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Abstract

We consider symmetric n x n matrices H,, known as the deformed Wigner ensemble
and having the form of sum of a non-random matrix and a random matrix with in-
dependent identically and symmetrically distributed entries. We prove that if tails of
the probability distribution of entries decay as exp{—c|z|?*} and the ensemble admits
the integrated density of states (I.D.S.), i.e. the limiting eigenvalue distribution, with

2* being the endpoint of its support, then the probability that ||H,|| exceeds z* + ¢ is
3+a 1
bounded above by exp { — const.e 2+an2+a } Similar result is obtained also for certain

block random matrices for large size of blocks.

1. INTRODUCTION

Consider the ensemble of random matrices

(1.1) I, = {J(i,j) }n

1,5=1

where J(i,7) = J(4,%) (i,j = 1,2,...) are independent identically and symmetrically
distributed random variables with zero mean and variance J2. We call this ensemble
the Wigner ensemble. It plays an important role in many problems of spectral theory
(see e.g. reviews [1], [5] and references therein) and statistical physics in particular in
the theory of disordered spin systems (see e.g. review [2] and references therein), where
the random matrix J,, determines the interaction in the Sherrington-Kirkpatrick spin
glasses model.

It is known [1], [2] that if we define the integrated density of states (I.D.S.) of
matrices (1.1) as

Nn()\):% S

A <A

where {\;}7_, are eigenvalues of J,,, then N,,(\) tends in probability to the non-random
limit N (X) as n — oo and for each A

N'(A) = p(3) = Corgr e it =27
0, if || > 2.7



This implies that the number of eigenvalues of J,, lying outside of interval [-2.7,27]
being divided by n, tends to zero in probability as n — oo. However, in many problems
of random matrix theory and statistical physics we need more precise information on
behaviour of A,. In particular, it is important to know the values of the extreme
eigenvalues, i.e. the norm of respective random matrix.

In this paper we give a large deviation type bound for
(1.2) Pr{[lJall > 27 + ¢}

In particular, our bound (see Theorem 1 below) is such that

(1.3) iPr{HJnH > 27 +e} < oo

n=1

Thus, according to the Borel-Cantelli lemma if n is large enough, then with probability
1 all eigenvalues are inside of [27 — €,2J + €].

We consider also the same question for the so-called deformed Wigner ensemble [2]:
(1.4) H,(i, ) = (H® +7,)(, 5) (i,j=1,...n)

where J,, has the form (1.1) and H'®) has the limiting 1.D.S. N(©(A) as n — oo, i.e. for

any interval (a, b):

b b
(1.5) lim [ dNY\) = / dN©O(X).
n— 00 a a

For ensemble (1.4) it is also known [2] that its I.D.S. N,,(A\) converges in probability to

the non-random limit N(A) and that its Stieltjes transform

g(z):/d)\N_();), Imz#0

is the unique solution of the equation

(1.6) 9(2) = / (A= T?g(z) — 2)""ANO ()

such that Img(z) - Imz > 0, Im z # 0.
Let z* be the right-hand endpoint of the support of N(X). Then the analog of (1.2)

for this ensemble is
(1.7) Pr{||H,|| > z* + ¢}
and we give an upper bound for this probability (Theorem 2 below) of the same type.
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And the last ensemble which we will be interested in is the Wegner ensemble [2]

(1.8) Hpa(x,i5y,7) = (Hﬁ?)%—ﬂn’/\)(a:,i;y,j) (z,ye ACZ% i,j=1,...,n)

where A is a cube of side length L centered at the origin. Unlike ensembles (1.1) and

(1.4) this ensemble consist of matrices acting in ® R" i.e. having the “block” structure.

TEA
Here the matrix ]HIS\O) has entries
(1.9) H/(\O)(x,z'; Y, J) = H/(\O)(a: —y)dij (r,y €A, i,j=1,...,n)

and corresponds to the interaction between the “blocks”. We impose the periodic bound-
ary conditions. In terms of H( ) they mean that H/(\O) (z + Lr) = H/(\O) (x), r e Z%

The matrix J, 4,

(1.10) T a2 iy, §) = 6z — 1) T (a2 m%,

corresponds to an interaction inside each “block”. Here
T (zii,7) = T(x:5,1)  (ze€Z? i,j=1,2,..)

are independent identically and symmetrically distributed random variables with zero
mean and variance J2. Some results of the rigorous study of this ensemble can be found
in the review [2]. The I.D.S. of this ensemble is defined as

Noa(A) = ([Aln)~" ) 1

<A

where A; are eigenvalues of H,, o. It can be shown [3] that with probability 1 there

exists the non-random limit

(1.11) dim - Ny A (A) = N(A)
|A]— o0

which coincides with that for ensemble (1.4) if HY and H/(\O) have the same limiting

I.D.S. Again we will estimate
Pr{||[Hnall > 2" + ¢},

where z* has the same meaning as in (1.7).
For the case of Gaussian J(i,7) the norm of J,, (1.1) was estimated in [4]. The

bound obtained is

2
Pr{||J, all > 2J + ¢} < exp{—const.e. N3 }.
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4th

In [5] it was proven that if J (4, j) have finite moment, then with probability 1:

lim ||J,] = 2J.
n— oo
In present paper we will assume only that
(1.12) E{7*¥2(i.5)} < CT*RB{T*" (i, j)}-

Here and below symbol E{...} means averaging with respect to the random variables.
The method which we are using here is rather similar to that used in the pioneer

paper by Wigner [6].

2. THE MAIN RESULTS

Theorem 1. Let us consider random matrices (1.1) satisfying conditions (1.12). Then
3ta 1
(2.1) Pr{||I,]| > 27(1+e)} < nexp{ - M52+an2+a}

where M does not depend on n and €.
The proof of Theorem 1 is based on the following lemma:

Lemma 1. Let
n n 1
a(l ) = a(l )(j) = E{—ntrﬂik}

) (a+2)7!

thenf0r1<k§<"€

s, , where C' is specified by (1.12), we have

k

n n n 1
(2.2) o, = 7 ;ag Jal™, + O(;)
k
(2.3) oM, < 72 1+e)Y aMa,.
/=0

Proof of Theorem 1
We will prove Lemma 1 later. Now let us derive (2.1) from (2.2) and (2.3). To this end

we introduce the sequence of numbers aj by recurrence formula:

k
(2.4) aj1 =T (1+e)) aja;_,
=0
and initial conditions
(2.5) ag =1 al=J*1+e).



It is easy to check that
(n) _ (n)

ay = ag a; ’ <aj.
(at2)"*
Therefore from inequality (2.3) one can derive by induction that for k£ < (6 40)
we have
(2.6) a{™ < af.

On the other hand from relations (2.2) it follows that if for finite & we take the limit in
the r.h.s. and Lh.s. of (2.2), then we prove that there exists

ar(J) = lim a{™(7)

and if we set J = /1 + eJ, then ay(J) satisfy relations (2.4), (2.5). Therefore

ap(J) = aj,.

Besides, according to [2]

a(T) = — / AEVIT2 — N2d) < (27)?

2 T2
(at2)"*
and from the inequality (2.6) it follows that for k < ( 3 40)
(n) 2k
(2.7) < (27)" = (27VT+e)

Now let us use the simple inequality

o™ = E{%trJi’“} > %/0 AEAP() > [27(1+¢)] P27 (1 +5))%.

Here P(X\) = Pr{||J,|| > A}. We obtain for k£ = (

PRI(1+¢)) < (z«;\/uljg;) <nexp{—Me§’i—3nz+%}.

This estimate proves Theorem 1.

Proof of Lemma 1

By definition

(2.8) o) = N BT i)T i)+ T i i)}

ila'--7i2k



Since J (i, j) are independent with zero mean, we have non-zero terms in this sum only

if for some /:

(2.9) (igy1041) = (i1,12) or (ig,1p41) = (i2,11).
Thus we can write the representation

(2.10) ay” = S1(k) + La(k) = S (k) + S3(k) + Sa (k)

where

RV L L e Jlinia) (o i in T i1, 02) (rok—2-20 i in
i) = 3 B S IO () o i) T (512 ) .

NV L1 Jlinia) (e oo T (iz,11) (ron—2-20 i
x(k)—%E{n% ) (52 i) T2 (2 i

Y1(k) and 1 (k) include those terms of 1 (k) and o (k) which contain only two J (i1, 2)
or J (iz,41) and X3(k) is the remainder, which contains more than three of these variables
(three is impossible due to the symmetry of distribution of [J(i1,43)). It is important
also that due to the symmetry of distributions of all J(i,7) all terms of (2.10) are
positive.

Now let us estimate the r.h.s. of (2.10):

2k—2

2k n
.11 =7t B 2 e i < T,
2k—2

(2.12) Z T°E { Ju) (Jik_2_2£)}-
But for every £ +m < 2k — 2
(2.13) E{% (3) (I} - E{%tr(Jﬁ)}- E{% ()}

< o] 5 37 TG ) 04 U ) i 2) 03T i) |

jl 7j2

4k2 . ke 2~ (n)
S 5 T 00 )

where we have used inequality (1.12). From (2.12) and (2.13) it follows that

k—1
(2.14) Sa(k) < J?

{=0

0™ g™ Sk e
k:

1_¢ 7+ CT?ag_2




It remains to estimate X3(k). To this end we single out such factors in Jﬁ_l whose

indices are (i1,42) or (i2,41). We obtain
(2.15)
1
E3(k) < 3 Z

bi4-lo 43404 =2k—4

{ > T i, ia) (T0) (in,i2) T (in,i2)- (332) (o, 11) T (i, d2)- (I52) (2, 1) T (in, i2)- (Tt ) (2, in)

11,12

+ Y T (in,i2) (T ) (i1, 62) T (i, in)- (332) (i, i2) T (i, i1)- (Tp2) (in, i2) T (i, 6)- (Tit) (dn, i)

11,02

+ Y T (inyin) (35) (i, d2) T (i, i1)- (372) (i1, 60) T (i1, ) (38) (2 i) T (i2,i1) (Jn) (d1,d1) + -+ }

11,12

where we have written only 3 of 8 internal sums. Let us estimate the first of these

internal sums in (2.15). Others can be estimated similarly. We have:

E{ Z %(Jﬁl)(lzyh)(ﬂfﬁ)(iz,i1)(Jf{°’)(i2,il)(,,]]f;‘)(z‘%z‘l)} <

< POl > T (5 i) ) ) (0 i, ) ) )

< jncszaE{ Z %(Jgj%w(iz,iz)%(ﬂés—k&)(zl,zl)}

11 7i2 7i3 7i4

1,02
and similar bounds for other sums in (2.15). Inserting these bounds in (2.15) we obtain:

Y3(k) <

<ETel xR g i T g i

2
n n n
CALo+0s+04=2k—4 vn v

64kT2C T2

n

Sy(k —1).

But according to (2.10)
So(k—1) < al™, + S35k —1).

) (a42)7"

Therefore for k£ < ( it

(2.16) Sa(k) < T2 (ak C+ Da(k— 1)) <. <T%Y (T%) e,



and since

aén) { Z J (i1, 12) ZQ’il)j(i17i3)j(i3ai1)"'j(ig,il)} ey

217 B

it follows from (2.16) that for ¢ <1 we have:
k
(2.17) Ys(k) < j2€Za§cn)£a,(cn).

Now inequalities (2.11), (2.14) and (2.16) give us inequality (2.3) of Lemma 1. Relation
(2.2) follows from (2.10), (2.11), and (2.14)-(2.16). Lemma 1 is proved.

Now we will consider the deformed Wigner ensemble (1.4).
Theorem 2. Let H,, has the form (1.4), where H") satisfies (1.5) and H,go)(i,j) > 0,
J,, has the form (1.1) with J (i, j) satisfying condition (1.12). Let also z*(H®, 7) be a

right-hand endpoint of the support of N(X) whose Stieltjes transform is determined by
equation (1.6). Then

3ta 1
Pr {|[H]| > 2(HO, 7) +e} < nexp{ —M82+an2+a}

where M does not depend on n and e.

The idea of the proof of Theorem 2 is the same as that for Theorem 1. It is based

on Lemma 2 which is an analog of Lemma 1.

) (a+2)7"

Lemma 2. Let agg)k = %E{ tr(]HI;O))m]HI’;}. Then for allm and1 < k < (”65%1

n n n n 1
(2.18) En)k—l—l fn—)l—lk +*722a7(n)£aélg -2 +O<g>’
(2.19) 7(3)1@+1 < ag:—)l—lk +J?(1+ Mie) Za(n)eaénlg -2
=0
Here
* _1 . *
My = (jgg) if 22 40
M; =1 if 92 =0.

The proof of Lemma 2 is almost literally the same as that of Lemma 1. Therefore we
will show only how to derive Theorem 2 from (2.18) and (2.19).
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As in Theorem 1 let us introduce ay, 1, Dy the recurrence relations:

k—2
(2.20) A, ka1 = Gmy1p + T2 (1+ Mie) Z Uy 000 Jo— 02
£=0
and initial conditions
1 m
(2.21) at o = EE{ tr(Hg’)) }

By the same arguments as that in Theorem 1, we have

—1
() o oy \ (1)
Uty S G o (k = <n664cl)
in particular
(n)
Ay < aé,k-

Now using as in the proof of Theorem 1 the relations (2.18) and results of [2] we find

) (at2)"*

M
that for k < (M

k
ay ), < [z (HD, 71+ Mls)]

and therefore as in Theorem 1

Pr{||H,| > z* + e} < n-

k
2 (HY, JV1+ Me)
(MY, T) +e

1 3+a
<n exp{ — Min2+a.g2+a }

Theorem 2 is proved.

Theorem 3. Let us consider the Wegner ensemble (1.8) with

H/(\O) (x) >0 and Z H/(\O)(ac) < oo uniformly on L.
TEA

Let also J(x;1, j) satisfies conditions (1.12). Then
9 -1 3+a
Pr{[E, | > =* +¢} < [Al-exp { — Myn>+™" 35 ]

where z* = 2* (]HIE\O), j) and M, are the same as in Theorem 2 if the limiting 1.D.S. of
]HIE{]) coincides with that of]HIflo).



To prove Theorem 3 we start from Lemma 3 which is an analog of Lemmas 1 and

2:
Lemma 3. Let afg”é\) = ﬁE{ tr(]HIS\O))m]HIZ’A}. Then for all m and all k such that
(at2)7"
1<k< ("6%1)
n,A\ n,A\ n,A\ n,A 1
(2.18) 'gnk—?—l_ 7(n+1)k+~72z 7(n£)a(()k )e 2+O<ﬁ)’
k—2
n,A n,A n,A) (n,A
7(n kll < 7(n+1)k + J?(1 4 Me) 7(n,£ )a((),k—)£—2
£=0

where M is the same as in Lemma 2.
The proof of Lemma 3 is the same as that of Lemma 1. The only difference is in the
estimate of X1 because in this case instead of the inequality (2.12) for ¥2 we obtain

inequality:

22 B |A|1n2 Z Z E{((HE\O))mHi},A) (x7il;xail)Hﬁz’A(ﬂf,iQ;x,iz)}

L1 +2=2k—2 (z,11),(x,i2)

Thus we have to check that for all m,# and x € A we have
E{ <(]HI5?))m]HIf;’A) (z,i; x, 2)} afg”é\).

But since ]ng]) is translationaly invariant with periodic boundary condition the last

relation is obvious. Then we estimate the difference

1
|Aln?

Z E{ ((Hs\o))mHi}’A) (:Uj 2]_, :1:, Zl)H'fL%A(‘T:? 22; CL', 22)} _ afn 2)a£2

(.’l),’h),(.’l},iz)

in the same manner as in Lemma 1, and all other estimates of Lemma 1 may be repeated
almost literally.

The derivation of Theorem 3 from Lemma 3 is the same as that of Theorem 2.
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