than that
derived in [2] to determine mg) (2.7). The difference is that our system (2.8) has one variable
of summation less than the system of [2]. We explain this difference at the end of Section 4.

In the case a;; = 1 and p = 1 formulas (2.10) reduce to

. L —1 . R
S(l,’l“l): Z (;1 _ 1) . S(l—gl,’ﬁ —91 Z S d T1 _gl)

g91=1 ri—gi
l—d—g1 l—d—g1—g2
+g2—1 ro+g2—1\ 4
3 Dl G ED SN G BBV BV RS
= g1 —1 = g2—1
9g2= ro=

2.2 Resolvent approach

The resolvent approach is a powerful tool of the spectral theory in general and the spectral
theory of random matrices also. In particular, it allows to simplify and generalize the pioneer
method of Wigner [22] (based on the analysis of the moments of o) used to study the IDS of the
ensemble with independent gaussian entries. The resolvent approach produces also a lot of new
results (see, e.g., the review papers [16], [19] and references therein). It is well known that the
trace of the resolvent is the Stiltjes transform gn(z) of the normalized counting function of the
matrix. Since the Stiltjes transform uniquely determines the measure, the proof of the existence
of the limiting IDS is equivalent to the proof of the existence of the limit limy_ o gn(2) = g(2)-
Besides, the equations for g(z) give complete information about the limiting IDS.
For any z: Rz > 0 consider the function fy(u,z): Ry — C:

N
Do d GO, G () = (2 AP (2.12)

k=1

ZIH

where {a;}3°; is a family of i.i.d. random variables which do not depend on {a; ;}$<; and have
the same probability distribution as a; .

Theorem 3. Assume that (a) = E{8(a — a;;)} the probability distribution of a; ; possesses
the property

/a4du(a) = Xy < oc. (2.13)
Then
(i) the variance of the function fn(u,z) defined by (2.12) vanishes in the limit N — oco:
lim B{|fx(u.2) — B{fx(w, 2)}?} = 0, (2.14)
N—o00
(i1) there exists the limit
]\;im E{fn(u,2)} = f(u,2), (2.15)
— 00



(#3) if we consider the class C of functions which are analytic with respect to z : Rz > 0 and
for any fized z : Rz > 0 possessing the norm

| f(u, )|
a )
IQILI>()]( Vv1+u

then the limiting function is the unique solution in C of the functional equation

I1f (u, 2)|| = (2.16)

flu,z)=1- u1/2e_p/ la|du(a) /000 dv%@ exp{—zv +pf(v/p,2)}, (2.17)

where J1(C) is the Bessel function:

_ (e (/A
> 2.18
=3 Z T (218)

It is easy to see that equation (2.17) coincides with that obtained in [20], [18] by the replica
trick and supersymmetry approach respectively by using the assumption that the solution of
the problem is replica symmetric (or an equivalent assumption for the saddle point method).
Our proof is rigorous and it needs not any additional assumption.

One can easily see that

_;_qu(u’ Z)

2|><

N
Z E{G}" (2)} = XoE{ign.,(—iz)},

u=0

where gn ,(2) is the Stieltjes transform of the normalized counting function o(\, AXN-P)).
do(\, AAN-P)
(o) = [ 52

Hence, Theorem 3 implies that for any z : Sz # 0
Jim B{lgx () ~ Blon,(:)}} =0,
i.e., the fluctuations of gn p(z) vanish in the limit N — co. And (2.15) implies that

o) = Jim Blgn,()} = X5 - f(u,2) . (2.19)

Thus, Theorem 3 states that under condition (2.13) there exists the weak limit o(\, A) of the
normalized counting measure o(\, AXN)) and the Stieltjes transform g,(—iz) can be obtained
as the first derivative of the solution of (2.17).

If the random variables {a; ;} possess the 2m — th moments, then on the basis of (2.17) it is
easy to construct an asymptotic expansion of the function f(u,z) in z=* up to z72™:

2m

flu,2z) = Zz_kPk(u) +o0(z72™), 2z = o0

k=0

where Py (u) are some polynomials. Since for any polynomial P(u)

/26_][)/|a|d,u(a)/0OO dv%L@exp{—zv}P(v) =0(7),



this expansion gives us recurrent formulas which express the coefficients of Py (u) via the coef-
ficients of Py_1(u), ..., Pi(u). By (2.19) it is evident, that the coefficient ¢y of Py (u) near u is
the k-th coefficient of the expansion of g,(—iz), in z~*. So, cxy = (—i)* M}, where M- is the
kth moment of the limiting measure o ().

Similarly one can construct an expansion of g(z) with respect to p*. To this end it is more

convenient to study the case when a;; = 1 and d;; = 0,1 with probability 1 — & and £
respectively. It is equivalent to the change of variables z — zp~'/2, u — up~'/2. Then we get
the equation
. oo 2./ _
flu,z)=1- ul/Qe_p/ de.exp{—zv +pf(v,2)}. (2.20)
0 /l)

Let us seek the expansion of the form f(u,z) = 1+ 3. p* fi(u, z). Since in the r.h.s. of (2.20) we
have the exponent of p(f(u,z) — 1), it is evident that (2.20) gives us the recurrent formula for
fr(u,2) and fi,(u, 2) is a linear combination of the functions e~ “##1(*) (1 = 1,...k!) with Ry ()
being rational functions of z. It is easy to prove that the expansion is convergent, if p < 1.
Therefore we can differentiate it with respect to u. Hence, for the function g(z) defined as in
Remark 1, we get the convergent expansion §(z) = 3. p*Ri(2), where Ry (z) are the rational
functions of z. Thus, we can state that for p < 1 the spectrum of the adjacency matrix consists
only from the spectrum of finite graphs.

Now let us study the IDS of the Laplace operator of the random graph. To this end for any
z: Rz > 0 define the function fj(vA) (u,2): Ry — C:

78w, 2) Z S AT GRNI () = (i) (221)

where {a;}$2, are defined by the same way as in (2.12).

Theorem 4. Let the distribution of a;, satisfy condition (2.13). Then
(i) fluctuations of the function fj(vA) (u, z) defined by (2.21) vanish in the limit N — oo:

Jim B{IfY (u,2) — B{Y (w,2)} ) =0, (2.22)
(ii) there exists the limit
Jim B{Y (,2)} = £ O (u, 2), (2.23)

(iii) the limiting function is the unique solution in the class C defined in Theorem 3 of the
functional equation

F¥w2) = i) = e [lafe vduta) [ d%’m exp{—z0+ pf ) (v/p, )},

(2.24)
where ji(u) = [ e™du(a) is the Fourier transform of the measure p(a), defined in Theorem 3.
3 Moments and trees
In this section we give an outlook of the method of computing moments. Rigorous description

is given in the next section.
To study the mathematical expectation

ElTr AN:p) k_l . Nop) gJ(N.p) 4 (N.p) 31
R R N



we give a further development to the method originated by E. Wigner (see e.g., [22]). In this

approach the set of variables I ={i1,4a,... 4,41 },7; € 1, N is regarded as a set of trajectories
(walks) W}, of k steps. Each walk provides a contribution E {Am;p )Am;” ). Agi\iflp )}. This

mathematical expectation is non-zero only when each step (ij,i;41) appears even number of
times in this walk W}. The order and the number of repetitions of the steps leads to partition
of the set {W},} of the walks into the classes of equivalence.

In the case of the Wigner ensemble A(N:N) | the classes of equivalence were labeled by the
plane rooted trees 7; of I edges for k = 2. Such a tree can be run over by 2[ steps starting and
finishing at the root and passing each edge two times exactly (there and back). This path is
made in the lexicographical order. This means that each time when there is a choice where to
go, the most left edge is passed. The set T} of all trees 7; contains C; = l'(l+1)' elements.

The situation is more delicate in the case of dilute matrices (2.6), when p is fixed and N — oo.
In the paper [14] it is shown that the leading contribution to (3.1) in this limit is provided by
the walks Iy, k = 2l that fall into the classes of equivalence described as follows.

We consider an element 7, € T,,,,m < [ and construct a path of 2] steps over this tree.
Each edge is passed even number of times. If m < [, then there exist one or several edges passed
even number of times, which is greater than 2. This path is made in the lexicographical order
that chooses the most left edge among those that are yet not passed. The number of such paths
and corresponding contribution were estimated in [14].

The case of non-weighted adjacency matrix and corresponding Laplace operator is considered
in [2, 15], where these paths were computed exactly and recurrent relations for their number
were obtained.

In the present paper we develop the method to compute these paths and corresponding
contributions in the case of weighted matrices. It is similar to the method of decomposition of
trees by one edge that is well-known combinatorial tool to obtain recurrent relations needed.

Let us briefly describe our method. Consider a tree 7, with m edges and the root p and
denote by (p, ) the edge that is passed the first. If one removes this edge, one gets two subtrees
G2 and G (see Figure 1).

Denote by f the number of passages p — v. Then the path over the tree 7, is described
as follows: after the first passage p — v one enters the tree G2 and goes over its edges. Each
time when one gets into the vertex v, there is a choice where to go: either to the leave G,, and
enter the subtree G; by v — p, or to continue the path over G,. It is clear that the paths
over the subtrees G5 and G; are performed independently. More precisely, when leaving the
subtree G1, one keeps the information about its part already passed. Returning back to it by
the passage v — p, we continue this path with no regard what part of the path over G is
performed. The number of passages f over the edge (p,v) in direction (p,r) determines the
weight factor Ea®/ = Xy;.

This splitting of trees (and paths) in two parts leads to the recurrent relations for the number
of the paths and corresponding contributions.

Certainly this brief presentation does not reflect all of the details of the procedure. Moreover,
in the rigorous proof we study the classes of walks W}, directly and the trees arise as somehow
supplementary objects. We used them here as more visual illustrations than the walks.

4 Proof of Theorem 1

4.1 Walks and contributions

Using independence of families = and AS\I;), we have

N
M]gN’p):/E{)\kdUA(N‘p)}:E (% Z /\(N’p > = %E (TT[A(N’p)]k) =
i=1
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Consider W,SN) the set of closed walks of £ steps over the set 1, V:

W,SN):{w:(wl,wg,---,wk,wk+1 =w):Viel,k+1 w;€1,N}.

For w EW,SN) let us denote a(w) :Hle Qs iy, and dNP) (w) :H dEjY;f;M Then we have

1
M;N@ZN > Ea(w)- BN (w). (4.2)

wEWIEN)
Let wEW,gN) and f,g€1, N . Denote by n,(f,g) the number of steps f — g and g — f;

nw(f,g) =S${i€lk: (wi=f A wiy1=g)V(wi=g A wiz1=f)}.
Then
N N
=TT I Xnucr-
f=1g=f

Given w € W™, let us define the sets Vi, = Uk, {w;} and E, = UF_ {(wi, w;11)}, where
(w;, w;y1) is a non-ordered pair. It is easy to see that G, = (Vy, Ey) is a simple non-oriented
graph and the walk w covers the graph G,,. Let us call G,, the skeleton of walk w. We denote
by n.(e) the number of passages of the edge e by the walk w in direct and inverse directions.
For (wj,wj;1)=e;j € Ey let us denote ae; =aw,; w;,; =0w,;,,,w;- Then we obtain

= H Ea?“’(e): H an(e)

e€Ey, e€Ey,
Similarly we can write
1
(N,p) , ) nw(e) ) — - -
Bd= H E( n )_ H N.pnw(e)/Q—l'
ecelE, eckE,

Then, we can rewrite (4.2) in the form

(Np)_ 1
M N Z H N . pnw(e)/Q 1=
(<3

wEWIEN) €€

1
= Z < [Bul+1 . ph/2—1Fu] Hane>: Z f(w), (4.3)

wew (N €€ wew, ™

where 6(w) is the contribution of the walk w to the mathematical expectation of the correspond-
ing moment. To perform the limiting transition N — oo it is natural to separate W} into classes
of equivalence. Walks w() and w® are equ1valent w® ~ w® | if and only if there exists a
bijection f between the sets of vertices ) and Vw such that for i =1,2,....k wEQ):f(wgl))

wV ~w? = 3f: V(l)JV(Q) Viel,k+1 w —f( (1))



Let us denote by [w] the class of equivalence of walk w and by CIEN) the set of such classes. It
is obvious that if two walks w(") and w(®) are equivalent then their contributions are equal.

w ~ w?® — g(w(l))zg(w@))

Cardinality of the class of equivalence [w] is equal the number of all mappings f: V,, = Ry C

1,Nie. N-(N—=1)-...- (N —|Vy|+1). Then we can rewrite (4.3) in the form
M(Nvil’)_ Z 1 H X _
koo NIEwlt1 . pk/2—[Ba] n(e) | =
wew M) p e€Ey
N-(N=1)-...- (N = V| +1) .
= 2 ( NTBWTT1 - ph/2— (Bl II Yo )= > 0D (44
[wlecw ™) e€By [wlecw ™)

4.2 Minimal and essential walks

To consider the set CIEN), it is convenient to relate a given class of equivalence [w] with one
particular walk from this class. More precisely, we give the rule to determine this walk that we
will call the minimal walk.

Definition 1. The walk w is a minimal walk, if wy (the root of walk) has the number 1 and
the number of each new vertex is equal to the number of all already passed vertices plus 1.

Example 1. The sequences (1,2,1,2,3,1,4,2.14,3,1) and (1,2,3,2,4,2,3,2,1,2,4,1,5,1) represent
the minimal walks.

Let us denote the set of all minimal walks of WISN) by MW,EN). It is clear that there is only
one minimal walk at each class of equivalence and vice versa. Therefore we can rewrite (4.4) in
the form

P N-(N=1)-...-(N—=|Vu|+1 .
M/EN’): Z ( ( NEZ+1.pI(e/2—|E|w| = H an(e)>: Z O([wl). (4.5

weMw ™) e€Bw weMw{™N)
Walk w of W,EN) has at least k vertices. Hence, MW,SI) C MW,£2) C ... C MW,Si) C
MW,gk) = MW,gk) = .... It is natural to denote MW} = MW,gk). Then (4.5) can be

written as

P _ q: (N,p) _ 1. N (N—=1)-...- (N —|Vy|+1) _
M _1\}51100 Mk _]\}E}loo EJXM:W < NI|Ew|+1 .pk/27|Ew| g an(e) -
w k € w

X
_ 1 [Vio | = | B | —1 Ny (€)
—leloo Z <N H pk/2—1 ) ) (4.6)
wE MWy, ecFE,
The set, MW}, is finite. Regarding this and (4.6), we conclude that the minimal walk w has non-
vanishing contribution, if |V,,| — |Ey| — 1>0. But for each simple connected graph G = (V, E)

[Viw| < |Ew| + 1, and the equality takes place if and only if the graph G is a tree.

Definition 2. The minimal walk w is an essential walk, if its contribution in the limit N — oo
18 not zero.

Clearly, each essential walk is a minimal walk that has a tree as a skeleton and vice versa.

Then the number of passages of each edge e belonging to the essential walk w is even. Hence, the

Scp ) depends only on the even moments of random variable

of a. It is clear that the limiting mathematical expectation A}im Méﬁf) is equal to zero.
—0Q

limiting mathematical expectation m

10



4.3 First edge decomposition of essential walks

Let us start with necessary definitions. The first vertex w; = 1 of the essential walk w is called
the root of the walk. We denote it by p. Let us denote the second vertex wy = 2 of the essential
walk w by v. We denote by [ the half of walk’s length and by r the number of steps of w starting
from root p. In Section 3 we explained that we derive the recurrent relations by splitting of the
walk (or of the tree) into two parts. To describe this procedure, it is convenient to consider
the set of the essential walks of length 2] such that they have r steps starting from the root p.
We denote this set by A(l,7). One can see that this description is exact, in the sense that it
is minimal and gives complete description of the walks we need. Denote by S(I,7) the sum of
contributions of the walk of A(l,r). Let us remove the edge (p,v) = (1,2) from G,, and denote
by G the graph obtained . The graph G has two components. Denote the component that
contains the vertex v by G2 and the component containing the root p by Gi. Add the edge
(p, V) to the edge set of the tree Go. Denote the result of this operation by Gs. On Figure 2 one
can see examples of Ga, G, @2. Denote by wu the half of the walk’s length over the tree G5 and
by f the number of steps (p,v) in the walk w. It is clear that the following inequalities hold for
all essential walks (excepting the walk of length zero) 1 < f < r, r +u < . Let us denote by
Ay (I, 7,u, f) the set of the essential walks with fixed parameters I, r, u, f and by Si(l,r, u, f)
the sum of contributions of the walks of Aj(l,7,u, f). Denote by Ax(l,7) the set of the essential
walks of A(l,r) such that their skeleton has only one edge attached the root p. Also we denote
by Sz(l,r) the sum of contributions of the walk of Ay(I,7). Now we can formulate the first
lemma of decomposition. It allows express S as a function of the S, Ss.

Lemma 1 (First decomposition lemma). The following relation holds

r l—r
S(l,r)zZZSl(l,r,u,f), (47)
f=1u=0
where .
Si(l,ryu, f)= <;: 1) “So(f+u, f)-SU—u—f,r—f) (4.8)

Proof. The first equality is obvious. The second equality follows from the bijection
M, f) B As(f +u, f) x Ml —u = f,r = )

x01(r, f), (4.9)

where ©1(r, f) is the set of sequences of 0 and 1 of length r such that there are exactly f symbols
1 in the sequence and the first symbol is 1. Equality (4.8) is illustrated by Figure 3.

Let us construct this mapping F'. Regarding one particular essential walk w of Ay (l,r,u, f),
we consider the first edge e; of the graph G, and separate w in two parts, the left and the right
ones with respect to this edge e;. Then we add a special code that determines the transitions
from the left part to the right one and back through the root p. Obviously these two parts are
walks, but not necessary minimal walks. Then we minimize these walks. This decomposition
is constructed by the following algorithm. We run over w and simultaneously draw the left
part, the right part, and code. If the current step belongs to G, we add it to the first part,
otherwise we add this step to the second part. The code is constructed as follows. Each time
the walk leaves the root the sequence is enlarged by one symbol. If current step is (p,v) and
"0" otherwise, this symbol is "1". It is clear that the first element of the sequence is "1", the
number of signs "1" is equal to f, and the full length of the sequence is 7. Now we minimize
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the left and the right parts. Thus, we have constructed the decomposition of he essential walk
w and the mapping F'.

Example 2. For w = (1,2,1,2,3,
the right one, and the code are (1,
(1,1,0,1,0,1,0), respectively.

.2,3,2,3,2, 1,4, 1) the left part,
2,3,2

2 1 3
27 3 73: 73: 39y 71)a(1:271:273:271:271):

Let us denote the left part by (w(/)) and the right part by (w(®)). These parts are really
walks with the root p. For each edge e in the tree G- the number of passages of e of the essential
walk w is equal to the corresponding number of passages of e of the left part (w(/)). Also for
each edge e belonging to the tree G; the number of passages of e of essential walk w is equal to
the corresponding number of passages of e of the right part (w(®)). The weight of the essential
walk is multiplicative with respect to edges. Then the weight of the essential walk w is equal
to the product of weights of left and right parts. The walk of zero length has unit weight.
Combining this with (4.9), we obtain

Sl(l;,rauaf) = |91(r,f)|-SQ(f+u,f)-S(l—u—f,r—f). (410)

Taking into account that |01 (r, f)| = (;j), we derive from (4.10) (4.8).

Now let us prove that for any given elements w/) of Ay(f+u, f), w®) of A(l—u—f,7—f), and
the sequence 8 € O (r, f), one can construct one and only one element w of Ay (I, r,u, f). We do
this with the following gathering algorithm. We go along either w/) or w(*) and simultaneously
draw the walk w. The switch from w(f) to w(®) and back is governed by the code sequence
f. In fact, this procedure is inverse to the decomposition procedure described above up to the
fact that w®) is minimal. This difficulty can be easily resolved for example by coloring vertices
of w'f) and w® in red and blue colors respectively. Certainly, the common root of w/) and
w® has only one color. To illustrate the gathering procedures we give the following example.

Example 3. Forw) = (1,2,1,2,3,2,1,2,4,2,1,2,4,2,3,2,3,2,1), w® = (1,2
6 = (1,1,0,1,0,1,0) the gathering procedure gives w = (1,2,1,2,3,2,1,4,1,2,5,
4,1,2,5,2,3,2,3,2,1,4,1).

It is clear that the decomposition and gathering are injective mappings. Their domains are
finite sets, and therefore the corresponding mapping (4.9) is bijective. This completes the proof
of Lemma 1.1

To formulate Lemma 2, let us give necessary definitions. We denote by v the number of
steps starting from the root p except the step m and by As(u + f, f,v) the set of essential
walks of As(u + f, f) with fixed parameter v. Also we denote by S3(u + f, f,v) the sum of
weights of walks of Ag(u+ f, f,v). Let us denote by G » the graph consisting of only one edge
(p,v) and by A4(f) the set of essential walks of length 2 f such that their skeleton coincides with
the graph Gi . It is clear that A4(f) consists of the only one walk (1,2,1,2,...,2,1) of weight
p)ﬁfl. The previous lemma allows us to express So as a function of S. The next lemma allows
to express So as a function of S. Thus, two lemmas allow us to express S as a function of S.

12



Lemma 2 (Second decomposition lemma).

So(f +u, f) =Y Ss(f +u, f,v) (4.11)
v=0
So(f + 1, f,v) = (f;fz 1) -;fifl - S(u, v) (4.12)

The first equality is trivial, the second one follows from the bijection

As(f +u, f,v) B Au,0) x Aa(f) x Oa(f +v, f), (4.13)

where Oy (f + v, f) is the set of sequences of 0 and 1 of length f + v such that there are exactly
f symbols 1 in the sequence and last symbol of it is 1. The proof is analogous to the proof of
the first decomposition lemma. Equality (4.12) is illustrated by Figure 4.

4.4 Recurrent relations for S

Combining these two decomposition lemmas and changing the order of summation, we get the
recurrent relations

/r—-1\ X — . v—1
st =3 (321) 5% Xse-u-rr-n-3 (1071 s,
f=1 u=0 v=0
with the initial condition S(I,0) = §;. This gives (2.8).
Using this system of recurrent relations, one can obtain information about limiting o. For
example, one can observe that the support of the limiting measure o is unbounded even when
the support of the distribution of {a; ;} is finite. This fact follows from inequality

My, > (C-k)F, (4.14)

where C'is a constant. To explain (4.14), let us denote by ¥ the set of essential walks of length
4k such that the root p belongs to each of the edges of the skeleton and each edge is passed 4
k
times. Weight of the essential walk of ¥ is equal to (%) . Cardinality of ¥ equals (2k — 1)!l.
This implies (4.14).
Finally, let us note that using the technique developed, one can derive recurrent relations

that determine the coefficients of %—expansion of ml(p )

-1 /1
ml(p)zz <Z S(l,r,i)) : l@ (4.15)

i=0 \r=0 p
Then we get
T 1 l—r (l—u—f=1)-(1-01—u—y)
S(l,7,i) = <f_1>-X2f-Z ‘ S(l—u— f,r—f,5)
f=1 u=0 j=0
.f:(f}—i11>-8(u,v,i—f—j+1) (4.16)

v=0
with the initial condition S(I,0,7) = d; - §;. We do not explain the detail of this derivation.
Similar formulas are obtained in [2]. The difference is that in [2] matrices are not normalized
by %. This leads to expressions for %—terms different from our (4.16). Relations (4.12) provide
more information about the properties of ml(p ) than relations (2.8). As the result, (4.13) are
more combersome than (2.8).
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5 Laplace operator

Regarding the Laplace operator, we have to modify our method. In this case the random variable
Ay; is given by the sum of A;; and therefore is dependent on random variables a;;. Each of
non-diagonal entries differs from the corresponding entry of the weighted adjacency matrix by
the sign only. Each diagonal entry of A(Fg) equals to the sum of all entries of the same line of the
corresponding weighted adjacency matrix. Taking into account this observation one can write

LNP=E {//\sdtf oF Ar)}ZE%TY [Ar]"=

1
—ELTr[B-A= Y Y Bk K0k (5.1)

i€1,N° be{0,1}

where K( = — Ay, Kj; (1) — B;j. Let us introduce the symbol M;; =1 —§;; = {(1)’ i: ;j’

then B can be rewritten in the form

B»-—{ ; ifi#tj
Yo Z{LAU'MM, ifi=j"

Given numbers by, bs, . . ., bs, we substitute (5.2) into (5.1) and change the order of sums over I’s
and E{-} and observe that the mathematical expectation depends the product of A’s only. The
difference between this representation and that of (4.1) is that the moment LgNJ’ ) i expressed
as the sum of weights of closed walks of s steps. A step can be usual or special (double). Let

us explain the nature of the special step that corresponds to the factor A;; - M;;. We denote it

(5.2)

by an arrow from i to j. To turn back to the walk we add the step (375 which is represented
by Mj;. This step can be regarded as the imaginary one because it does not contribute to the
length of the walk and to the weight (mathematical expectation) of the walk. In the figures we
denote the special step corresponding to the factor A;; - Mj; by an arrow from i to j.

As before, we determine the classes of equivalence of the walks, the minimal walks, and the
essential walks. In the case of Ar the essential walks are the minimal walks that have a tree as
a skeleton. Each of usual steps (4, k) of the essential walk corresponds to one

usual step (1975 only. Then if there are b usual steps m, ¢ special steps m, and d
special steps (1675, then the edge (k,j) has the weight (—1)2° - Xopicra= Xopicia

Let us give necessary definitions and formulate two analogs of the decomposition lemmas.
Denote by [ the number of usual and special steps of the essential walk w, by r{ the number of
steps starting from the root p and by f the number of usual and special steps (/)75 We denote
by /A\(l, r1) the set of the essential walks of [ steps such that they have 7y steps starting from the
root p and by S(I, 1) the sum of contributions of the walk of A({, 7). Let d be the length of the
walk over the tree G;. Denote by /A\l(l, r1,d, f) the set of essential walks with fixed parameters
l,r1,d, and f and by S;(,r1,d, f) the sum of weights of walks of Ay (,71,d, f). Let us denote by
/A\2(l ,71) the set of essential walks of K(l ,71) such that their skeleton has only one edge attached
to the root p and by §2(l, r1) the sum of contributions of the walks of Kg(l, ).

Lemma 3 (Third decomposition lemma).

ri I—f
S(, ) ZZ (I,r1,d, f) (5.3)

:d:
it = ("7 21 Bult = f)Sldn - ) 5.4
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The first equality is trivial, the second one follows from the bijection

M(yre,d, f) B Ro(l = d, f) x Ald,m1 = f) x ©1(r1, ) (5.5)

The proof is analogous to the proof of the first decomposition lemma. Equality (5.4) is
illustrated by Figure 5.

To formulate the fourth decomposition lemma, let us give necessary definitions. We denote
by r2 the number of steps starting from the root p (excepting the usual and special steps m),
by n the number of usual steps (p,v), by fi the number of special steps (p,v) and by fa

the number of special steps (v, p). Denote by Kg(l n, f1, f2,72) the set of essential walks
with fixed parameters [,n, f1,f2,r2 such that their skeletons have only one edge attached to the
root p. Let Sg(l n, f1, f2,72) be the sum of weights of walks of A3(l n, f1, f2,72). Denote by
A4 (n, f1, f2) the set of essential walks of length 2n + fi + fo with fixed parameters n,f1,f2 such
that their skeletons coincide with the graph G 2. It is not hard to see that for the case n > 1
one has the equality |K4(n,f1,f2)| = ("";lfl) . ("+f2_1). It is clear that each of the walks of

n—1
" . Xon
A4(n, f1, f2) has the weight wal/;iﬁg/fg,l.
Lemma 4 (Fourth decomposition lemma).
min{[(i—d)/2)],f} l-d—f—-n l-d—f-n—f2

Sa(l,r1,d, f)= > > > Ss—dn,f-n,fara)  (5.6)

n=0 f2 =0 T2 =0

(n+f2+?“2—1) . (n+f1) i (n+f2—1) §(l —d—n—f- f2’T2)’ ifn>1

Ss(l = dyn, f1, fa,2) = re 2, ot .
o ) {6ldf16f267“2pn+f21;r27%7 if n=0
(5.7)
The first equality is trivial, the second one follows from the bijection
-~ bij ~ -~
As(l=dn, fu, fa,m2) S Al —d —2n — fi = fo,m5) X As(n, fi, f2)x
XOz(n + f2 +r2,n + fa), (5.8)

The proof is analogous to the proof of the first decomposition lemma. Equation (5.7) is
illustrated by Figure 6. R

Combining this two lemmas, we get expression for S. This expression is the sum over all
admissible values of f,d,n, fa,r2. Let us change the order of summation. On the one hand, the
number n of usual steps (p, ) is not greater than the number f of all steps (/)75, on the other
hand the inequality 2n + f; <[ holds because each of usual steps (p,v) corresponds to the step
(1/75. Then n < min(ry, | —r1). The number f; of special steps (p, V) is not greater than the
number 7; of all steps starting from the root p minus the number n usual steps (p,r). Then
f1 changes from 0 to 71 — n. Now there are only [ — 7y — n free steps. Then the number f> of
special steps (v, p) can be changed from 0 to I —r; —n. Now it remains | —r; —n — f free steps.
The walk’s length d over the tree G is not less than the number r; of steps starting from the
root p minus the number n + f; of steps (p75 Thenri — fi—n<d<l—r1—n— fo. Now
there are only [ —d — 2n — f; — f> free steps. In the case n = 0, the expression is simplified to
Zfl 1 Cfll 11 : S(l — f1,71 — f1). The relations described above are illustrated by Figure 7.

min 1'1,1 7'1 ri—n

S(l,r) = Z Z (n ' fl) (n :-IJ; i 1>.

n=1 f10
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l—r1—mn l—r1—n—fo
n+ f2 -1 X(2n+f1+f2) -~
Z < n—1 >Im Z S(d,r1 —n — f1)
F2=0 d=ri—fi—n
ro+ fa+n—1

I—d—2n—f1—fa
. ( )

>§(l d—2n— f1 f2,’f‘2 +Z <f1:1> §(l fla’f'l_fl) ( )

7‘2:0
with the initial condition R
S(l 0) = (Sl 0-
mm{yl’gz} g1 g2—1\ _
Let us denote by g1 = f1 +n, by g2 = fo +n. Using the identity Z ( ) ( ) =

n—1
(91319_21_1) and (5.9), we get

~ L -1 ~ —
S(l;ﬁ):Z(Tl ) SU—=g1,m1— 1) - 91/2 T Z Sd?‘1—g1)

g1=1 g1 = 1
l—d—g1 l—d—g1—g2
g1 +92 — 1) Xog1+g0 <7“2 + g2 — 1) a
S LY Sl—d=gi - gor
P ( g—1 ) porwiT 2 g —1 ( g1~ 92:72)

If a;; =1 and p = 1, we obtain

~ Ll -1 ~ ~
S(l,r1)= Z <T1 > | SU=g1,m1 —g1) + Z S(d,r1 — g1)-

g1=1 g1 = 1 d=r1—g1
l—d—g1 l—d—g1—g2
g1+g2—1 ro+g2—1\ 5
. E . § Sl —d—a —
= ( g —1 > = < g2—1 ) ( 7 gQ’T2)>
92= To=

(p)

If we want to find the coefficients of %—expansion of I,

1P = Z <Z S(k,r1,9) ) ﬁ (5.10)

i=—k 71 0

we can apply the method described above. Then after some calculations we get the following
recurrent relations

5 — -1\ /a .
S(k,rl,z)zz (Tl >-(S(k—g1,r1 —g1,i+2—g1)- Xy, +

g1=1 91 -1
k=ry  d—2:(1-dq) k-d- o
) g1+g2—1 Xgi4g2
+ 3 Y Sdrm-gni)- Y ( o1 )W
d=ri1—g1 j=—d g2=1
k—d—g1—g2
re+g2—1\ & i ]
. Z <2929_21 )-S(k—d—gl—g2,7“2,ﬁ+2—g1—gQ—J)) (5.11)
'!'2:1

with the initial condition §(l, 0,4) = d1,0 - di 0.
Similar formulas are obtained in [2]. The difference is that in [2] matrices are not normalized
by ﬁ. This leads to expressions for --terms different from our (5.11).

In conclusion, let us discuss the limiting transition p — oo in (2.8) and (2.10). Regarding
the first sum of the relation for the limiting moments of the adjacency matrix (2.8), one can
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easily observe that the terms with f > 1 vanish in the limit of infinite p. Then (2.8) to gather
with (2.7) lead to the recurrent relations

k—1
my = Xo E ME—1—uMy

u=0

that certainly determine the semicircle law [22].

Let us turn to the Laplace case. In general, it is impossible to pass to the limit p — oo in
relations (2.10) because there is the term of the order p'/2. However, if one pass to the case of
random variables a with zero mean value, X; = 0, then the limit p — oo leads to the following
recurrent relations

— l—d—2

§(l,r1):X2-<(r1—1)-§(l—2r1—2 Z (d,ry —1) - Z@(l—d—2,r2)> (5.12)

with the initial condition §(l, 0) = di0.
These recurrent relations obviously differ from those for the semicircle law. Using resolvent
approach, we show at the end of Section 6 that the limiting moments

I, = lim 1% =" S(s,i)

pP—>00

determine the distribution known as the deformed semicircle law (see [16]).

6 Proofs of Theorems 3 and 4

Proof of Theorem 3. It is easy to see that nglv,p) (z) can be represented in the form

N -1
G () = <z+ > égﬁl’p)Agf@Agﬂj’p)) : (6.1)
G k=2

(N— LP)(Z) N

where the matrix {G ivj=2 18 the resolvent of the matrix iAN=1P) " which can be

obtained from AN:P) if we replace {Au NP }] 2 {A(N’p };VZQ by zeros. We remark here that in
D)

order to simplify formulas in this section we assume that Agjv = 0. The general case can be

studied by the same way. Let us use the formula (see [1]):
1(2]al/
e ua 2R —1— u1/2|a| / |a| UU) p{_Rflv}’ (62)
which is valid for any u > 0, ®R > 0. Then, on the basis of (6.1), we get

o 2|a1 |/
exp{-uafGY"} =1 - u'a| / de

(6.3)
plozv—u 3 GG
J,k=2
Denote
RN _ Z G N 1,1)) A(N,p §k 71)) (6.4)

J#k
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One can see easily that

~ X2 p2X4 pX2X2
E{|Rn|*} <222 ! i 6.5
RN} <20 1 * Mo NpRap? (65)
Indeed,
5 N—1,p) A(N—1, ) 4(N.p) 4(N,p) 4(N,
E{|RN|2} = Z {Ggllﬂ ! ngkz p)Agjl p)Ag]2p)Agk1p)A§k2p)}
J1#jaFk1F ks
(N—1, N-1, , ) N,
14 Z E G 1P)G( 1,p) |A P)| Alklp)AngP } (6.6)
Jik1F# k2
+23 EJG 1”’)G(N AP 2 A2 }:I+4H+21H.
Jj#k
Averaging with respect to {A ’p)} ~, and using the fact that {G (N— 1’p)(z) irj=2 do not depend
on Agﬂ.’p), we obtain
2 2 y4
4 P AN—1.p) p~Xq
I<X1 N2 {‘N Z p )]k } S N2|§RZ|2’
p ) _ XX,
IISX%XQF Z E{ 2z — i AN=LP)) (7 4 i AN 1’p))]k11k2} < W:
k1#k2
<X > Eq[(z — i ANz 4 i ANTIR) S < X3
- N2 - ke [ = N|Rz2

Besides, since evidently

~(N717 ) (Nv ) (N’ ) ~(N717 ) (N’ ) 2
%{ZGU ”AU”AUP}EO, %{ZG]-]- DA }20,
the inequality |e™*' — e™#2| < |21 — 22| (valid for Rz1, Rzo > 0) and (6.3) imply

2|aq |/
exp{—ua2GNy =1 - u1/?|q |/ ‘71( |a1| uv)

exp{— zv—vZG(N 1.7) |A ’p)| }+ 7 (u),

where

. o 2 N ~
Fn (u)] < |RN|u1/2|a1|/ dﬂ% V“”)e—ﬂ < C|Rn|u?|ar||R2| /2.
0 v

Here and below we denote by C some constants (different in different formulas), which do not
depend on N, z,p. Taking into account (6.5), we get

B{iiv () < e (©8)

Averaging with respect to a; and {A(N’p N

E{ exp{ U01G11 ’P)}}_l 1/2/d,u a |(l1|/ dv -.71 2|C\L/1_|\/7E)

Y, we obtain

xE{exp{—zv—vZG ’p)|A(N’p | }} +rn(u), (6.9)
Jj=2
C(up)'/?
rn(u) < NIRRT
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Taking into account that {éﬁjvfl’p) (2)}Y;—5 do not depend on A( ?) | we obtain

B{ (-0 6 Al ) :E{ ﬁ (0= 2y Loz ™)}
=E{ exp{pr_1<v/p,z>}} T Rn(0) (6.10)
o)l < 2.

Let us prove that fx_1(v/p,z) = % Ze_va”G(N "/P can be replaced by fn(v/p,z). To this
end consider the matrices ANP) (1) = (1—t) ANP) 4t AN-12) GQ(t,2) = (z—i AN (£))~! and
the function

N
1 P
In(u,z,t) = = §_1 e uaiGiit2), (6.11)
It is easy to see that
1 & (N—1,p) 1 &
~ 2 P 2
‘fN—l(U,Z) — fn(u,2) + —‘ = ‘— + ¥ > TR O ~ d emuaicilz)
i=2 i=1

:‘fNuz1)—fN(u20‘:‘/1dtifNuzt)‘

(6.12)
=2 / a2 ZaQG” (z t) i ’p)Gll(z t)e” " Gz
~vap| '’
4 p)
TR [Z'“" ¥ [Z'A |

where we have used that ||G(t,2)|| < |Rz|~!. Therefore, for any u € R

. W2 X2 X1/ 1
E{|fn-1(u,2) = fn(u, 2)]*} < |£Z|4]\72 + N2|z|? (6.13)

Hence, (6.9), (6.10) could be rewritten as

E{fy(u,z2)}=1- u1/2efp/ lax |dp(ar) / dv% \W”)efsz{epr(v/p,Z)} )
0
" Cp*u
B{r W) < el

(6.14)
Now let us prove (2.14). Denote
on(z,u) = fn(z,u) — E{fn(z,u)}

and observe that due to the symmetry of the problem

B (2,1} = 2 (Blem it () mainto) (6.15)

_Efeuaitn())E{eua3G2())) £ O(N 1),
We shall use the formulas (cf. (6.1)):
GV _ [(Z N i G =2 4 (N0 Aggw)
N > N i1 (616)
_< T G A0 g ,p)> (43 QU 2,p)AM,p)A(N,p> } ’
k=3 3.k=3
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Here £ =1,2, 7 =3—/¢and GN=20) = (z —iAIN=22))=1 where ANN=22) can be obtained from
AWN:p) by replacing Aﬁy’p),Agj”’) Ag-jlv’p),A%V’p) (j = 3,...N) by zeros. Similarly to (6.5), one
can get that

2 2
(N=2) g(N) 4N || Cp (N=2) 4(N0) 4N | Cp
o{[ e < 2{{ Do Aa] S NRap
J#k
Hence, using (6.2), similarly to (6.3)-(6.6), we get
{ uang1 p] —uaj; G(N p) _ E{e—uangl p)}E{e—uagGg;‘p)
2|ay |/ 2|as|+/
/|a1||a2|du (a1)dp(az) / / dvy dvy S Clarlyu) Ji (2as] Vivs) e AV R
4/ UV1V2
X [E{ePsz 01/p,2) gPfN—2(v2/p,2) 1 - E{ePfN—z ﬂl/P7Z)}E{epr2(v2/p,z)}:| + iy (u),
N Cp
< .
E{liv ]} < 3
(6.17)

By the same way as in (6.11)-(6.13) it is easy to prove that the estimate (6.13) remains valid
if we replace fy_1(u,z) by fn—a(u,z). Thus inequalities (6.17) remain valid if we replace
fn_a(u,2) by fn(u,z) in the r.hs. of (6.17).

Besides, since

|fn(v,2)] < maxe "R <, (6.18)
1
we have the bound
E{eP/n(1/p2)gpin(v2/p2)} _ FepIn(v1/p2)VE P/ (v2/p:2)]

< 4e?Pp? (E{|on (v1/p, 2)*} + E{|on (v2/p, 2)*})

Let us take the norm (2.16) and consider the Banach space B of all the functions ¢ : Ry — C
which possess this norm. Consider ¢,(u) = dn(u, 2).

Then, using (6.19) and the inequality |J1(z)| < 1 (see [1]), on the basis of (6.15)-(6.18) we
get

(6.19)

8 Xy e?Pp?n 1 C
E{||s 21 < 1 E{||s B 6.20
(Ul 2|12} < S0P (14 o B ln (e I + (6.20)
Hence, it is evident that there exists M > 0, such that for any z : Rz > M
N C
E{llon(u, 2)|I"} < - (6.21)

Thus, for any z : Rz > M equation(6.14) can be rewritten in the form

E{fn(u,2)}=1—- ul/Qe_p/ laldu(a) /000 dvijlebg\/%)e_”epE{fN(”/p’z)} + 7y (u) ©.22)
B ()]} <

Define the operator F, : B — B of the form

@ =1-u2e [lalduta) [~ P EOD oot (g

C’pu

Then for any ¢1, ¢2 ||¢12]] <1

2X21/2\/7_rel/4p\§}%2\ ||¢
2Rz [1/2

Ood’U —IRz|v Ul/2 1/2
||Fz<¢1>—Fz<¢2>||sxé/2/0 S gy — ol < L~ dall
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Hence, there exists M7 > 0, such that for all z : Rz > M,

1
[|F.(¢1) — F.(¢2)|| < §||¢1 — ¢2||.

Thus, if we denote by Bo1 = {¢ : ||#|| < 1} the ball of radius 1 centered in the origin, then
we obtain that F, : Bp1 — B, and the restriction F, on By is a contraction. Therefore,
there exists the unique fixed point f(u, z) of the mapping F, : By1 — Bp which is a solution
of (2.17), and E{fn(u,2)} — f(u,z), as N — oo. But since E{fn(u,2)} for any z: Rz >0
is an analytical function, the uniqueness theorem of complex analysis guarantees that equation
(2.17) has a solution for any z : Rz > 0 and E{fn(u,2)} = f(u, z), as N — occ.

Similarly, since dn(u, z) is a bounded analytical function, E{||dn(u, 2)||?} = 0 (N — o0)
implies that E{||0n(u,2)||?} — 0 for any 2 : Rz > 0.

Proof of Theorem 4. The proof of theorem 4 repeats almost literally the proof of Theorem
3. We use the formula (cf. (6.3)):

N N -1
G = (s +i AR+ 30 Al A (624
j=2 k=2
where {G}; R ®) N._, is the resolvent of the matrix iA(N=1P) obtained from ANP) by
replacing {A(N’p o {A]1 ’p)} *, with zeros. Then, similarly to (6.2)-(6.22) we obtain

, 0 2
E{f{(u,2)} = i(—u) —u'/?e P méwwua)/n mﬁﬁi%%xﬁﬂezngwﬁ%wna}
0 rl)

|
s, B < L

(6.25)

Then we consider the Banach space B with the norm (2.16) and the operator F® B Bof
the form

F;A)(¢)(u) = ji(—u) — ul/2eP / |a|ei““d,u(a) /00 dv%@eﬁ” . ePo(v/p) (6.26)
0

It is easy to see that there exists M; > 0, such that for any z : Rz > M; the operator
FZ(A) : Bo,1 — Bo,1 and its restriction to By, is a contraction.
Hence, there exists the unique fixed point f(*)(u,z), which is a solution of (2.24), and

E{f](\,A) (u,2)} = f(u,z), as N — co. Similarly to Theorem 3 the statement of Theorem 4
can be derived from this fact.

In conclusions let us discuss the limiting transition p — oo. Assume that X; = 0. Then in
the case of the adjacency matrix, by using formula (6.1) we can write

-1
G( 7P) — <z + ZG(N 1.p) X +RN +R ) , (6.27)
where Ry is defined by (6.4) and
N
~(N1.
Ry= Y G4, —EB{42)})

Then, since X; = 0 in view of (6.5) E{|Ry|>} — 0, as N — oo and

N

E{|R,[?} < S |G

=2

*“’)P% + O(R=| > N™1) = O(|R2|2p™") + O(|R2| 2N ).

21



Besides, similarly to the above consideration it is easy to conclude that

E{|N~'Tr GN-1r) - N=1Tr GNP 2} = 0,
E{|N~'Tr GNP) - E{N~'Tr GNVP}]?} -0, N — o0.

We remark also that this self averaging property can be obtained directly from Theorem 3 (see
Section 2.2).
Thus, we get that if gn ,(2) = N~!Tr (ANP) — 2)=1 then

E{ign.p(—i2)} = (2 + X2E{ign p(—iz)}) ™" + o(1)

Similarly to the proof of Theorem 3, we conclude that for |Rz| large enough E{gn ,(—iz)} —
g(—iz), as N,p — oo, where g(z) is the solution, of the equation

9(z) = (Xag(2) —2)7",
satisfying condition ¢g(z)Rz > 0. So we have got once more the result of [16] that if X; = 0

and N,p — oo, then IDS of AV:P) tends to the Wigner semicircle law.
By the same way, using formula (6.24), we get for the G(A-N:2)(z)

x -1
GENP) () = <z +i Z A(N’p + ﬁE{TT G(A’N’p)(z)}>

(6.28)
(|§Rz| 2 H+ O(|R2| 2N ).
N
Thus, since ZA&IJ-V’I’ ) converge in distribution as N,p — oo to the Gaussian random variable
j=2
with zero mean and the variance X5, we get from (6.28) the equation
— 2/2d
LAY, .y [eTdv . L (A), . -1
B{igfi)(~i)} = [ e + o+ Bighd)(~i2))
and so we conclude that there exists
Jim E{igh)(iz)} = ig"®)(iz),
where ig(®)(iz) is defined by the equation
7@2/2d
e v, INVEINE
9\ (—iz) = W(zz —v— ng](\,’;(—zz)) ! (6.29)

and the condition Rg(z)Rz > 0. The last equation determines the Stieltjes transform of the
deformed Wigner law (see [16]). The semicircle distribution is "deformed" by the normal one
and this makes the support of the corresponding IDS to be infinite. The moments of this
deformed Wigner law are determined by relations (5.12).

Regarding the matrix of the Laplace operator (2.3), it is easy to explain the result (6.29).
The diagonal term B of (2.3) is given by the sum of approximately p independent random
variables a and this sum is normalized by ,/p. So, if the mathematical expectation of a equals
to zero, the order of magnitude of the diagonal term of (2.3) remains finite as p — oo and
this equalize it with the matrix AN'?). Since the elements of these random matrices A and B
become statistically independent in the limit p — oo, the limiting IDS results in the semicircle
law given by A deformed by the normal distribution provided by B.
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