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The review is devoted to theoretical investigations of propagation of electromagnetic and
acoustic waves in layered conductors of organic origin. Attention is focussed on spectroscopic
possibilities for studying the electron structure of organic quasi-two-dimensional

conductors, which is of great importance for understanding physical processes in these materials.
High-frequency and magnetoacoustic effects considered in this review are typical of quasi-
two-dimensional conductors and quite informative. The analysis of these effects makes it possible
to study in detail the electron energy spectrum and relaxation properties of charge carriers

in layered conductors. €999 American Institute of PhysidS1063-777X99)00111-5

1. INTRODUCTION states of these compounds and the possibility of changing the
ground state with external agencies.

The search for new materials in the sixties attracted the  Shubnikov—de Haas magnetoresistance oscillations ob-
attention of researchers to conductors of organic origin withserved in tetraselenetetracene halides and a large family of
a layered or filamentary structure. Intense experimental intetrathiafulvalene-based ion-radical salts with a charge trans-
vestigations of physical properties of organic conductorgort in magnetic fields of the order of several tens tesla in-
were stimulated in the hope of obtaining superconductorslicate that these compounds possess the metal-type conduc-
with high critical parameters just among quasi-one-tivity. This allows us to describe the electron processes in
dimensional filamentary conductors in which a superconsuch conductors on the basis of the concept of quasiparticles
ducting transition can theoretically occur at high temperacarrying an electric charge, which are similar to conduc-
tures. Many years of efforts made by physicists and chemistdon electrons in metals. Strong anisotropy of the electrical
to obtain a large number of new organic conductors culmi£onductivity of a layered conductor is apparently associated
nated in the synthesis of organic quasi-one-dimensional coWith strong anisotropy of the velocity of charge carriers
ductors with a superconducting transition temperafiyef ~ —¢¢(P)/Jp on the Fermi surface(p)=eg, i.e., their en-
the order of several kelvins as well as layered organic supef'9Y €(P) weakly depends on the momentum component

conductors with a record-high superconducting transitiorPz= PN a@long the normah to the layers.
temperatureT,=13K. Although these values of, are The Fermi surface of quasi-two-dimensional conductors

lower than for some intermetallic compounds, the interest> PN and weakly corrugated along ieaxis. The corru-

towards the electronic properties of organic conductors regate(.j planes can be rolled into a cylinder whose ba;e lies in
mains unabated a unit cell of the momentum space so that the Fermi surface

: - . f layer n r can resen m of weakl
Layered conductors of organic origin are attractive for' 1Y€ ed conductor can be presented as a system of weakly

. . . . corrugated cylinders or a system of planes corrugated weakl
experimenters to a considerable extent due to their peculiar, 9 y y P 9 y

behavior in st tic field d b M along thep,-axis. Small closed cavities belonging to anoma-
ehavior ih strong magnetic Tields and a number ot p as_?ously small groups of charge carriers can also be present.
transitions under comparatively low pressures. Their electri- The mean free pathof charge carriers in experimentally

C‘_”ll conductivity al_ong layers |_s_several orders of magnltUdE?nvestigated layered conductors attains values of several mi-
higher than electrical conductivity along the normao the .o meters, and the radius of curvaturef conduction elec-

layers, and the critical magnetic field at which superconducy;qng in strong magnetic fields that may be induced in actual
tivity is violated depends considerably on its orientation rela‘practice can be much smaller thanUnder these conditions,
tive to the layers. Under the action of applied pressure, th is appropriate to formulate the inverse problem of recon-
superconducting transition temperature of famodification  giryction of the electron energy spectrum with the help of
of tetrathiafulvalene saltBEDT-TTF),JBr, increases ap- experimental investigation of kinetic phenomena in a mag-
proximately by a factor of threeSuch a sensitive reaction of netic field.
the system of charge carriers to crystal deformation indicates ~ Galvanomagnetic phenomena and quantum oscillation
that acoustoelectronic phenomena in layered conductors witéffects in low-dimensional conductors of organic origin have
a quasi-two- dimensional electron energy spectrum appaleen investigated experimentally by many authors. In recent
ently possess peculiar properties. years, several publications appeafetlin which the results
The interest in investigations of organic conductors withof experimental studies of high-frequency phenomena were
a layered structure is also due to the variety of various phaseeported(including the discovery of cyclotron resonance in
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the layered conductag-(BEDT—TTF),KHg(SCN). P ]

High-frequency parameters of layered and filamentary i ' “H
conductors are undoubtedly quite informative, and their / ; 3
analysis will make it possible to determine in fine details the W
electron energy spectrum and relaxation properties of charge HH
carriers. Here we shall consider the propagation of electro- HE i
magnetic and acoustic oscillations in organic quasi-two- Y
dimensional conductors, choosing these oscillations from the
variety of waves that can propagate in current-carrying me-
dia.

®H

e(p)=sg
2. ENERGY SPECTRUM OF LAYERED CONDUCTORS

A unit cell of a crystal in layered organic conductors
contains a large number of atoms, and the separatibe-
tween layers is much larger than atomic spacing in a layer.
As a result, the overlapping of wave functions for electrons )
belonging to different layers is quite small, and we can use
the strong-coupling approximation for dispersion relationsriG. 1. Various types of electron trajectories in momentum space in a

for charge carriers: magnetic field parallel to the layers: open trajectoriesrves 1), closed
electron orbits(curve 2), and a self-intersecting orbit containing a saddle
- anp, point p, (curve 3). The cross section of the Fermi surface by the plape
s(p) = 2 sn(pX ,py)CO< h) . (2.1) =p. separates the regions of open and closed electron traject@jiemd
n=0 (b) show different projections of the Fermi surface.

Hereh is Planck’s constant anel,(py,p,) are assumed to be

arbitrary functions of their arguments. However, the maxi-

mum valuess™ at the Fermi surface decrease significantIyCharge carrier group can change significantly the dependence

with increasingn so thate ™= yep<er, and s ™ <gM, of electromagnetic and acoustic impedances on the magni-
the tude of a strong magnetic field.

where 7 is the quasi-two-dimensionality parameter of 51 T )
Yamagjf! used a rather simplified model of the Fermi

spectrum. . X ; :
P Shubnikov—de Haas quantum oscillations are observea”rface in theoretical calculations of the magnetoresistance

virtually for all organic conductors of the family of tetrathi- anisotropy of layered conductors, while Zimbovskyana-
afulvalene salt&1° This points to the presence of closed Yzed the rf properties by using the energy spectrum of

sections of the Fermi surface by the plgmg=p-H/H for

such conductors, and the large value of the oscillation am-
plitude suggests the presence of a group of charge carriers
for which the states with the Fermi energy are located on

weakly corrugated cylinder in the momentum space, such a

group of conduction electrons dominating over the remaining

charge carriers with the Fermi energy.

The model of a Fermi surface of a quasi-two-
dimensional conductor in the form of a weakly corrugated \
cylinder (Figs. 1 and 2is in good agreement with the ex- n
perimental investigations of galvanomagnetic phenomena
and Shubnikov—de Haas oscillations in many layered com-
plexes of organic origin with charge transport. Among other
things, the results of theoretical calculations based on this
model are in complete accord with the experimentally ob-
served quantum oscillations of magnetoresistance of tetrathi-
afulvalene saltdBEDT—TTF),JBr, and (BEDT—TTF),J.
However, the substitution of the complex MEREN), for
halogens in these salts, where M is a metal of the gi@up
Rb, TI), leads to a more complex dependence of resistance
on magnetic field. According to band analysis of the electron

energy spectrur’ the Fermi surface of
(BEDT-TTF),MHg(SCN),, salts contains, apart from a
weakly corrugated cylinder, two quasi-one-dimensional (a) (b)

sheets. Although the presence of a magnetic field affect thl(—EIG. 2. Electron trajectories in momentum space in a magnetic(fakithe

dynamip properties of charge carriers V‘{ith a quasi-0Nezngle formed by the magnetic field vector with the normal to the layés
dimensional spectrum only slightly, the existence of such and(b) show different projections of the Fermi surface.
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charge carriers of an exotic form with kinks on the Fermi The magnetizatioiM induced by an external magnetic
surface. Under such assumptions, spectroscopic potentialitiéigld in conductors without a spontaneous magnetic moment
of studying electron processes in organic conductors in & usually small, and there is no need to distinguish between
magnetic field were underestimated or even disregarded atlhe magnetic inductiorB and the magnetic fieldH=B
together. We shall consider here the high-frequency and-47M(B) except at ultra-low temperatures. At quite low
magnetoacoustic effects in organic conductors under theemperatures, when the inclusion of charge carrier energy
most general assumptions concerning the form of quasi-twoguantization in a magnetic field is significant, the amplitude
dimensional electron energy spectrnl). of quantum oscillations of magnetization as a function & 1/
The quasi-one-dimensional energy spectrum of chargean become comparable witB, and the differenceB
carriers will not be specified either. We shall only assume—47M(B) can become an infinitely small quantity. In this
that the coefficient®\qoo and A1qg in the expression for the case, the wave process is essentially nonlinear even for small
dependence of energy on quasimomentum wave amplitudé®2*
If M(B)<B, Egs.(3.2) can be reduced to a high degree

e(p)=> Anmi cos( al:: Px Cog( azr: pS’) COS( alhpz of accuracy to the equation
|
. (2.2) w? 7w
' curl curl E— —E=—%—]j. (3.9
are much larger than all the remaining coefficieis, . The ¢ ¢
dimensionsa; anda, of a unit cell of the crystal lattice in In the case of a small wave amplitude, it is sufficient to

thexy plane of the layers can also differ considerably. In theconfine the analysis to the linear approximation in weak per-
case when these planes are not the symmetry planes of thgrbation of the electron system, and the wave process can be
crystal, we must take into account additional phase in th@egarded as monochromatic with frequeneyso that the
arguments of the cosines in formulgs1) and(2.2), which  differentiation with respect to time is equivalent to multipli-
changes sign upon the substitution-op for p. This willnot  cation by (~iw), which is taken into account in EG3.4).
alter the wave spectrum in layered conductors considerably;his assumption does not violate in any way the generality
and so there is no need to complicate the solution of thef the problem since in view of the linearity of equations
given problem. Thus, we shall use below the dispersion rereative to the displacement of ions, the electric figld,t),
lation for charge carriers in the fori2.1) and(2.2), assum-  and the magnetic field of the wave, the generalization to the
ing that the coefficient®\,,,; and the functions:n(px.Py)  case of an arbitrary time dependence of the fields is trivial
are arbitrary. and can be reduced to the summation of various harmonics
of the solution of the system of equatio(&1)—(3.3).
The perturbation of the electron system by crystal defor-

3. COMPLETE SET OF EQUATIONS mation leads to a renormalization of the conduction electron
energy? i.e.,
An acoustic wave in a conductor always generates a
varying electromagnetic field accompanying it. However, the e = \ij(P)uijj 3.5

perturbation of the electron subsystem of a conductor by agnq to the emergence of the force
electromagnetic wave incident on its surface can also excite

elastic oscillations in it. Consequently, the system of equa- E 1 H m. ¢ 36
tions describing the propagation of waves in a conductor i_E[JX ]i+€'“’“+ i (3.6
contains the equation of the theory of elasticity for ionic )
displacements, i.e., exerted by electrons on the crystal lattice.
The electric current density
Ju; Ajm
Pz = Mim - T Fi 3.9 . 2 o o
] ]i__mfevidf%d p=(evi) (3.7

as well as Maxwell's equations

Cgldm  LE 1B
curl H=—j+ oo oul E=—C o divB=o0. L
(3.2 fi __0—,Xk<Aik‘//>r (3.9

Here p and A\, are the density and elastic tensor of the
crystal, uj, = (1/2) (du, / X+ duy, 1 9x;) is the strain tensor,
andc the velocity of light.

and the deforming force densffy?’

characterizing the response of the electron system to pertur-

bation are functionals of the charge carrier distribution func-

In view of a quite high number density of charge carri- t|qn f:fO{s(p)Jr”‘.)P'l.J}_ wfol.as’ \'/vhe're fole(p)
lep-u} is the equilibrium Fermi function in a reference

ers, Poisson’s equation can be reduced to the electroneutrz%r:ame moving with the vibrating lattice at a velocityi eu
ity condition of the conductor, and hence the continuity con-. g 9 :

dition for charge flux in the asymptotic approximation in The nonequilibrium correction to this velocity should be de-

) . . termined by solving the kinetic equation closing the com-
reciprocal density of conduction electrons assumes the form : .
plete system of equations of the problem and having the

divj=0. (3.3 form
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1 Let us suppose that a wave propagates along the normal
;—lw)lﬂ:g- (3.9 to the surface of a conductor occupying the half-space

~ =0. Using the Fourier method, we continue even{x) and
Here the functiong=—wA;j(p)u;;+eE-v takes into ac- E(x) to the region of negative values wfand obtain for the
count the perturbation of the system of charge carriers by thgpurier component
electric field

g o
— 4+ —
Voar T ot

U2 ui(k)=2J’wdx U (x)coskx (3.16
(3.10 0

~ i
E=E- ?[ux H]+
_ of ion displacement and for the electric field
and by crystal deformation.

The components;;(p) of the deformation potential ten-
sor in the kinetic equatio3.9) and in expressioit3.8) for
the deforming force density are given in the form taking into
account the conservation of the number of charge carrierghe following system of algebraic equations:
ie.,

Ei(k)=2J:deEi(x)coskx (3.17)

Amiw ) = 2E" CE (K w\? K
Aik(P) =Nik(P) = (Ni(p))/(1). (3.11 1K) =2E"(0)+KEa(k)—| =] Eal(k), (3.18
The collision operator in the equation fgris taken in a=y.z
the approximation of the relaxation timefor charge carri- "
ers, and the timeis a coordinate in momentum space, which  j (k)=0 (3.19
indicates the position of a charge on its trajectory in a mag-
netic field in accordance with the equation of motion — w?pu;(K) = — N[ 2u/(0) + k2u, ]+ (imw/e)j;(K)
p e + (k)X H]+ik(A ). 3.2
Py, (312 (X HL+ik(Apy).  (3.20

The fluxes characterizing the response of the electron
The kinetic equation must be supplemented with thesystem to a perturbation can be presented with the help of the
boundary condition taking into account the scattering ofsolution of the kinetic equation in the following form:

charge carriers at the conductor surface coinciding, say, with -
the planex=0: Ji(k)=a; (k) Ej(k) +ajj (k) kou;(k), (3.21

w(p+,0):q(p_)¢(p_’0)+f d3pW(p,p+) <Aixw(k)>:bij(k)Ej(k)+Cij(k)kwuj(k)a (322

where the Fourier transforms of electrical conductivity
X{1=0[v.(p)1}#(p,0). (313  gyi(k) and of acoustoelectronic tensoas; (K),b;;(k) and

Here the specular reflection paramedép) is the prob- cij(k) are defined as

ability that a conduction electron incident on the sample sur- a--(k)=<e2v-§v->' a--(k)=<ev-§A- ) (3.23
face with a momenturp_ has after reflection a momentum ! e B '
p. connected witlp_ through the specular reflection condi- bij(k):<eAixﬁvj>' Cij(k)=<Aixﬁ3A,‘x>- (3.24

tion presuming the conservation of the energy of the charge
and of the component of its momentum along the scatterindflere
boundary. The specular reflection parameter is connected

X . N N t
with the scattering indicatrix W(p,p,) through the Rng dt’ g(t")exp{ik[x(t) —x(t) ]+ v(t' —t)},
relatiorf®2° —co

a(p_)=1- f d*pW(p,p ){1-O[v(P)]}, (314 9() =@z (k) +ev(t)- Ek). (3:29
. o . Substituting expression$3.21) and (3.22 into Egs.
where® ({) is the Heaviside function. (3.18—(3.20, we obtain a system of linear algebraic equa-

In a bulk conductor whose size is much larger than the; |« i, ui(k) and E,(k). The problem of distribution of

mean frge patht of charge carmers, mOSt. of them do pot electric field and the field of displacement of ions in a con-
collide with the sample surface during their mean free timey,ctor will be solved completely if we apply the inverse
If we are interested in “bulk” effects that are not a:;sociatedFOurier transformation to its solutions

wiih interaction of a small group of charge carriers with the The condition for the existence of a nontrivial solution

;ample surface, th_ere Is no need 1o use _the boundary Conddf the obtained system of equatiofi®., the equality to zero
tion, and the function)s can be presented in the form of its determinantis a dispersion equation. The imaginary
t components of the roots of the dispersion equation determine
'ﬂ:f dt’g[x+x(t")—x(t) ]exdv(t'~t)],  (3.19  the damping factors of the acoustic and electromagnetic
- waves, while the real components of these roots describe
wherev=1/r—iw, andx(t) = [tv,(t)dt. renormalizations of the velocities of the waves.
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4. PROPAGATION OF ELECTROMAGNETIC WAVES IN ji00= 03 E; (), (4.5

LAYERED CONDUCTORS ) o )
and the component of the electrical conductivity matrix

The equations in the theory of elasticity and Maxwell's = ¢;(0) have the same form as in a uniform electric field.
equations turn out to be coupled weakly when the mutuafrhe electrical conductivityr,,= %0, across the layers is
transformation of electromagnetic and acoustic waves iproportional to the square of the quasi-two-dimensionality
hampered. In this case, the propagation of acoustic waves igarameter of the electron energy spectrum, agchas the
conductors can be investigated without using Maxwell’ssame order of magnitude as the electrical conductivity along
equations, and the problem of propagation of electromagthe layers in a uniform electric field. In this case, the disper-
netic waves can be solved to a sufficiently high degree ofion equation4.3) implies that the attenuation depth of
accuracy without using equations in the theory of elasticity.the electric fieldE,(r) is larger than the attenuation depth

We consider the propagation of electromagnetic wavesf the electric field along the layers by a factor ofyli.e.,
in a layered conductor. Their attenuation length depends con-
siderably on the polarization of the incident wave. A linearly ~ 9.~ %17- (4.6
polarized wave with the electric field directed along the nor-  uUnder the conditions of anomalous skin effect, when the
mal to the layers penetrates into the conductor to a considskin depthsd, is much smaller than the mean free patbf
erably larger depth than a wave with the electric field di-charge carriers, the relation betwe&nand &, has the form
rected along the layers. T

The surface impedance and the penetration depth of the SL=01m" (4.7)
Varying electric field of the wave can eaSily be determined b)éince the tensor Componenmj (k) are inverse|y propor-
solving the system of equatiort8.18), (3.7), and(3.9) with  tjonal to the wave numbek for kI>1.

the boundary Cond|t|0m313) The solution of the kinetic In a magnetic field, the relations betweép and 5” are
equation(3.9) allows us to find the relation between the Fou- more diversified.
rier transforms of current denSity and electric field: Let us consider the propagation of e|ectr0magnetic
waves in a layered conductor in a magnetic figtl
ji(k)=crij(k)Ej(k)+f dk’'Qjj(k,k")Ej(k"), (4.2 = (H sin,H cose sin §,H cose cosd), tilted by the anglep
to the conductor surface;=0.
where The integral term in the boundary conditi¢8.13 en-
a'ij(k)52€3H/C(27Th)3 sures the absence of current through the sample surface, but

in the range of high frequencies the solution of the kinetic

T v, , equation weakly depends on this functioffaDisregarding
x| dpy o dtvi(t,pw) Odt vi(t'.pw) this functional fore=0 and assuming the absence of charge
carrier drift along thex-axis along open electron orbits, we
xXexp{v(t' —t)}cosk{x(t",py) —X(t,pn)} can write the solution of the kinetic equation in the form
=(e?v;Rv}). 4.2 to ,
(eviRvy) (4.2 ‘/’(tvayx)ZJ’ dt’ev(t’,pu) - E[X(t", pu) = X(N, )]
The kernel of the integral operat®;;(k,k’) depends A
conS|dgrany on the state of the sample surface,. i.e., on the xexplv(t' — )+ g\, pu)[1—a(\, pr)
probability of specular reflection of charge carriers at the
surface. T-)

In the cases when the relation between the Fourier trans-
forms of current density and electric field is local, i.e., the
contribution of electrons colliding with the sample boundary xXev(t',pu) - E[X(t",pr) =X(N,pu) ]
to tht_'-z al_ternating current is considerably s_mgller than the Xexp{r(t' —t+27—T)}, 4.9
contribution from “bulk” electrons, the electric field attenu-
ation length is determined by the imaginary component ofvhereT=2m/Q=2mm*c/eH is the period of motion of a
the roots of the dispersion equation charge in the magnetic fieldy* the effective cyclotron mass
of conduction electrons, andis the root of the equation

xexp[v(Z)\—T)}]*lf dt’
A

2 A7iw
det{ ( Kk?— —2> Sap— —2—0up(K) | =0, 4.3 t
¢ ¢ x<t,pH>—x<x,pH>=f Vx(t',pa)dt’ =x. (4.9
where »
which is nearest to.
a,B=(y,z). Conduction electrons for whickx(t,py) — Xmint<<x do
not collide with the sample surface, and we must put
44 N = —oo for such electrons.

Under the conditions of normal skin effect, when the In a magnetic field tilted to the sample surface, conduc-
mean free path of charge carriers is smaller than the skition electrons either penetrate to the bulk of the sample after
depth, the relation between current density and electric fieldeveral collisions with the boundary, or tend to approach this
is local to a high degree of accuracy, i.e., surface. The relative fraction of the latter electrons is not

Tan(K)0p(K)

Faplk) = 0aplk) = = =
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large, and they make a small contribution to the alternating For 6= 6., whenl,(6.) vanishes, he value df,, de-
current. The contribution of the remaining electrons to thecreases abruptly for smat}, y=(Q7) 1, w/Q, andkr.
current foro=1 is naturally determined by the type of their As a result, the penetration depth for the electric fie)d
interaction with the sample surface, but the state of the surincreases considerably fat= 6., and the angular depen-
face affects only insignificant factor of the order of unity in dence of impedance acquires a series of narrow peaks. For
the expression for surface impedance. tan#>1, these peaks are repeated periodically, with a period
determined by the separation between the stationary phase
points on the electron orbit, wheke v=w, which are close

We shall apply the term normal skin effect to penetrationto turning points ¢,=0). Since the phase velocity of the
of an electromagnetic field to the bulk of a sample under theyvavevq):w/kz(wr)‘lfzwc/won is much smaller than the
condition when the current densifyr) is determined to a Fermi velocity ve of conduction electrons, the separation
high degree of accuracy by the value of the electric field  between stationary phase points on the electron orbit can be
at the same point. In a strong magnetic field parallel to the regarded to be equal to the diameter of the orbit to a high
conductor surface, charge carriers with closed orbits drift inrdegree of accuracy.
the momentum space along the sample surface. If the diam- The height of sharp peaks fé= 6. in pure conductors
eter & of their orbits is much smaller than the skin depth, at low temperatures, whdm?> &,, decreases with increas-
the main contribution to rf current comes from carriers sepaing magnetic field, and conversely, fon?< &, it increases
rated from the surface;=0 by a distance greater tham.2  in proportion tol 8y/r 7 if | p<r<&y/7. At not very high
These conduction electrons do not collide with the samplérequencies, when the displacement current is smaller than
surface, and it is expedient to use the approximation of localhe conduction current, the solution of the dispersion equa-
coupling between the current density and the electric field ofion (4.3) for #= 6, can be represented in the form of the
the wave to calculate the surface impedance in thénterpolation formula
asymptotic approximation in the small parametés$ in the
absence of open cross sections of the Fermi surface.

The asymptotic expression for the tensor component
agij(k) for kr<1 has the same form as in a uniform electric
field so that the electric curreri, for kr<1 attenuates at

4.1. Normal skin effect

r2+ 5(2)77—2 12
2+ 1777

(4.149

o=

In the case of extremely low electrical conductivity
along the normal to the layers, whern> oo 7?( 5%+ r?/1?),

distances the skin depths; has the form
~ S — -1/2
d,=6g=C(2Tmwoy) (410) 5“:(50/772){14‘(1'/'77)2+(r(1)/C77)2}71/2
for any relation between the mean free path of charge carri- {1+ (1 5l 89)2}, (4.15

ers and the skin depth.

For <1, each of the components,, anda,, is at least and the electric field attenuation depth along the normal to
proportional to7? so thatd, = o, The asymptotic form of the layers is again equal # /7> in a strong magnetic field
o, (k) for small anglesd is equal tooo7? in order of mag- Whenr<(1?7*+ 83/%°)2 In the range of moderate mag-
nitude, and the attenuation lengthof the electric fieldE,is ~ netic fields in which the relatiob,/7<r< g, holds for §
larger thans, by a factor of 14 as in zero magnetic field if = 0c. the impedance as a function of magnetic field has a
the corrugation of the Fermi surface is nor very small andgminimum since for>17 the skin depth

7= Sgwlc. For o> oy7?, the skin depth 8,=1r 7l 8, (4.16
S— 53‘” 1+ riw?\ 12 4.19) is inversely proportional to the magnetic field, i.e., decreases
"cn? c? : with increasing magnetic fiefef~3°

. ) o S For 6, <r<§,, the attenuation length of the electric
increases with the magnetic field, attaining its limiting valuefjg|q E,(x) depends weakly on the type of reflection of
w53/ cry? 3% charge carriers at the sample surface as before, but the pen-
For significant values of), there exists a sequence of etration depth for the electric fiel,(x) is quite sensitive to
values of 6= 6. for which the asymptotic behavior af,,  the state of the conductor surface if the valuespfis smaller
changes considerably, as well as the behavior of thenan or comparable to the mean free path of charge carriers.

it 33-35~ i iofi i . e .
quantity’>~**a,, which satisfies the expression In this range of magnetic fields, normal skin effect can take
3 place only foré, >1, when the local relation between the
_ ae’7TH cosé 22 _ . P
7,4k, ,0)= Wz n?l 2+ aon?{ n?f1(6) f:urr.ent density and electric field is observed~f0r any polar-
77 n ization of the wave. The asymptotic expressioy (k) for
+92E5(0)+ (Kr)2f5( )}, (4.12 kl<1 coincides witho to within a numerical factor of the

order of unity, and hencé, coincides in order of magnitude
where thef; stand for functions o® of the order of unity, with §,. However, the penetration depth of the electric field
and E,(x) in the sample depends considerably on the magnetic
field orientation.

T A liar depend f the attenuation length of th
|n(0):J dten(t)coganp,(t)tans/h}. 4.13 ‘peculiar dependence of the attenuation length of the
0 electric fieldE,(x) is observed fow= =/2, when, apart from
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the drift of charge carriers along the magnetic field, a fan ofHere (ri(jl)(k) is the contribution to the rf electrical conduc-
various drift directions is possible in they plane for con- tivity from charge carriers with the energy spectr(@m®), in
duction electrons belonging to open cross sections of thevhich we retain only a few terms by putting

Fermi surface. In this case, the dependencergfon the
magnitude of a strong magnetic fieldy,=1/(Qy7)<1,
where(), is the frequency of electron rotation in a magnetic ~ The contribution tdo,z(k) from charge carriers with a
field orthogonal to the layersan be presented by the fol- quasi-one- dimensional energy spectrum is mainly deter-

A1po=U, Agio= mU<U, Agy=nU<U.

lowing interpolation formula: mined by the componenrf(}()(k) which has the following
2 2 2 1 form accurate to small corrections proportional ﬁé and
02z=00Yon (Yot 1) 7% 417 .2

which is valid for any orientation of the magnetic field in the o
. T 0.(1)(k):(7 (k)= (4.22
Xy plane, i.e., for any angle of its inclination to the sample XX 1 ﬁlﬂkll) )
surfacex=0. _ _ o _
Using formulas(4.3 and (4.17, we can easily verify Where l1=ve;m1/(1—i7);0, is the contribution of this
that the value o, increases with the magnetic field in pro- 9"0UP of charge carriers to electrical conductivity along the
portion toHY2 for 7Y2< y,<1, while the attenuation length x-axis in a uniform electric fieldy; the mean free time of

8= 8/ yo1%* of the electric field along the normal to the charge carriers with the energy spectru@2), and v
layers increases linearly with the magnetic field #gr< y, :(Uallh)s'r[(gE_Aooo)/U]- ) _
<2 The magnetic field dependence @f”(k) is manifested
The solution of the dispersion equati¢h3) for ¢ dif- only in the next terms of expansion into a power series in the
fering from zero has the form small parameters; and 7;:
2 2112 2,,2
: asU</4dh=v
Qro)YA(1+i) - - B D)y — 710185 0
I e R [ b oy (=2 1+ (k*+eHa, cos/ch)?lZ’ 4.23
2 2112 2.,2
—(2H cosésing/Necg)?]V2 12, 4.1 ny01a°U/4h%vg

. . . = 1+ (k*=eHasing/ch)??’
whereN is the charge carrier density.

This formula shows that in the extremely strong mag-Whose inclusion does not affect significantly the skin depth
netic field, wheny,< 7?2, helicoidal waves can propagate. of electromagnetic field attenuation.
For ¢=1, one of the roots of the dispersion equation de- The asymptotic behavior of the componentsagfs(k)
scribes attenuation of electric field along the layers at disin strong magnetic fieldsy=1/Q7<1), i.e.,

tances of the order of o1 (K){ 7z oo+ azztar? o+ yz 03

Ozz 12 Uyy(k): Ul(k)+ '}’20'0 , (423
5, =68 1+ —= (4.19
o Ty ) =y = — T2 tang (4.26
o =0 = ——>5—0,,tané, .
It can easily be seen that the penetration depth for the — *° ‘ o1(k)+ %o 7
electric fieldE, increases as the magnetic field increases in 5,4 = 0yt LK), 4.27

proportion toH when yy<#. The electric field directed
along the normal to the layers fop,>7? attenuates at is very sensitive to the emergence of a group of charge car-

distance® riers with a quasi-one-dimensional energy spectrum.
" We have omitted here insignificant numerical factors of
8= do(0ool0;2) ™", (420 the order of unity and small corrections of the order kif)@

. . . . in the expression fow,,, i.e., the contribution of charge
i.e., at distances of the order éf/#» as in zero magnetic : . : . .
carriers with a quasi-two-dimensional spectrum to the cur-

field. . . . L
- . _rent is taken into account, as before, in the approximation
In the presence of an additional group of charge carriers” . .
valid for normal skin effect.

with a quasi-one-dimensional energy spectrum, high- .

) . . If o4 and o are of the same order of magnitude, the
frequency properties of layered conductors are quite sensi- - . S .
. 2 . value ofa, (k) does not attain saturation in strong magnetic
tive not only to the polarization of the incident wave, but

also to the direction of propagation of electromagnetic fieldﬂe'dS as in the case of;=0 and turns out to be much

in the plane of the layerS—3 If the reflection of charge smaller thanoy in a fairly wide range of magnetic fields.

. : This leads to a considerable increase in the conductor trans-
carriers at the conductor surface is close to specular, the

) . .. parency.
relation between the Fourier transforms of current densit . : . .

. . . The dispersion equatio®.3) taking into account rela-
and electric field can be regarded as local to a fairly h|gr}ion

. - s(4.25—(4.27 makes it possible to determine the length
degree of accuracy even for an indefinitely large mean free . o . .
L of attenuation of electromagnetic fields in a strong magnetic
path of charge carriers:

field:
ji(k)={o;(K)+ ol (K)}Ej(k). (4.21 81=801n, 5,=5,17, (4.28
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where 8o={c/l2mw(oo+ oq)} V2

If o, is much smaller tham, but o;=y%0,, the ex-
pression ford, should be supplemented with the small factor
(01/00)Y2 For o;<y?0y, the attenuation lengths for the
electric fieldsE,(x) and E,(x) differ significantly (5= 1
and §, =4,, respectively, by the electric fields along and
across the layers forr;>y?0, contain both components
with considerably different attenuation lengths and &, .
Consequently, in pure conductors for whitky>,, not
only the fieldE,(x), but also the fieldE,(x) attenuate over
distances considerably longer than the mean free path of N
charge carriers in magnetic fields for whicke &, .

When an electromagnetic wave propagates along thEIG. 3. Dependence of surface impedance on the magnitude of a strong
y-axis, the presence of a group of charge carriers with g1_agnetic field .(<_I) pgrallel to the sur_face of th_e conductey=0. The

. . . . width w of the indicatrix of charge carrier scattering at the sample surface
quasi-one-dimensional energy spectrum does not affect Sigz, pe getermined from the position of the minimum.
nificantly the attenuation length of electromagnetic waves.
As in the case of a single group of charge carriers with the

=r wl=r H

dispersion relation2.1), the electric field along the layers 2

attenuates over distances of the ordesgf and the electric Tyy(k)= 1/“2)0 ) (4.29
field along the normal to the layers penetrates a quasi-two- Qkn)"(w+r/l)

dimensional Conductor to the depﬂﬂ] fOI’ Wh|Ch the abOVe Using the dispersion equati(ﬂn_3)' we can eas"y deter-

formulas(4.11), (4.14—(4.16 are valid. The effect of charge mine the attenuation length of electric fields, i.e.,

carriers with spectruni2.2) on the propagation of electro- 5 1 o5

magnetic waves becomes significant when @&320, /a7, 8, =80 T MW 5=250/7. (4.30

where « is the angle between the wave vector and the pre-  |n the range of not very strong magnetic fields, where

dominant direction of the velocity of charge carriers with a 5 <r<|, the impedance has a minimum for=wl, and its

quasi-one-dimensional energy spectrum. position determines uniquely the width of indicatrix of
Thus, analyzing the dependence of surface impedance Qharge carrier scattering at the sample boundiy. 3.

the magnetic field during the propagation of an electromag-  ynder the conditions of extremely anomalous skin ef-

netic wave in two different directions in the plane of the fect, when the depth of electromagnetic wave penetration in

layers, we can determine unambiguously the presence of e conductor is the smallest parameter of the problem hav-

guasi-one-dimensional cavity on the Fermi surface and its;hg the dimensions of lengtfi.e., not onlys, , but alsos, is

contribution of the electrical conductivity of an organic con- mych smaller thanr and 1), the values ofs, and &, are

ductor. connected through a universal relation in a magnetic field

parallel to the sample surface far<r¥?/| §}/2:33

4.2. Anomalous skin effect 8, =6,7*". (4.31

With increasing frequency of an electromagnetic wave,  If w>r%%15Y2 and 8, <r<l, the contribution to the rf
the skin depths decreases, and the relation between currenturrent mainly comes from charge carriers that do not inter-
density and electric field becomes essentially nonlocal foact with the sample surface, and the relation betw&eand
8<2r. In this case, Maxwell's equations are of the integral §, has the form(4.7).
type even in the Fourier representatfSnHartmann and In the intermediate case whed%/|5/2<w<r%?1 512,
Luttinger*® proposed a correct solution of these equations ironly 5, depends considerably am for w=r/I:

a magnetic field for some special cases. If we disregard nu- 65, —

merical factors of the order of unity, we can obtain a reason- =1%ol m)*, 8, :W2/550 r (4.32
able solution of the physical problem, i.e., determine the de- In the absence of open electron orbits, conduction elec-
pendence of surface impedance and other characteristics wbns carry information on the field in the skin layer to the
waves in a conductor on physical parameters, with the helpulk of the conductor in the form of narrow spikes predicted
of a correct estimation of the contribution of the integral by Azbel®! The transport of electromagnetic field to the bulk
term in formula(4.1) to the Fourier transform of the high- of the conductor and the screening of the incident wave at
frequency current. In a magnetic field parallel to the samplehe surfacex;=0 are mainly accomplished by charge carri-
surface, fors, <r, the contribution of charge carriers collid- ers moving in phase with the wave almost parallel to the
ing with the sample surface to the current is significant. Insample surface. Fop=<é/r, almost all of charge carriers
the case of a nearly specular reflection of charge carriers byarticipate in the formation of electromagnetic field spifées.
the sample boundarfthe width of scattering indicatrix for The intensity of the spikes at distances from the sample sur-
charge carriersv<r3’2lléi’2), the contribution of conduction face multiple to the diameter of the electron orbit in the
electrons “sliding” along the sample surface and remainingdirection of thex-axis has the same order of magnitude in the
in the skin layer to the rf current is quite large. In this case,collisionless limit. The inclusion of scattering of conduction
the asymptotic expression for, (k) for largek has the form  electrons in the bulk of the conductor leads to field attenua-
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tion in a spike at distances of the order of the mean free patturing the timeT=2xhc/aeHv,. In this case() appearing

of charge carriers. Thus, there are two scales of electromagn the expression for .. is equal toaeHv/hc.

netic field attenuation length under the conditions of anoma-  The kernel of the integral operat@;;(k,k’) as a func-

lous skin effect. Apart from the skin depth, the electromag-tion of k also possesses a similar singularity.

netic field penetrates into the bulk of the sample to a depth of The electromagnetic field decreases in proportion to

the order of the mean free path of charge carriers. x~%exp(—x/1) over distances from the sample surface which
For »> é6/r, only an insignificant fraction of charge car- exceed considerably either=v/(), or the displacement of

riers of the order of §/r )2 participates in the formation of an electron during the wave periodr2/w. For > w, the

spikes. The spread in the diameters of orbits of such carrieslowly decreasing varying electric field

in the vicinity of the extremal diameter is comparable with B e

the skin depth. As a result, with increasing distance from the Ez2X)=Ez0)7 (el wo)¥¥(vl )P V232

surfacexs=0, the intensity of each next spike acquires an X explix/r — x/I} (4.36

additional small factor §/r ) apart from the exponential

factor exg—x/} taking into account attenuation of waves in oscillates upon variation dfi at large distancez>r.

the spike over the mean free pdth The attenuation of the electric fie (x) over the mean
As the angled approachesr/2, closed electron orbits free path of charge carriers fay<1 has the form

become strongly elongated along tkeaxis, and the spike B a3 203 Yoo —3p2
mechanism of penetration of electromagnetic field in the Ey(x) =Ey(0)(c/ o) ™(v/ @) "H(wIv) X

bulk of the sample is replaced by the electron transport of the Xexp[—x/l +ixw/v},
varying field in the form of Reuter—Sondheimer weakly at-
tenuating quasi-wavés**~*®when the diameter of the orbits vio<x<vliwn (4.37)

in this direction exceeds the mean free phath L o
and is independent of the magnetic field.

The oscillatory dependence & (x) on the magnetic
4.3. WeaKly attenuating Reuter—Sondheimer waves f|(3ld is manifested only in small corrections proportional to
. . 7
The drift of charge carriers along the normal to the  For values ofy that are not small in zero magnetic field,
sample surface facilitates the transport of electromagnetighe functionso,, (k) ando, (k) have a logarithmic singular-
field from the skin layer to the bulk of the conductor over ajty for k;=iv/v, andk,=iv/v,, wherev, is the electron
distance smaller than or of the order of the mean free path velocity at the reference point on the Fermi surface in the
of charge carriers. Fof= /2, the drift of charge carriers x-direction andv, the projection of the velocity, at the
along open trajectories leads to penetration of electromagsaddle point of the Fermi surface, at which connectedness of
netic field over a distance<| even in a magnetic field par- the linev,=const change¥ For indefinitely smally, these
allel to the surface,=0. o branching points of the rf conductivity tensor component be-
In order to determine the electric field in the bulk of the come closer, and the |ogarithmic Singu|arity Changes into a
sample with the help of inverse Fourier transformation root singularity fory=0.4" For small7, we choose the inte-
1 [+o gration contour in thé&-plane along the cut lines drawn from
Ej(x)= 7 f—x dKE;j(k)exp{ —ikx} (4.33  the branching pointk; andk, paralle_l to th_e imaginary axis
so that we can bypass both branching points simultaneously.
we continueE;(k) analytically to the entire complek-plane  In this case, the electric field,(x) away from the skin layer
and close the integration contour in formy#33 with an  assumes the form
arc of infinitely large radius in the half-plane where km ot 2 4o
; : : ; , 11 w Tlw
=0. The skin depth is deFermlned by the pqles of the '”teEZ(x): —2E.(0) f dk[ k2= —— —— 0, 1(K)
grand in formula(4.33, while weakly attenuating waves are ky
associated with integration along the cuts drawn from the

2

branching point of the functiok;(k). It can easily be veri- X explikx) + sz dk[ K2— “’_2
fied that the tensor componemy; (k) for indefinitely smallzn kg +ie c
display a root singularity of the form dmio 1

Uzz(k):(wénZ/V){(ai_1)71/2_’_(“2__1)71/2}; _—Cz O-ZZZ(k) eX[.XikX)J. (4.38

(4.39
We can neglect the integral along lines connecting the
— 2 2 1/2
Aayy(k)=v(wo/kv) T (kv/v)"+ 1}75 (4.39 branching points, andk, and assume that,,; (k) is the

where wg is the frequency of plasma oscillations of chargevalue of the functioruo, (k) at the left bank of the cut drawn
carriers,y=vy¥=vg, anda. =i(kv=Q)/v. For <1, the  from the pointk,, while o, (k) is its value at the right band
time variation of the electron velocity, in the magnetic of the cut drawn from the poink,. For definiteness, we
field H=(0,H,0) does not exceed»*? so that away from assume that, is greater thaw,. If we disregard anisotropy
the saddle points on the Fermi surface, charge carriers mow# the dispersion relatiorf2.1) for charge carriers in the

in the momentum space along the-axis virtually without  plane of the layers, the diagonal components of the rf elec-
acceleration over a distance equal to the period of a unit cetfical conductivity tensor fok;<k=k, assume the form
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wé?? m w2 Sir? ¢ we can easily see that a weakly attenuating wave which
oy (k)= 3 fo dafo de »+ kv CoSe(1+ 7 cosa) 2’ prqpagates with the electron velocity; at the referencg
(4.39 point of the Fermi surface is formed by charge carriers
' whose velocityv, differs from v, by the quantityAv,
Wit (7 <vZ/wx. If vi—v,=vy is smaller thanAv,, ie., x
o, k)= 3 f Sir a da <v/wn, formula(4.37) is valid for E (x), while in the op-
0 posite limiting case, whem\v,<v#, weakly attenuating
w2 1 waves described by formul@.42 are formed by electrons
X - . . i i
jo deo- kv cosg(1+ 7 cosa) 2 (440  from small neighborhoods on the Fermi surface near the

saddle and reference points.

It can easily be seen that the rf electrical conductivity N @ magnetic field, charge carriers belonging to one of
componenta,(k) is proportional to ¢+ikv) Y2 for 4  the “banks” of the central open cross section of the Fermi
<1, while ay(k) is proportional to ¢+ikv)'2 ie., both surface, on which the velocity, varies with time periodi-
component have a root singularity for=i v/v. In the case of ~cally in the interval between, andv;, move most rapidly
a considerable corrugation of the Fermi surface, when to the bulk of the sample. Weakly attenuating waves propa-
=1, the root singularity is replaced by a logarithmic singu-9ate at a velocity equal to the extremal valig and are
larity for k=iv/v(1+ 7)¥2 andk=iv/v(1— 7)Y2 After the  described by formula¢t.36) and(4.37.
integration with respect te, the integrands if4.39 and Weakly attenuating waves in a magnetic field tilted from
(4.40 have a root singularity fok=iv/v(1+ 7 cosa)’? As  the plane of the layers have a similar form. If the magnetic
a result of simple calculations, we arrive at the following field lies in thexy plane, i.e.,f=m/2, a weakly attenuating
expression for the electric field component weakly attenuatwave with ¢ differing noticeably from zero propagates at a

ing at large distances from the skin layer: velocity v, equal to the drift velocity of charge carriers be-
longing to the open cross section of the Fermi surface con-
Ey(X) = Ey(0)(c/wo)*(v/w) >3 viv)*? taining the reference point along tpg-axis. The asymptotic
- X form of the electric fielcE,(x) is described by4.37), and its
XJ da exp[ -t (4.41) oscillatory dependence on the magnetic field orthogonal to
0 v(1+7cosa) the axis of the corrugated cylinder is manifested, as before,

At large distances from the sample surface, the eIec:tri((:-)nIy in small corrections proportional tg”.

field along the normal to the layers can be described by the When electromagnetic waves propagate along the nor-

same formula if we supplement the integrand in the integra]“al to the Iayera(alorjg th_ez-aX|s), _charge carriers can carry
with respect toa with the factor » *3sirfa. For x information on the flel_d in the skin layer to the b_ulk of the
>v/wn, the integrand in formuld4.4) is a rapidly oscil- samdplethonlyk_ovgr ihd'St?n?e of the orolllerlali;ﬁ Wh'?h ex
lating alternating function, and the main contribution to thi €6€UsS the skin depth only for very smail valuesso

integral comes from small neighborhoods of the stationar;l(Iy bzh(;ae\;\(laer;ﬁgezttv(\a/::rl:etlﬂzghillicct)?iéllzlt? dzog]ap?nn\?vr;:igr??( eas-
h ink=(0,7). A It of simpl Iculations, . o )
phase pointy=(0,m). As a result of simple calculations, we should be replaced by. Without a loss in generality of the

obtain given problem, we shall confine our analysis only to the first
E,(X) =Ey(0)(c/ o) (v w)?3x 2y~ 112 two terms in expression(2.1) for e(p), assuming that
£1(px,Py) is a constant quantity equal tpvoh/a, wherev
> exp{ _ VX +exp{ _ VX H coincides in order of magnitude with the characteristic fermi
v(1+ )t v(l-m)™¥ " velocity v of charge carriers along the layers.

If the magnetic field is orthogonal to the layers, the Fou-
x>vlwy. (4.42 rier componentsr;;(k) of the electrical conductivity tensor

In the above formulas, we have omitted insignificant nu-2ssume the form

merical factors of the order of unity. The pre-exponential 22
factor in formula(4.42 is inversely proportional ta? as in aij(k)=

3
normal metals. Such an asymptotic behavior in quasi-two- (27rh)
dimensional conductors is observed only in the range of high vi(_")v}”)
frequencies, where wr=1/7. Essentially different X > jdpzzwm*wrikv sinap,/h) £inQ
asymptotic forms of electric fields at such frequencies can be " F77 P
explained by tracing the phase of the wave carried by con- (4.44

duction electrons with different velocity componemtsfrom
the skin layer. At the instart, electrons carry over a dis-
tance x the information on electromagnetic wave with a
phase lagnAt=wx/v,. Averaging over different values of 7ij(K) =) 2 CP{(kvon)?+ (703 Y2 (4.49
vy by the formula A

After simple calculations, we obtain

where

E(x)~f dv, exp —iot+iwx/v,} (4.43 o= y+in
n 1
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T _ zyflz;fs. If 19=6,, both terms in the braces of formula
viM=(1/T) JO dtvi(t,p)exp —inQt), (4.495 have the same order of magnitude, and the resonance
line is “blurred.”
and C{["” are numerical factors of the order of unity. For The detection of cyclotron resonance at multiple fre-

=j, all these factors are real-valued and positive, while inquencies would make it possible to analyze in detail the en-
Hall’s nondissipative components they are imaginary as &rgy spectrum of charge carriers, but the observation of this
rule and change sign upon inversion iofaind j so that a  effect requires long mean free paths of charge carriers. The
helicoidal wave attenuating over a distarlgg= 5,(Q17)¥2  cyclotron resonance observed by Polissktal® in
is formed in a strong magnetic field féY>kvy7. (BEDT-TTPH,ReQ,(H,0) for only one resonance value of
For moderate magnetic fields in whidr»=1, Hall's  magnetic field cannot be regarded as an evidence of isotropic
nondissipative Fourier components;(k) are of the same spectrum of charge carriers in the plane of the layers. The
order of magnitude as the dissipative diagonal component#formation on the dispersion relation of charge carriers in
and all of them possess a root singularity fork.=(w  this compound can be refined by analyzing the Azbel-Kaner
+Q+il7)/(ve7). In this region of magnetic fields, electro- resonanc® in a magnetic field parallel to the sample surface,
magnetic field penetrates in the bulk of the sample only inat which the cyclotron resonance at multiple frequencies
the form of a Reuter—Sondheimer quasiwave takes place for any shape of the electron energy spectrum.

4/3 1/6
C vrm .
E(z)=E(O)(w—) (?) 7z explik. z},
0 5. PROPAGATION OF ACOUSTIC WAVES

>vylw. (4.49 In an analysis of sound absorption in ordinary metals,

the inclusion of electromagnetic waves accompanying an
4.4. Cyclotron resonance acoustic wave is essential in the range of strong magnetic

In all organic conductors synthesized at present, théields,_ When the radius of curvatureof charge carrier tra-
mean free path of charge carriers is not largé<t10 um) Jectorles_ is much smaller than n(_)t only the mean free path of
so that the frequency of electromagnetic waves in the rf an{1€ carriers, but also the acoustic wave lenigt. If, how-
microwave regions is much lower than the electron collision€Ver, the inequality
frequency 1f, and the time dispersion can be disregarded 1 <kr<Kkl. (5.2
while calculating the skin depth. However, the frequency of o ) ) ) .
electromagnetic wave in the millimeter and submillimeter'S Satisfied, the attenuation of sound in a metal is mainly
regions at low temperatures can be comparable to the collf€términed by the deformation mechanism associated with
sion frequency for charge carriers, and the interaction of conth® renormalization of electron energy in the field of the
duction electrons with electromagnetic field is of resonantV@Vve. In low-dimensional conductors, the role of electro-
type, when the wave frequenayis equal or multiple to the magnetic fields e_XC|'ted b)_/ sound is. S|gn|f|ce}nt in a w@er
frequency( of their rotation in a magnetic field. range of magnetic fields, including fields satisfying the in-

In a magnetic field orthogonal to the sample surfage equality_(5.1). In_this regiqn of magnetic fields, _the sc_>und
—0, cyclotron resonance can take place at multiple frequer2SOrption coefficient’ oscillates upon a change in recipro-
cies w=nQ in the case of essentially anisotropic spectrumC@ magnetic field. If the magnetic field is orthogonal to the
of charge carriers in the plane of the layers. The shape of thé/ave Vectork, and the trajectories of charge carriers in the
resonance curve can be determined easily by using formuf@omentum space are closed, the amplitude of oscillations in

(4.45 for o; (k). Resonance takes place fop< 8y, but it a normal metal is small in comparison with the smoothly
) ij (K). , . . -
is manifested most clearly whem<s,. If I<r in this  Varying component of" since oscillations are formed by a

case, all charge carriers with a quasi-two-dimensional energyMall group of charge carriers with a diameter of orbits close
spectrum participate in the formation of resonance effect. I{C the extremal diameter. This effect predicted by Pippard

the case of an isotropic spectrum of charge carriers in this associated with periodic repetition of the conditions of
plane of the layers, i.e., fato(py,p,)=co(p. ), Wherep, effective interaction of a charge with an acoustic wave, when

=(p2+p?)*2 we have only one resonance value of thethe number of wave lengths corresponding to the diameter of
mag)r(1eticyfielyd satisfying the conditian= 0. the electron orbit changes by unity. If the vectérand H

Diagonalizing the tensar;; (k), we obtain the following are not orthogonal, the average velocity of a charge in the

expression for the diagonal components of surface impeoc_iirection of propagation of the sound differs from zero for
any shape of the Fermi surface, i.e., charge carriers drift in

ance:
the direction of wave propagation. The existence of points at
8iw (= dk which the interaction with the wave is most effective on such

rTT 2 | K= wc 20,k 447 4 trajectory leads to a resonant dependence of the sound ab-

sorption coefficient on reciprocal magnetic field. In ordinary
Under favorable conditions for cyclotron resonance, i.e.metals, periodic variations of with 1/H, which are not
for 1 »<{r,8,}, the resonance value of the impedance isassociated with quantization of the motion of charge carriers
Z2'=87wéd,/c?, and the resonance line width isH( with an amplitude much larger than the minimum valud pf
—H™9/H™®=y. Away from the resonance we haw, are possible only in the presence of drift alongd’
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In contrast to conventional metals, the formation of Pip-whereT is the period of rotation of charges in the magnetic
pard oscillations in low-dimensional conductors involves vir-field. In the range of magnetic fields for which the inequality
tually all charge carriers on the Fermi surface since the di{5.1) is satisfied, the interaction with the acoustic wave is
ameters of their orbits are close in value. As a result, thenost effective for charge carriers moving in phase with the
amplitude of periodic variations of electrical conductivity wave. Such carriers make the main contribution to the com-
and other acoustoelectronic coefficients witld lihcreases ponents of acoustoelectronic tensors which can easily be cal-
abruptly, and absorption is of the resonant tyb&@*In this  culated with the help of the stationary phase method. The
case, we cannot obtain even an order-of-magnitude estimasemplitude of their oscillations with & is large if the quasi-
of the sound absorption coefficient without taking into ac-two-dimensionality parametey satisfies the conditiofr »

count electromagnetic fields correctly.

5.1. Longitudinal wave propagating along the layers

Let us consider a longitudinal acoustic waver (
=(u,0,0)) propagating along the layers in a quasi-two-

dimensional conductor in a magnetic figlld Using formulas
(3.19—(3.21), we can write the system of equatio(&18

after elimination of the fielE, in the form
(Ayké+iH /) wu+(E0yy—1)E, + E5,,E,=0,
(pké—iH,/C)wu+ £5,E, + (é0,,~ 1E,=0,
(?—5%k?) pu+[iKCyxt ¢~ L(ByH,—F,Hy) kou
+[ikbyy+ ¢ (T yyH,— T, Hy) JE, +[iKDy,
+c¢ Yo, H,~F,Hy)]E,=0, (5.2

where

=Nl )2, E=4mi 0l (K°c?— w?),

5 o—g Tax0xp 2 —a AT ax
of op Oxx “ “ Oxx
=~ bixo'xﬁ - bixaxj_
big=bis— o C=Cj— ;
Oxx Oxx
a,B=Y,z.

For w7<1, the root of the dispersion equation describing al

acoustic wave is close to/s, and we can write it in the form

k=w/s+k; . (5.3

n

<1 for which the spread in the diameter of electron orbits
AD=2r»n becomes much smaller than the acoustic wave
length. Let a charge pass through two stationary phase points
at which kv,=w during the period of motio¥. Then the
following expressions hofd for o,y anday, for »—0:

7yy(K)=(G/KD)(1-sinkD);

ayy(k)=—1(GA,,/evkD)coskD, (5.6

whereD=cD,/(eHcos¢), D, being the averaged diameter
of the Fermi surface along thep, axis, G
=4vDe?r/[ac(2mh)?], and A, the value of the quantity
A (p) at the stationary phase points.

It can easily be verified that the value @f, is mainly
determined by ther,, component, and hence the denomina-
tor in formula (5.4) for k,; decreases significantly fdtD
=2m(n+1/4). This leads to the emergence of sharp peaks
of the sound absorption coefficiemt, which are repeated
periodically with the period

A 1 _27recosa 5
H/  keD, .7
The height
wT w
FreSZFZVQT (5.8

of these resonance peaks is proportionaHtéor | <kr?.
Regions of high acoustic transparency in which the ab-
sorption coefficient has the form

2
+(kD7)?

5 . (5.9

In the case of weak corrugation of the Fermi surfaee ( are situated away from the resonang@e regions where

<1), the expression fdk; has the form

k2 1 . i3
kl:gﬁ 1_—%[ §(Byuuy=Caxlyy) + [Cux— 1 (Byx

~ H

S
- bxy)] E toyy W (5.4

k=wls

VectorsH and k are orthogonal In a magnetic fielcH

=(0,H sind,H cosd) orthogonal to the direction of wave

sinkD differs considerably from unity

We can easily obtain explicit expressions fofor arbi-
trary kr. Let us consider by way of an example a layered
quasi-two-dimensional conductor for which the dispersion
relation for charge carriers has the form

2 2
m  7Ta'®

&(p)

h |’ V0:28|:/m,

(5.10

propagation, the solution of the kinetic equation in theand the deformation potential tensor componeqigp) can

Fourier representation can be written in the form

 Jirdt'g(t)explik[x(t) —x(t) ]+ v(t’ —t)}
v= 1—exp(—vT)

(5.9

be represented in the form

P;

_ A0 a
Ai(p)=Aj"(p) + mLix COS{ T) (5.11

where



Low Temp. Phys. 25 (11), November 1999 0. V. Kirichenko and V. G. Peschansky 849

. pi—mse PP, O sl
Ai(lg)(p):_a PxPy p)zl—mSF 0 ) 2
c 4+
0 0 0 >
B 4l
the matrix components;, coinciding the Fermi energy in c
the order of magnitude. 2 ol
Let us write the expressions for some components of ‘g
acoustoelectronic tensors obtained in the main approxima- 2 1+
tion in the small parameterg=(Q7) ! and kD) ! for a
magnetic field orthogonal to the laye¥s®3 0

5 10 15 20 25
kD

FIG. 4. Dependence of the absorption coefficient of a longitudinal acoustic
wave on the reciprocal magnetic fieltk< 1/H in relative units.

Uyyzm[l—Jo(Z)SlnkD],

—_ (2)_
Oyy=— 03 =
yx Y mvakD

Jo(¢)coskD,

 Jigdt gt )explik[x(t') —x(t) ]+ v(t' — 1)}
[1+J0(£)sinkD], (5.12 - 1—exd —vT—ikv,T]

. . . . =Rg. 5.1
where N is the number density of charge carriers with a ¢ . . .19
quasi-two-dimensional dispersion relatidly, Bessel's func- It follows from the equation of motior{3.9) for a charge
tion of {Z=kR#, andR=2hc/(eHa). The diameteb of the  With the dispersion relatio(®.1) that its velocity components
electron orbit in the case under investigation has the fornfveraged over the period satisfy the relation

mvo
C
X pakD

For {>1, the corrugation of the Fermi surface is quite  v,=tanev,; Vv,== | v,(ty)dty. (5.1

T Jo

strong, and absorption coefficient behaves as in an ordinary
isotropic metal: The displacement of an electron over the period of motion
along the wave vector is given by

2 1/2 T
Flofhor 1+(W_§) CO{ < Z)Sm(km} _— v, T=—tan i . dets (t,py)sin e
(5.13 " P Th o PRSI,

whereQo=eH/(mc); T'y=Nmov,/(4mps?) is the energy “ an (T [ anpy
absorption coefficient for acoustic waves in zero magnetic =—tang 21 Y fo dtsn(t,PH)Sln[m
field. "

For (<1, specific features of the quasi-two-dimensional 1
conductor are manifested, aiidis given by ~anpdtpytang . (5.17
I'=IeQe7 If we take into account the fact that, and p,, and

. (my)2+ £212+i u[ 1+ sinkD] rlencgsn depends. weakly on.th'e integral .of motiqn.l
1—sinkD+ (my)?/2+ %12+ 9/18kD) *+iu , =p, Sing+p,cose in a magnetic field, the drift velocity of

k=als electrons alongk in the main approximation in the small
(5.14  parametery of quasi-two-dimensionality of the electron en-

where u=7voC?w/25° w30 7), 0, being the frequency of ergy spectrum assumes the form

plasma oscillations. If the latter is comparable with the value “ an ianpy
typical of ordinary metal (15—-10'°s7%), the parameter in Vyx=—tangIm > TGXP[ m] Ih(tang), (5.18
the ultrasonic frequency range is quite small, and periodic nt ¢
variations ofl'(1/H) have the form of giant resonance oscil- where
lations (Fig. 4). Such a behavior dF is typical of any con- 1 (T i
ductor with a quasi-two-dimensional dispersion relation for | (tang)= T f dtsn(t)exp[ i anpx(t)tango].
charge carriers. 0

VectorsH and k are not orthogonal Let us now con- (5.19
sider the case when the magnetic fieldH These relations are valid fd r=(eHrcose/mg>1, i.e.,
=(H sing,0H, cosy) is not orthogonal to the vectde. In when cosp differs from zero considerably.
this case, the value of the velocity componggtalong the It can be easily seen that the main term in form@4.9
direction of the wave vector averaged over the period differgroportional tol ;(tan¢) vanishes for certain values of tan
from zero, and the solution of the kinetic equation has theand there exists a large number of values of the argle
form = ¢, In the vicinity of zeros of the function,(tan¢), for
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which the drift velocity v, of charge carriers along the
acoustic wave vector coincides with the velogtyf propa-
gation of the acoustic wave, and their interaction with the
wave is most effective. As a result, we can expect the pres-
ence of narrow peaks in the dependence of the damping dec-
rement of acoustic waves on the angle

Using the stationary phase method, we can easily calcu-
late the acoustoelectronic tensor components in the presence
of electron drift along also. For example, for the dispersion
relation (5.10 for charge carriers, we obtain the following
expression fowr, for small :

_ 4N€ l—sinkD+(7-ry)2
T~ ZrmukD (1+a?)1? 3

1+1 ink
Esm D

+7T’ySinkD(l—mi)}. (5.20
Here D=2v,/Q, a=klyntanel,(ah imvtane). The com-
ponento, oscillates with reciprocal magnetic field, and its
complex periodic dependence on the anglecan be de-
scribed in terms of the quantity. The remaining acousto-
electronic coefficients behave similarly.

For ay<1, we can easily obtain the following expres-
sion for k;°¢°"

iwNmyv

ka= 47rps?

T/T,

o

~
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FIG. 5. Dependence of the absorption coefficiBAl’'y on h=Hy/H (H,
=2wcmvy/es) for kl=10°, =102, x=tane=1.5x10"2. The upper
and lower figures differ in scale.

close to zero, and the functiofi(H) has a local peak’
=T ,a? for sinkD=—1. This peak increases witl and at-

27 SiPkD[1—(1+ a?) " Y2+ 72y
X T=sinkD+ [(7 1) F2](1+ a2+ my[(1+ ad)—1]

(5.2

If <1, we obtain

i woNmv ma? sifkD+ 72y
Y7 4mps® 1—sinkD+ (7y)22+ wya?l2’

(5.22

For yY?’<a<1, the oscillating terms exceed the

tains the valud’, of the sound absorption coefficient in zero
magnetic field fora=1. At the same time, the main peak
decreases with increasingand approaches the local maxi-
mum. For sirkD=—1, the absorption coefficient oscillates
with a large amplitude exceeding the minimum valué"dfy

a factor of Q7.

Figures 5, 6, and 7 show the dependence of absorption

coefficient on the quantitth=Hy/H (Ho=2wvomdse)

smoothly varying terms not only in the denominator, but also

in the numerator of formulés.21). This leads to giant oscil-
lations of the sound absorption coefficidnt Imk; upon a

variation of the reciprocal magnetic field as well as the angle
¢ betweenH andn. In the case, when the displacement of

charge carriers alonk during their mean free time is much

larger than the acoustic wave length, these oscillations also
take place. Then we can write the following expression for

kq:
_ia)va 27 SiP KD+ 7y
"~ 4mps? 1—sinkD+ mya

. l<a<lly. (5.23

Ky

Thus, the existence of even a small displacement of

charge carriers along affects significantly the sound ab-
sorption I'. For sinkD=1, the functionI'(H) attains its
maximum value

roﬂT
Fmax:mﬁ'

(5.29

A slight deviation of sirkD from unity leads to a strong
decrease ifh" which has the minimum valug,,j,=1"o/Q 7 for
sinkD=—1 if a?< y<1. Fory=<3a?/2<1, the minimum of
I'(H) is shifted towards the values &f for which sinkD is
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FIG. 6. Dependence of the absorption coefficiBAL'y on x=tan¢ for Kl
=10%, »=10"2. The upper and lower figures differ in scale.
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tic waves, we consider a simple model of the energy spec-
trum for a two-band conductor. We assume that the
dispersion relation(5.10 is valid for one group of charge
carriers, while the other group has a quasi-one-dimensional
dispersion relation of the form

anp,

h
Sl(p):ip'NV1+ ﬂlgvlco{T . (525)

Here »;<<1 andv;, is the velocity of an electron with the
Fermi energy on a quasi-one-dimensional sheet of the Fermi
surface. The vectoN=(cospg,sinB,0) is oriented in the
plane of the layers and forms an an@evith the direction of
wave propagation.

In this case, for calculating acoustoelectronic tensors, we
must carry out integration in formuld8.21) over all sheets
of the Fermi surface, and each component is the sum of the
contributions from quasi-two-dimensional and quasi-one-
dimensional ¢,a{" ,b{" ,c{M) groups of charge carriers.

The existence of preferred direction of the velocities of
charge carriers in the quasi-one-dimensional group is mani-
fested in the dependence of their deformation potelzttffﬂ
on the angleg. If crystal deformation does not lead to a
redistribution of charges between electron groups, we can
naturally assumgbearing in mind relatior{3.12] that A"
vanishes in the main approximation in the small parameter
1. Ifwe put A{Y= 7, cosp, the expressions for the con-
tributions to acoustoelectronic coefficients from the electrons
of the quasi-one-dimensional group assume the form

FIG. 7. Dependence of the absorption coefficiEAl'y on h andx=tan¢
for kl=10°, »=10"2. The upper and lower figures differ in scale.

and on tarp. o’=h,
It can easily be seen that the dependencé an 1H
and tany described above remains valid for an arbitrary form
of the quasi-two-dimensional electron energy spectrum. If N,er cod 8
the electron orbit contains only two stationary phase points, cfj()= n%hﬁ E—
the value ofD=cD,/eH is determined by the diametér,
of the Fermi surface in a direction orthogonal to the vectors
k andH. N, ev
Noticeable manifestation of the effect of drift of charge  al=b\)=in;h, ol
carriers on the oscillatory dependencelobn 1H at ultra-
sonic frequencies¢=10°s 1) is determined by certain re-
qguirements. For example, we must use perfect samples with Njev,
a large mean free path of charge carriers and strong magnetic aj;)=b\)=iz;h,
fields of the order of 10 T. In this range of magnetic fields,
the Shubnikov—de Haas effect is manifested clearly in com-
pounds of tgtrath,af_ulvalene, which |nd|caFes that the con_dl— hﬁ=[1+(kl)2 cog g1 (5.26
tion Q7>1 is satisfied, and at the same time the separation
between quantized electron energy levels is much smaller
than not only the Fermi energy, but also the quantjiy . Herel =v,;7 andN; is the number density of charge carriers
Under these conditions, a semiclassical description of norwith the quasi-one- dimensional dispersion relation. The
equilibrium processes is valid. In stronger magnetic fieldscontribution to the acoustoelectronic coefficients from the
the quantization of electron energy levels is significant, buguasi-two-dimensional group of charge carriers have the
the effects described above must also be observed. form of (5.12 and similar relations.
Presence of a quasi-one-dimensional group of charge In the main approximation in the small parameters
carriers. In order to clarify the role of a quasi-one- (Q7) 1, (kD) %, the absorption coefficient for a longitudi-
dimensional group of charge carriers in attenuation of acousaal acoustic wave has the forfn

kl cos B,

kl cog Bsing,
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1-J35(0) +kDgg[ 1+ Jo(£)sinkD]+ 53k D5 cos B[ 1—Jo({) sinkD]‘

I=Tolo7 1-Jo({)sinkD+kDgj lecurs (5.27)
|
The functions of the angleB approachesr/2, the resonant behavior of the
N, (kI)2cod B N, Sir? 8 sound absorption coefficient changes for giant oscillations

- = which assume the following form fg8= #/2:
"=N 1+ (k%02 g 2" 95~ N 15 (kI2cod J ®

do not exceed unity when the number densities of charge
carriers of both electron groups are equal. In expression
(5.4), we have neglected unity in comparison with the quan- 5
tity |éoy,|. This corresponds to the inequality _ g—sinkD
c’w’D/swir<1 which is satisfied in the ultrasonic fre- 4
guency range if the frequency of plasma oscillatiensin a
quasi-two-dimensional conductor is of the same order of g4, sinkD=—1, the absorption coefficiefit assumes its

magnitude as in an ordinary metal. Insignificant numericalyinimum value which is the smaller, the weaker the corru-
factors in formula(5.27) have been omitted. gation of the Fermi surface.

The presence of a group of charge carriers with a quasi- Figures 8 and 9 show the dependence of absorption co-
one-dimensional dispersion relation leads to considerable aRsficient onh and coss.

isotropy in attenuation of an acoustic wave in the plang of  The peaks on the experimentally observed dependence
the layers. If the wave propagates along the preferred direGst 1 on the magnitude and orientation of magnetic field are

tion of velocities of electrons belonging to this group ( considerably less sharp than those in Figs. 5-9 since the
=0), the sound absorption coefficient can be represented ajye ofkl in the layered conductors studied at present con-

F:F0907{1+Jo(g)sinkD}EroﬂoT 1+sinkD

(5.29

k=wls

the form siderably exceeds unity only in the region of hypersonic fre-
1-J3(0) N guencies.
Pty 0gre &) oNier
1-Jp(¢)sinkD N, s K uls
(5.28
For (<1, the corrugation of the quasi-two-dimensional 30 (a)
cavity on the Fermi surface is quite small, and the first term o5l
in formula (5.28 assumes the form of sharp resonance
peaks. The resonant dependencel'obn H™ ! can be ob- 20t
served by measuring the derivative Iofwith respect of re- L ©
ciprocal magnetic field. In this case, charge carriers belong- > 15k
ing to the quasi-one-dimensional group make a contribution
to the “background” component df. 10L
When the angle3 deviates from zero, the resonant na-
ture of the dependendé(H 1) is preserved as long as the 5l
inequality w/2— B> (kD)Y?/kl is satisfied. When the value t )
5 10 15 h 20 25 30
30
(b)
25} ﬂ
o 201
-
~ 151
101
sk
0 U 1 A 1 1
5 10 15 20 25 30

h

FIG. 8. Dependence of the absorption coefficiBnt’y, on h=Hy/H (Hg FIG. 9. Cross sections of the curve in Fig. 8 by the plaxed (a) andx
=2wcmv,/es) andx=cosg for »=7;=10"2, N; /N,=1, andkl=10". =0(b).
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5.2. Transverse wave propagating along the layers

_jyg&zy‘*'jz(l_f&zz):

2
m
o . Kwa,,+ —?rzy) uy
In the case of transverse polarization of an acoustic wave e
u=(0,uy,u,), the magnetic fieldd=(0,H sin 6,H cos6) ori-

2
ented perpendicularly to the wave vector appears in Max- +| kwd,+ _wﬁ;fzz) u,.
well's equations e
- me?® _ (5.3D)
Ea=Tua+ Ela; a=Vy,z (5.30

only in expressions for acoustoelectric coefficients. Using

formulas(3.21), we can write these equations in the form Let us consider the propagation of a transverse acoustic

wave in a conductor with one group of charge carriers pos-

. . wz I ._ - i i -
Iy (1= £y, — | 1£5,,= | Koy, + . Uyy) uy sessing a quasi-two-dimensional energy spectrum. Supple
menting Eqs(5.31) with equationg3.2) from the theory of
5 mo?_ elasticity, we obtain a system of equation whose compatibil-
| kot e Tvz|Uz ity condition
|
1_§5'yy _ga'yz Xyy Xyz
_ga'zy 1-£0,, Xzy Xzz
(iom/e)+ikéby, ikéby, (0’ =Sk p+ ¢y, Pyz -0 (.32
ikéb,, (iom/e)+ikéb,, P2y (0’ =SK*)p+ ¢y,

is the dispersion equation of the problem. Hesg  pression in the braces {#8.34 to zero, we obtain the disper-
=(Nyzyulp)M? and s,= (A ,4,/p)Y? are the velocities of sion equation for the wave polarized along thexis. Its
acoustic waves polarized along tlye and z-axes, respec- solution can be presented in the fokw w/s,+k;,, where

tively, and 5

i ~ Mw
2 kKy=————| ékw(3d,,b,,—T,yo,,) + — (A
Mw 2 2 yyryy yyvyy yy
— ~ ~ 2ps,(1— e
Xaﬁ_ - kwaaﬁ_ To-aﬁ! P y( g&yy)
~ 2(1)3
. B Mw?_ + byy)ka)ny+ Tez—a'yy (5.35
(Paﬂzlk kaa’B-i- Tbaﬁ . (533 k:a)/Sy

The elastic moduli tensor componets,,andX ,y,, vanish The denominator in this expression has the same fo.rm as in

if the xy plane is the symmetry plane of the crySaDth- formula (5.4) for k; . I_t follows henc_e that the abso.rptllon of

erwise, these components must be taken into account, battransverse_acoust!c wave po'larlzed. anng yreexis in a

this does not change the final results significantly. conductor \_N'th a single quaS|-two-d.|menS|onaI group of
In view of strong anisotropy of the energy spectrum forchar'ge carriers is of resonance type like the absorption of a

charge carriers, the absorption of acoustic waves poIarizelamg_:_trl:d'gal wave. f th d f 30 f y

along and across the layers has essentially different forms. |t q e_be\é'?)t'or;]o ft N slecon root of .34 from o/s

can easily be verified that the series expansion in smafl 'S escribed by the formula

acoustoelectronic tensor components with at least one index i [mw2/ = mo\2 s.5
z starts with quadratic or higher-order termss;nRetaining kKs=—— 1= 2 +b,,|+| — 1_Z—ZZ
only quadratic terms i in Eq. (5.31), we obtain 2ps;| @ §022 € §022
2
®m ~ =
: : + — . :
[(wz—s§k2>p+wyy]<1—§c‘ru>xyy(l ?ﬂkgbyy)] 5 e -39
2 2.2 B o cemy It can easily be verified that the last term in the brackets in
XL sk )p+¢1ﬂ(1 §022 Xz e =0 formula (5.36 has the highest order of magnitude. lts con-

tribution to the absorption coefficient is decisive and has the

(5.39
form
The multiplicity of this equation implies that in the approxi- I
mation quadratic iny, acoustic waves polarized along the _ 2 :
. . . = —(1+ . .
andz-axes do not interact with each other. Equating the ex- I=To7 D (1+sinkD) (5.39
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The peculiarity of quasi-two-dimensional energy spec- t
trum of charge carriers for waves with the above polarization ~ Z(1)= j v (t)dt’. (5.40
is manifested in stronger magnetic fields also, whdh ] ) o ]
<1. In this case, the orientation magnetoacoustic effect is We con3|der' the propag'atlt.)n of a Iongl'tudlnal acoustic
manifested in a strong oscillatory dependence of absorptiof@veu=(0,04) in a magnetic fieldd=(0,H sin6,H cosf).
coefficient on the angle formed by the magnetic field with The System of equations for the Fourier components of ion
the normal to the layerg:% displacement and electric field in this case has the form
Electron orbits in the momentum space are cross sec- = . Y= T _
tions of the Fermi surface by the plapg= const, wherep,, (@ke+iHyIe)out (fo— 1Bt 0,4, =0,
is the momentum component along the magnetic field. Con- ayzkgwu+g&yxﬁx+(§o-yy_ 1)’|§y:o,
sequently, integrating over the Fermi surface for calculating

acoustoelectronic tensors by formul&z21), we can conve- (0?—5%k?) pu+[iKT,,+ ¢~ 13, Hy Jkou+[ikb,,
niently use the variables,t, and p, . If we substitutep, i ~ o~ e -
=pn/cosé—p,tand into the integrands containing the ex- ¢ % HyJExt+[ikb,y+c "o, HyJE=0,
pressions (5.41
* here
anp, w
AzAP)= 2, An(Px.py)cos— =,
n=1 -~ _ _ Taz02p A o—a ;047
. Uaﬁ UaB 0,y ’ az az 0,5 ’
a . anp,
VA(p) == 2 en(py,py) p Sin— =, (5.39 E oy by DA
2B~ VzBT 0yy v Cz7=Cpp— o, )

it can easily be verified that the corresponding acoustoelec-

tronic coefficients are complex periodic functions of the s=(\zzzd p) M2

angle ¢ formed by the directions of magnetic field and the acoustoelectronic coefficients are defined by formug1)
normal to the layers. All the orbits in a quasi-two- i, which

dimensional conductor are almost indistinguishable, and

hence the momentum componeptsand p, depend orpy 2 :J'T ' (3 : " "
weakly. This allows us to obtain expliéit dependence of R —xdt g(t)expliklz(t) —z() ]+ v(U' =0}
acoustoelectronic coefficients oftand to make sure that
they vanish for certain values of the angle 6. in the ap-
proximation quadratic in the parameter When tarng>1,
but cos¢>1/Q) 7, the values o, are repeated with a period
A(tang)=2mh/D,. These oscillations are associated with the If the magnetic field is directed along the normal to the

motion of charge carriers in strongly elongated orbits in th?ltayers 6=0), the absarption is mainly determined by renor-

momentum space, which intersect a large number of unit 7 °~ ° ; .
) : . . I ._malization of the charge carrier energy under the action of
cells in the reciprocal lattice, and the period of oscillations is . . L
i A . deformation. In the case when the deformation potential is
connected with a change in this number by unity.

In the case when the dispersion relation for charge car(-jescnbed by formulg5.11), the absorption coefficient satis-

riers has the form5.10, and the deformation potential is fies the following expression:

We shall describe the results of analysis of the disper-
sion equation of the syste®.41), which is carried out for
w7<1 for an acoustic wave propagating, as before, along
the layers.

described by formulg5.11), the absorption coefficient has 1 911/
the form ['=Tg  A[1+ (7kD]7= 1}, (5.42
wTVq which has the form
=7l o——35(). (5.39

I'=To7n2kl. (5.43
where£=(avom/h)tan®. At points where Bessel's function for k| 5<1. Herel = 7v,.
Jo(€) vanishes, we must take into account the next terms in If, however, the angl® differs from zero, but is not very

the expansion in small paramet&® ands/v. close to r/2)(cos#>1/047), the absorption coefficient for
kl»<1 is described by the formula
FO 2 2 S|r]2 0 Qo(l)cz
5.3. Acoustic wave propagating across the layers I'= > nokl1J5(€) + =it (5.44
0

In order to solve the system of equatiof®1)—(3.3) in . . .
the case when a wave pro)p/)agates a(?ross the layers, we vaj\é?'Ch coincides with formuld5.43 for 6=0.
carry out Fourier transformations in the coordinateonsid- The first term in formula5.44) is determined by defor-
ering that the solution of the kinetic equation has the form mation interaction of electrons with the acoustic wave and
describes angular oscillations of absorption coefficient. The
W= Jt dt'g[(z+z(t")—z(t) Jexg v(t' )], second term is associated with the electromagnetic field ex-
— cited by the acoustic wave and differs from zero even for
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