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Thermoelectric effect in layered conductors at low temperatures

O. Galbova

Faculty of Natural Sciences and Mathematics, Physical Institute, P.O. Box 162, 1000, Skopje,
Republic of Macedonia

O. V. Kirichenko and V. G. Peschanski a�

B. I. Verkin Institute for Low-Temperature Physics and Engineering of the National Academy of Sciences
of Ukraine, pr. Lenina 47, Kharkov 61103, Ukraine
�Submitted April 24, 2009�
Fiz. Niz. Temp. 35, 1034–1040 �October 2009�

The linear response of the electronic system of a layered conductor to the presence of a tempera-
ture gradient is investigated theoretically. The dependence of the thermoelectric power on the
temperature and external magnetic field is found at temperatures below the Debye temperature.
Experimental investigation of this dependence will make it possible to study different relaxation
mechanisms in a system of conduction electrons and to determine the structure of the electronic
energy spectrum. © 2009 American Institute of Physics. �doi:10.1063/1.3253405�
In a conductor the electron current density j, the tem-
perature gradient �T, and the electric field E are interrelated
by the following linear relation:

ji = �ijEj − �ij
�T

�xj
. �1�

A thermoelectric field inevitably arises in a nonuni-
formly heated sample even in the absence of current-
conducting contacts �j=0�:

Ei = �il�lj
�T

�xj
, �2�

where �ij is the electric-resistivity tensor, which is inverse to
the electric-conductivity tensor �ij.

Investigation of the thermoelectric effect in layered con-
ductors in a strong magnetic field B yields detailed informa-
tion on their electric energy spectrum.1,2 No less important
information on charge carriers can be obtained by studying
the temperature dependence of the thermoelectric field. This
is because the kinetic coefficients

�ik =
2e3B

c�2���3 � �f0���
��

d�� dpB

� �
−�

0

exp�t/	p�dt�
0

TB

dt�vi�t��vk�t� + t� , �3�
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exp�t/	��dt�
0

TB

dt�vi�t��vk�t� + t� , �4�

obtained by solving Boltzmann’s kinetic equation describe
different relaxation processes in the system of charge carri-
ers. The components of the tensor �ik are related with the
electron momentum relaxation, which is characterized by the
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time 	p, and the components of the tensor �ik depend on the
energy relaxation time 	�. Here e, v, pB, and � are the charge,
velocity, projection of the momentum on the direction of the
magnetic field, and the energy of the conduction electrons,
f0��� is the equilibrium Fermi distribution function, 
 is the
chemical potential of the system of electrons, c is the speed
of light, � is Planck’s constant, t is the time during which a
charge moves in a magnetic field according to the equation

�p

�t
=

e

c
�vB� .

When the motion of a charge in a magnetic field is pe-
riodic the quantity TB is the period of the motion. However,
if an electron undergoes aperiodic motion on an open trajec-
tory in momentum space, then TB is the characteristic time
required for the electron to traverse one period of the recip-
rocal lattice. Strictly speaking, in this case it is necessary to
average over a large section that an electron traverses on the
open trajectory over a time of the order of its free flight
time.3

In the absence of an external magnetic field the intensity
of the thermoelectric field

Ei =
�2

3e
� T



�Qik

	�

	p

�T

�xk
�5�

is proportional to the ratio of the relaxation times 	� and 	p.
Here Qik is a dimensionless tensor which is temperature-
independent.

We shall now examine the thermoelectric effect in a
quasi-two-dimensional conductor at temperatures much less
than the Debye temperature TD, when the temperature depen-
dence of the relaxation time 	� is much different from that of
	p. At temperatures close to zero the electron system in de-
generate conductors relaxes primarily as a result of scattering
of charge carriers by impurity centers and other crystal de-
fects. In this case the momentum and energy relaxation times
© 2009 American Institute of Physics
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	p and 	� are temperature-independent. As temperature in-
creases, an additional charge-carrier relaxation mechanism is
actuated—scattering by vibrations of the crystal lattice. Ac-
cording to Matthiessen’s rule, each scattering mechanism
makes an additive contribution to the relaxation process and

1

	
=

1

	�im� +
1

	�eph� , �6�

where 1 /	�im� is the charge-carrier-phonon collision fre-
quency. For T�TD, because of the electron-phonon scatter-
ing angles are small a much larger number of collisions with
phonons are needed for momentum relaxation than for en-
ergy relaxation �see, for example, the monograph Ref. 4�. As
a result, 	� decreases much more rapidly with increasing
temperature than does 	p. The temperature dependence of 	�

has the form

	� = � 1

	�im� +
1

	0
T̃n	−1

, �7�

where T̃=T /TD, 	0 is the time characterizing the energy re-
laxation of electrons as a result of electron collisions with
phonons at the Debye temperature, and the dimensionality of
the system determines the n in the exponent. For a three-
dimensional metal n=3, and for a two-dimensional conduc-
tor n=2.5

At low temperatures, when the momentum relaxation of
the electrons is mainly due to electron collisions with impu-
rity centers, i.e. 	p=	�im�, and electron-phonon scattering pro-
cesses make an appreciable contribution to the energy relax-
ation, the temperature dependence of the thermoelectric field
with B=0 can be represented in the form

Ei =
�2TD

3e

Qikf�T̃�

�T

�xk
, f�T̃� =

T̃

�	�im�/	0�T̃n
. �8�

In sufficiently pure semiconductors �	�im��	0� the competi-
tion between different scattering mechanisms leads to the
appearance of a maximum in the plot of the thermoelectric

field versus temperature. For T̃� �	0 /	�im��1/n the field Ei is

proportional to T̃, but as temperature increases the charge-

carrier-phonon collisions frequency 1 /	�
�eph�= �1 /	0�T̃n be-

comes comparable to the frequency of carrier collisions with
impurity centers 1 /	�im� and the increase with temperature is

replaced by a decrease proportional to T̃�1−n�. The maximum
is attained at

	�
�eph� = �n − 1�	�im�.

A plot of the function f�T̃� for n=3 is displayed in Fig. 1.
In layered conductors with a quasi-two-dimensional

electron energy spectrum the temperature dependence of the
relaxation time 	�

�eph� at temperatures much less than the
overlap integral t� of the wave functions of electrons belong-
ing to different layers is essentially the same as in three-
dimensional conductors and 	�

�eph� is proportional to T−3,
though the coefficient of proportionality depends on the
magnitude of the anisotropy of the charge-carrier spectrum.
As temperature increases and T becomes greater than or
comparable to t�, 	�

�eph� decreases quadratically with tem-
perature. In organic conductors the overlap integral t is ap-
�
proximately 100 times less than the Fermi energy, i.e. com-
parable to the Debye temperature in order of magnitude;
	�

�eph� is proportional to T−2 at temperatures close to TD only
in certain forms of graphite. Thus 	�

�eph� is proportional to T3

at all temperatures less than the Debye temperature TD, and
following Bloch’s law we shall represent 	p in the form

1

	p
=

1

	�im� +
1

	0
T̃5. �9�

The energy spectrum of organic conductors is quite com-
plicated, and in some of them several groups of charge car-
riers are responsible for electron transport while the Fermi
surface consists of topologically different elements: weakly
fluted cylinder and planes.6,7

An external magnetic field affects differently the motion
of charge carriers whose states belong to the weakly fluted
cylinder or a fluted flat sheet of the Fermi surface. This is
why the presence of such flat sheets of the Fermi surface is
most easily revealed in a conductor placed in a magnetic
field.

We shall examine as an example a conductor with two
groups of charge carriers, which is placed in a strong mag-
netic field B= �0,B sin  ,B cos �. We shall assume that the
velocities �v1 of the electrons belonging to two flat sheets of
the Fermi surface are predominantly oriented in a direction
determined by an angle � so that v1x= �v1 cos � and v1y

= �v1 sin �, and the dispersion law for the charge carriers
belonging to a weakly fluted cylinder has the form

��p� =
px

2 + py
2

2m
− 2t� cos

apz

�
, �10�

where m=const, a is distance between the layers, and t� can
be less than the Fermi energy �F.

We shall assume that the angle  of deviation of the
magnetic field from the direction normal to the layers is not
too close to � /2, so that all orbits of electrons with a qua-
dratic dispersion law are closed and do not contain self-
intersections. For cos �mc /eB	 the strong magnetic field
condition �TB /	��1 is automatically satisfied. The compo-
nents of the conductor’s kinetic coefficients �ik and �ik are
sums of the contributions of quasi-two-dimensional and
quasi-one-dimensional charge carriers, which are easily cal-
culated using the relations �3� and �4�. Specifically, the fol-
lowing expression obtains for the electric-conductivity ten-
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FIG. 1. Plot of the function f�T̃� for n=3 and 	�im� /	0=102.
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sor:
�ik = 
 �2�2 − �2�zz tan2  + �1 cos2 � ��2 − ��zz tan2  + �1 cos � sin � − ��zz tan 

− ��2 + ��zz tan2  + �1 cos � sin � �2�2 + �zz tan2  + �1 sin2 � �zz tan 

��zz tan  �zz tan  �zz
� . �11�

Here �1 and �2= �e2�F	p /��2a� are the contributions to the electric conductivity along the layers with B=0 of charge carriers
whose states belong to a flat sheet of the Fermi surface and a fluted cylinder, �=mc / �eB	p cos �=1 / ��c	p��1. Taking
account of the contribution to �zz of charge carriers with a quasi-one-dimensional energy spectrum has no effect on the
temperature dependence of the thermoelectric field. The component of the electric conductivity

�zz =
2ae2m	pt�

2 cos 

��4 J0
2�apF

�
tan � � Sz	p �12�

in the leading-order approximation in the quasi-two-dimensionality parameter t� /�F=��1 is quadratic in � and for 1
� tan �eB	p /mc exhibits periodic oscillations as function of tan , where  is the angle of deviation of the magnetic field
from the normal to the layers. Here Jn�x� is a Bessel function and pF is the Fermi momentum.

Inverting the electric-conductivity tensor it is easily shown that for ��1 the following asymptotic expression holds for the
resistivity tensor:

�ik = �0

1 + q

sin2 �

�2 −
1

�
− q

sin 2�

2�2 � 1

�
+ q

sin 2�

2�2 �tan 

1

�
− q

sin 2�

2�2 1 + q
cos2 �

�2 − q
cos2 �

�2 tan 

�−
1

�
+ q

sin 2�

2�2 �tan  − q
cos2 �

�2 tan 
1

�zz�0
+ q

cos2 �

�2 tan2 
� , �13�
where �0=1 / ��1+�2� and q=�1 /�2. The periodic variations
of the component �zz as a function of tan  are a manifesta-
tion of the particulars of the dispersion law for charge carri-
ers on a sheet of the Fermi surface in the form of a fluted
cylinder. Such oscillations have been observed in measure-
ments of the magnetoresistance to current flow across the
layers in a number of conductors of organic origin and have
been studied quite thoroughly.8

The thermoelectric effect depends strongly on the pres-
ence of flat sheet of the Fermi surface, and different compo-
nents of the thermoelectric field

Ei =
�2TD

3e

Pik�T�

�T

�xk
�14�

exhibit very diverse behavior. For one group of charge car-
riers with a quasi-two-dimensional dispersion law the diago-
nal components of Pik in the plane of the layers

Pxx = Pyy = T̃ �15�

in the leading-order approximation in the small parameters �
and � are much larger than the components

Pxy = − Pyx = T̃� 1

�c	p
−

1 − b

�c	�
� , �16�

so that if the temperature gradient vector lies in the plane of
the layers, then the thermoelectric field in this plane is di-
rected mainly along �T and grows linearly with T. The com-
ponents
Pzx = − T̃�1 − b

�c	�

−
d

�c	p
�tan  , �17�

Pzy = T̃�− 1 +
�d + b�	�

	p
�tan  �18�

are different from zero only if the magnetic field deviates
from the normal to the layers

Pzz = T̃�d + b� , �19�

and Pxz and Pyz are proportion to �2. Here b= �
 /	��
���	� /�
�1 and the following expression holds for the
coefficient d= �
 /Sz���Sz /�
�:

d = −
2
ma tan 

pF�

J1�apF

�
tan �J0�apF

�
tan �

J0
2�apF

�
tan � + �1�2 + �2�2

,s �20�

where �1 and �2 are of the order of 1 and take account of the
corrections to Sz which were omitted in the leading-order
approximation in the small parameters � and �. As a result,
the components Pzk of the thermoelectric field undergo gi-
gantic oscillations. The function Pzz versus  is displayed in
Fig. 2.

The temperature dependence of the off-diagonal compo-
nents of the tensor Pik is determined by the temperature de-
pendence of the relaxation times, and the relations �7� and
�9� yield
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Pxy =
T̃

�c	
�im��b − �1 − b�

	�im�

	0
T̃3 +

	�im�

	0
T̃5� , �21�

Pzx =
T̃

�c	
�im��d + b − 1 − �1 − b�

	�im�

	0
T̃3

+ d
	�im�

	0
T̃5�tan  , �22�

Pzy = T̃�− 1 + �d + b�
1 +

	�im�

	0
T̃5

1 +
	�im�

	0
T̃3�tan  . �23�

In the presence of a quasi-one-dimensional group of
charge carriers the components of the tensor Pik contain
terms which grow linearly with B. These terms vanish for
certain values of the angle � and in all other cases they are
the primary determinants of the thermoelectric effect in a
strong magnetic field ��	�1�. If the temperature gradient
vector lies in the plane of the layers, the diagonal compo-
nents

Pxx = �0T̃��2 + �1��1 − b�
	p

	�

sin2 � + a
	�

	p
cos2 �

+ �c�	p − a	��sin � cos ��� , �24�

Pyy = �0T̃��2 + �1��1 − b�
	p

	�

cos2 � + a
	�

	p
sin2 �

− �c�	p − a	��sin � cos ��� �25�

grow linearly as functions of the magnetic field when both
components v1x and v2x of the predominate direction of the
velocity vector of electrons on a flat sheet of the Fermi sur-
face are simultaneously different from zero. Then the tem-
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FIG. 2. Plot of the function F��, determining the function Pzz= T̃F��,
versus the angle  of deviation of the magnetic field from the normal to the
layers in the case where there is only one group of charge carriers with a
quasi-two-dimensional dispersion law.
 perature dependence of the components Pxx and Pyy in the

leading-order approximation in the small parameter � has the
form

Pxx = − Pyy = �0�1�c	
�im�T̃

�
 1

1 +
	�im�

x0
T̃5

−
a

1 +
	�im�

x0
T̃3�sin � cos � . �26�

Here a��
 /�1����1 /�
�1.
For the values of the angle � such that sin 2�=0, the

terms Pxx and Pyy are independent of the magnetic field. The
dependences of the diagonal component of the tensor Pik on
the angle � and the temperature for the case of two groups of
charge carriers are shown in Figs. 3 and 4.

The off-diagonal components

Pyx = − �0T̃��2� 1

�c	p
−

1 − b

�c	�
� − �1�c�	p − a	��cos2 �� ,

�27�

Pii

� 0

�

FIG. 3. Pxx and Pyy versus the angle � �rotational diagram� for the case
where two groups of charge carriers are present.
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FIG. 4. Temperature dependence of Pxx �top curve� and Pyy �bottom curve�
for sin 2��0 and 	�im� /	 =102 in relative units for a two-band conductor.
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Pxy = − �0T̃��2� 1

�c	p
−

1 − b

�c	�
� − b1�c�	p − a	��sin2 �� ,

�28�

Pzx = �0T̃��2� d

�c	p
−

1 − b

�c	�
� + �1��c�	p − a	��cos2 �

+
d

�c	p
��tan  , �29�

Pzy = �0T̃��2�− 1 + �d + b�
	�

	p
�

+ �1��c�	p − a	��sin � cos � + �d + b�
	�

	p
��tan 

�30�

likewise contain large terms which are proportional to �−1

and whose temperature dependence is described by an ex-
pression similar to the relation �26�.

It is easy to see from the relations presented above that
the Nernst-Ettinghausen effect is clearly manifested when
the temperature gradient is not orthogonal to the electron
velocity vector v1.

The electric field in the direction of the normal to the
layers increases with the angle  of the deviation of the mag-
netic field from the normal to the layers and for tan �1 it
exceeds the electric field along the layers.

For tan �eB	 /mc=1 /�0 there is no longer enough
time for an electron to traverse over its free-flight time one
complete revolution on a closed section of a sheet of the
Fermi surface in the form of a weakly fluted cylinder. An
electron moves along the normal to the layers by a small
amount, and for =� /2 its average velocity along the nor-
mal to the layers is zero. As a result, �zz=�2�0

2g�2 in the
leading-order approximation in the quasi-two-dimensionality
parameter, where g is a dimensionless quantity of the order
of 1. Then the components of the tensor Pik which determine
the thermoelectric field along the normal to the layers have
the form

Pzx = T̃��c	p − �0�2�1 + b��c	��sin � , �31�

Pzy = − T̃��c	p − �1 + b��c	��cos � , �32�

and the electric field grows linearly with increasing magnetic

field. The components
Pxx = �0T̃��2�1 + b� + �1�a + b��
	�

	p
, �33�

Pyy = T̃�1 + b�
	�

	p
�34�

reach saturation in a strong magnetic field. The electric field
along the layers is directed mainly along the temperature
gradient, since the components

Pyx = Pxy�1 + q� = T̃�2g��1 + b�
	�

	p
− 1�sin � cos � �35�

are proportional to �2 and, just as the diagonal components,
saturate for �0�1.

The presence of a group of charge carriers with a quasi-
one-dimension dispersion law does not appreciably affect the
thermoelectric effect when the magnetic field is almost par-
allel to the plane of the layers but it does change the entire
picture of the behavior of the conductor in a strong magnetic
field tilted away from the plane of the layers. The tempera-
ture and magnetic field dependences of the thermoelectric
power are found to be very different for conductors with one
quasi-two-dimensional group of charge carriers and for a
conductor with a Fermi surface which also contains flat
sheets. The diversity of these dependences gives rich mate-
rial for studying the properties of charge carriers in low-
dimensional conducting systems and makes it possible not
only to reveal the presence of a flat sheet of the Fermi sur-
face but also to determine the predominate direction of the
velocities of electrons whose states belong to this sheet.
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