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Abstract

The partition function of the two dimensional U(n)- gauge field theory in the limit
n — oo is found by a rigorous mathematical way. the results obtained and the methods
used are motivated by the recent studies in the theory of random matrices combined with

traditional tools of statistical mechanics.

1 Introduction.

Two dimensional non-abelian gauge field theory (QCDy) is a quite useful labo-
ratory to study the mathematical structure of corresponding theories in physical
relevant dimensions (string aspects, confining phase, behaviour of various in-
variant quantities, etc.). One of the important objects of non-abelian theories
is the partition function (more generally, the Wilson loop expectations) on two
dimensional surfaces. These functions are kernels (or their traces) of the heat
equation on the gauge group manifolds as expected from the path integral ideas.
In many interesting cases they can be explicitly expressed via characteristics of
the gauge group irreducible representations and give rise to numerous studies of

the QCDy and related topics of quantum field theory and mathematical physics.
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In the paper [1] the partition function on the sphere corresponding to the
U(n)-gauge theory was analyzed in the large n (planar) limit. Authors found
that in this limit there is a phase transition of the third kind as one varies
the area A of the sphere. Since the coupling constant g enters in the partition
function only as g2A, the transition can be interpreted as a certain change of
the large n asymptotic behaviour corresponding to the weak coupling (trivial)
and the strong coupling regimes. We refer the reader to the papers [1],[2] for
the discussion of the QCD aspects of the transition and references.

In this paper we present the rigorous derivation of the free energy found
in [1]. Our derivation is based on the ideas that are traditional in statistical
mechanics. Namely, we combine the scheme of the proof of the equivalence of
canonical and grand canonical ensembles and the scheme of justification of the
mean field limit.

The partition function studied in [1] has the form of the sum over all irre-
ducible representation R of the group U(n):

Z(n,A) = %(dimRVexp{—%Cb(R)}. (1.1)
Here dimR is the dimension of the representation R, Cy(R) is the eigenvalue of
the quadratic Casimir operator (the Laplacian), and A is the area of the sphere.
By using the standard parametrization of the irreducible representation of U(n)

by their weights, on can write the partition function (1.1) in the form [1]:

1 _ A2 &0 An n
Zn )= e A0 S (=P L (- kP (12
15005 ln="—00 <i<g<n
where the summation is over all integer hq,...,h,. It is easy to see that up

7*~1) this expression is very similar to that for

to the trivial multlpher e i
the partition function of the unitary invariant ensemble of Hermitian random
matrices [4]

Zo=[" [ expf- nZV(xZ)} 10 (xi—xj)2:fl[ldxi (1.3)

1<i<j<n



with V(z) = Ax?/2. Indeed, if we replace the summation in (1.2) by the
integration we obtain the expression (1.3). The asymptotic behaviour of Z,
was found by physicists many years ago (see [5], [6]) and recently in a rigorous
mathematical way in [7]. However, the direct application of methods, proposed
in these papers leads to the expression for (1.2) which is correct only for small A
(weak coupling phase). Thus we are faced with some new type phase transition
which does not occur in the continuous version of (1.2), i.e. in the matrix model.
To understand the mathematical nature of this phase transition consider the
calculation of "toy” partition functions

Zi= [ expf-nY. V@) [deg  Zi= 3 exp{-nYV(h)}, (1.4)

TiFT; i=1 i=1 hiZh; i=1

where we replace the ”interaction” terms [T;<;(h; — h;)? and [li<;(z; — z;)? by

much more simple conditions

z; #xj, or h;#hj, for i#j. (1.5)
It is easy to see that, while the continuous partition function Zﬁ from (1.4), is
factorized
~ n
Zﬂz = H /e_”v(xi)dxi,
i=1
the discrete one Z! generally can not be written in this way, i.e. even asymp-

totically for large n the equality
Zi =11 S e
i=1

is valid only for some special choices of V(x), which corresponds to the ”weak
coupling phase”. This phenomenon is explained by the fact that in the contin-
uous case condition (1.5) has no influence on the integral, while in the discrete
case this condition is important and precisely in the situation of the phase
transition. One can also compare the present problem with the problem of
computing the free energy of the ideal Bose-gas where the difference between
the discrete and continuous case (summation and integration) results in the

Bose-Einstein condensation.



Thus, to find the asymptotic behaviour of Z? we need to use some technique,
which allows us to take into account automatically conditions (1.5). The tech-
nique of such type is well known in statistical mechanics. This is the method
which allows to prove the equivivalence of canonical and grand canonical en-
sembles by introducing the chemical potential. By using analogous ideas we

prove the following theorem, which is a rigorous version of the result of [1].

Theorem 1 Consider the discrete partition function of the form

‘a:§jm%zmmm—w—§mwm%, (1.6)

hi#h; i#j i=1 n
where V(x) satisfies the condition
V(z)| > (24 €)log|z|. (1.7)
Then, there exists the limiting free energy
f= lim n"?log Z, =

[log|z — 2/|p(z)p(z)dzdz’ ~ [ p(x)V (z)dz,
where the density p(x) is uniquely defined by the conditions
(i)
px) 20, [ plz)de =1, (1.8)
(i)
p(z) <1, (1.9)

(111) there exists constant z such that

suppp(x) € {z :u(x) > —z} (1.10)
and
plx)=1, if u(zr) > —=z, (1.11)
where by definition
u(z) =2 [log|z — 2/|p(z')dz’ — V (z). (1.12)
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Remark
It is easy to show that the free energy f and density p(x) can be obtained as a
solution of the following variational problem

f = sup {/log |z — 2'|p(z)dzp(z")dz’ — /V(x)p(a:)da:} (1.13)

p(z)<1
where we look for the supremum on the set of all densities p(z) under condition
(ii) On the other hand, the solution of continuous problem (1.3) is (see [7] for
the proof and discussion)
f= Jim n~?log Zy =

sup {/log lz — 2'|p(z)dzp(z)dx’ — /V(:v)ﬁ(:v)d:):} : (1.14)
p(z)
where we look for the supremum over all densities without condition (ii). Thus,
one can see that as far as the solution of problem (1.14) p(x) satisfies the con-
dition (ii) we have the same solution for both continuous and discrete problems
(weak coupling phase). But as soon as for some A = A, we obtain p(z¢) =1 at

some point x( , then for A > A, we get the different solutions of the problems

(1.2) and (1.3) (strong coupling phase of (1.2) ).

In the simplest case when V(z) is an even function with only one minimum
(e.g. V(z) = 2?) to find p(z) in the weak coupling phase (or p(z)) we have to

solve the singular integral equation

Vie)y=2/[" ply)dy (1.15)

This equation has a bounded solution for any a (see book [8]) and then a can be
found from the normalizing condition (i). But if we are in the strong coupling

phase, then, according to (i)-(iii), the function p(z), satisfies the conditions
p(z) =0, if |z > a,
0<p(z) <L ifa>|z|>b
p(z) =1, if |z| <b. (1.16)
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Therefore we have to solve another singular integral equation (cf. (1.15))

V'(x):2/__abp(y)dy< L1 >+2/b Gy (1.17)

r—y x+y “br—vy

and then find a and b from the normalizing condition (i) and equation
u(=0) = u(b),

which follows from the condition (iii) for the function u(x) defined by formula
(1.12).

In the case when V(z) has m minima, the support ¢ of the density p(z) may
consist of k < m intervals. For any of this interval (a;, a;11), (i = 1,3,...,2k—1)
we consider a small interval (b;,b;41) C (a;,a;+1) in which p(z) = 1 and find
p(x) on the set o' = U?*71((a;, b;) U (b1, air1)) as a solution of singular integral

equation

Vi(z) = 2/J p(y)dy’ if x €0

r—Y
According to the theory of singular integral equation [8], this equation has a
bounded solution if the function V(x) satisfies 2k conditions on the set ¢’. This
gives us 2k equations on the endpoints ay, ..., as, b1, ..., bsr. The other equa-

tions can be found from the normalizing condition (i) and from the equations

U(bl) = U(bg), . .U(bgk_l) = u(bgk)

u(az) = u(ag), ...u(agk—2) = u(byg_1)

that follows from conditions (1.10)-(1.11).

2 Proofs

Let us note that, by virtue of Lemma (see below), there exists positive numbers

L > 2 and § > 0 such that

1 1
o log Z,, — ﬁlog ZE <™ (2.1)



where

Zl— ¥ eXp{Zlog\hi oy - inV(’”)}.

hi#hj,|hi| <nL i#] =1 n
One can see that ZX can be considered as the partition functional of the one
dimensional Ising-type model. The Hamiltonian of this model can be written

in the form

2=+ ¥ togl Tt ¥ Vst o4 1)
V)= —— og Vp Uy vy — — og — Uy
n r#r! |r|<nL nL |r|<nL n n |r|<nL nL
(2.2)
v, = 0,1 are "occupation numbers”. Thus
ZE= S exp{—nH(v) + n(n — 1)log Ln 4+ n(lognL — 1)}. (2.3)

{3 vr=n}
To eliminate condition ¥ v, = n we introduce a parameter z (the ”chemical

potential”) in the Hamiltonian (this procedure is standard in statistical me-

chanics):
r—r T
Hv,z)= > w( v+ Y. (V(=) = 2)v, + nz, (2.4)
|7],|r'|<nL nL |r|<nL n
where r
—n"tlog |r], r#0
w(r) = (2.5)
—n"YlognL —1) r=0
L
and consider
Zu(2) = ¥ expl-nH(v, )} (26)

{vr}
Now, if we determine z from the condition

<1 5 yr> 1 (2.7)

n |r|<nL H(Z)

and prove that

| 2
<( > v — 1) >H(Z) —0, as n— oo, (2.8)

N\ <nL
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then, as usually in statistical mechanics we obtain that

. 1 1
lim ﬁlog zk ﬁlog Zn(z) — lognL| = 0. (2.9)

n—oo

Thus, to calculate Z,, we have to calculate Z,(z), to find z from equation (2.7)
and to check (2.8). To solve these problems we use the mean field theory
approach in the form which was proposed in [9] to solve similar problems.

Consider so-called approximating Hamiltonian of the form

/ /

r—r r—r
H,(v,c,2)=2 > w(——)ycp— Y, w(——)ccpn+
|7|,|r'|<nL nL |7|,|r'|<nL nL
> (V(Z) — 2)Vy + nz. (2.10)
|r|<nL n

Then
r—r

nL

H(v,z) = Ho(v,c,2)+ Y w(

Pl Jr|<nL

)(Vr — CT)(I/TI — Cr/) = Ha + R. (2.11)

According to the Bogolyubov [10] inequality, we have

1 1 1 1
3 ae) S logZn(z) — 5logZu(c,2) < 5 (R)p, ey (2.12)

n n n
where Z,(c, z) is the partition function corresponding to the Hamiltonian H,(c, z).

For any z let us choose ™ = {c™} as a minimum point of the function

r—r'

nL

®(c,z) = L log Zy(c, z). Since in [7] it was proved that w(’=F) is positive de-
fined matrix, function ® is ”strictly convex” with respect to ¢, z (i.e. its second
derivative in any direction is strictly positive). Besides, it grows as ¢ — oc.
Therefore ®(c, z) for any z takes its minimum with respect to ¢ in the unique
point ¢ which is the solution of the equations:

exp{n(u,(r/n)+ 2)}

w _ 2.13
C, <V7‘>Ha(c,Z) 1+ exp{n(u,(r/n)+ 2)}’ ( |
where
r r—r (n) r
o , vi©y 2.14
u (n) |r%<:Lw( nlL Jew F (n) ( |

Thus, if we take in (2.10) ¢ = ¢ and use the fact that

<U7“V7“'>Ha(c,z) - <V7“>Ha(c,z) <V7“'>Ha(c,z) (7" 7£ TJ)?
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we get

1 1 1 1 1 L+1
(R)(») < —log Zy(2) — — log Zy(c, 2) < —w(0) = ognt (2.15)
n

n? — n? n

3

Since due to the positivity of the matrix w(Tn_LTI) the left hand side of this
inequality is positive, we obtain

1

: o1
Jim o log Z(2) — min - log Z,(c,2z)| =0 (2.16)
and
1 r—r lognL +1
Sy wTT Y — e (v — cT,)> < osnitl (2.17)
<”|ﬂMﬂ<nL nl n

H(z)

In [7] it was proved that the last inequality implies

N r<nL N\ <nL

2
1 1
<( oy —— > cfa”)) > < const - n 2 log!/? n.
H(z)

Thus, if we choose z provided the equality

1

-y dM=1 (2.18)

n |r|<nL
we solve equation (2.7) and prove (2.8). But, as it is easy to see, equation
(2.18) is just the critical point equation for the functional ®(c, z) which, as it
was mentioned above, is "strictly convex” with respect to ¢ and z and grows

as z — oo. Thus there exists a unique point 2™ which satisfies (2.18) and

according to (2.9) and (2.12)

.1 :
lim - log ZE — min ®,(c,z) —lognL| = 0. (2.19)

n—oo

Now we shall study min,, ®,(c,2) = ®,(c™, 2™). Let us note that it follows
from (2.13) that

0<c™ <1, (2.20)
Consider the measures
(n) ! )y, (T
p(A) == > g"xal>), (2.21)
N\ <nL n



where xa(z) is the characteristic function of the interval A. Then, by the
Helly theorem there exists a subsequence p(™), a measure y and a constant z
such that u™)(A) — p(A) for any A and 2™ — 2 as k — oco. Since p™)
have the form (2.21) and c(™) satisfy (2.18) and (2.20), the limiting measure
p(dz) is absolutely continuous u(dz) = p(x)dz and its density p(x) satisfies the

conditions

0<p() <1, [pz)ds=1. (2.22)
Define
r— X

!/
u(z) = 2/10g| 7 p(z")dz" — V (z). (2.23)
Since c™ is the solution of (2.13), then (cf.(1.8)-(1.12))

suppp(z) € {z : u(z) > —z} (2.24)
and
plz) =1, if u(z)> —-z. (2.25)

We shall prove now that the conditions (2.22)-(2.25) determine the function
p(x) uniquely. To this end assume that there exists another function p(x)

satisfying the same conditions (may be with different z = 21). Consider

x—x

u'(z) =2 [ log]| —loi(a)da’ — V() (2.26)
d() = o) 0 = ()
uli:— wr—r’dnr_’ VCZ
) = B e R VO
ul(D) a2 <u(£) _ u1(£)> +0(n"logn), (2.27)

where u,(") is defined by (2.14). Since ®,(c,2) is a convex function and

(¢, (™) is its minimum point we have for n = ny
0 < ®,(dy,z1) — (™, 2M) <

— 5 4G (@) -ul) +

" <nL n
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4— > ( +0o(1) =

T\ |<nL ﬁ 1+ exp{nu)(r/n)}
[ @@ -ue)de & (@0 -]

exp{na () + = (a(E) T (E) + ol
1+ exp{na' (L)n=1/2(u (r) —a'(L)}

fo oo @ @) = (@) de — [ (@ () () da
)>+dD, (2.28)

) exp{nal(r/n)}
dx

r
n

where
u(r) = u(z) + 2, @'(z)=u'(z)+ 2.

It follows from the last inequality that for n = ny
0< ®y(dy, 21) = (™, 2) <= [ () p @) de

oo T @) o) S0, (229)
The second inequahty in (2.29) is true because p!(z) satisfies (2.22). Besides,

since ®,,(c, z) can be represented as

/

D, (c,2) = w(%)crcr/ —z+4 Fy(c, 2),
where F),(c, z) is also convex function, we get
0*®
B (c.2) — B ) > " (e ™Y —
(€ - B ) > S S (e~ )
9*®,, " o 02D, "
Irl< Lacr({)z(cr_cg ="+ 02z A
2 S wl e — e — )
— w cr — ) (e — ).
T pp ||| <nL nL '
Thus it follows from (2.29) that
1 r—r (n) ,
2 Z e pla) - pr(2) (o(a") 1 ()’ +
rl|r'|<n

+0(1) < ®,(c, 2) — (™, z(”)) < o(1)

As a result p(z) = p1(z) and z =

11



Lemma
If V(z) satisfies the conditions (1.7), then there exist positive numbers L > 2
and 0 > 0 such that
(1) , ,

o log Z,, — " log ZE| < e (2.30)
(ii) for |rl, ..., |re| < nL

lp(r1y - oyrk) — pr(ry, )| < pr(ra, o Tk)e_msa

(iii) and for |ri| > nL and any ro, ...T}

p(r1, ... ri)| < exp{—nd[V(z) — max V(y)]}.

lyl<1/2
Proof
Let us chose L large enough (L > 2) to provide the condition:
€ €
_ > — — . :
V() max V(y) 2 (2+5) loglo] + £V (2) 2:31)
Consider
p=1  jiejp=tl,E2,...
where
ZL = > exp{—nH(ri,..m)} (2.33)
[71]5eeesrn | <L
and
I(j1, .y Jp) = > exp{-nH(rm+inL,..,rp+inL,rpi1, ..., rn)}. (2.34)
[71]5eeesrn | <L

Now we estimate

A1, -y Jp) = log I(51, ..., jp) — log ZE

To this end we compare each term in (2.32) with some term in (2.33). Namely,
for any configuration |rp1l, ..., |r,| < nlL consider |ri|, ..., [r;| < nL/2 which do

not coincide with any of rp41, ..., 7, (it is possible because L > 2). Then

—nH(ry+ jinL, ...,rp+ jpnL, mpi1, o) F0H (1], 1) Ty, s ) <

12



ri . i Tk | . ri —
-n Y V(g*‘]z’[/) V( )]4‘2 > llog‘ﬁ+]iL_ﬁ+]kL|_log‘Tk

1<i<p 1<i<k<p
Ty . ’]">.k —r
2 llog‘—z+]¢[f——k|—log| . k| <
1<i<p,p<k<n n n n
€
—n <2 + 3> > log L(|7:] — _)
1<i<p

1
2n > log L(|j:] + ) + npC + O(logn) <

1<i<p

1
“ne > log L(|ji| — —) + npC + O(logn). (2.35)

6 1<i<p

Here we have used (2.31) to estimate V(% 4 j;L) — V(ﬁ) inequality
log|a —b| < log|a| +log|b| (|al,[b] > 1)

to estimate the second sum in the r.h.s. of (2.35), and inequality

1 - 1 - )
Y gt MO Dy g™ T > 2 5 g =

N 1<i<p,i#k N p+1<i<n N 1<i<n

1/2
—/0/ Inzdz + O(n"*logn)

to estimate the last sum in the r.h.s. of (2.35). Substituting this estimate in
(2.32), we get
Zy — ZE| < ZEne™ (14 e7)"

where § depends on L and e. This inequality proves the inequality (i) of Lemma.

Inequalities (ii) and (iii) can be proved similarly.
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