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On diamagnetic domains in layered conductors
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The magnetic susceptibility and domain structure of a layered conductor are calculated under
conditions of a substantial de Haas–van Alphen effect for arbitrary orientation of the external
magnetic field with respect to the layers. It is shown that the amplitude of the magnetic suscepti-
bility is an oscillatory function of the angle between the magnetic field and the normal to the
layers, with a sharp maximum along preferred directions of magnetic field. The possibility of
propagation of low-frequency weakly damped modes of the electromagnetic field is discussed
with allowance for the induced magnetism of the conduction electrons. © 2007 American Insti-
tute of Physics. �DOI: 10.1063/1.2737556�
The possibility of an oscillatory dependence of the mag-
netization of metals on the value of the magnetic field at low
temperatures was predicted by Landau1 and observed by de
Haas and van Alphen in 1930.2 This oscillatory effect, due to
quantization of the energy of orbital motion of electrons in
the magnetic field, opened the door to a series of quantum
oscillation effects, a rather complete and detailed description
of which is given in the well-known monograph by
Schoenberg.3

In the quasiclassical approximation, when the Fermi en-
ergy �F is much larger than the distance �� between Landau
levels �� is the cyclotron frequency and � is Planck’s con-
stant�, the part magnetic susceptibility that oscillates with
inverse magnetic field, �osc, exceeds the monotonically vary-
ing part �mon by a factor of ��F /���3/2 �Ref. 4�. As a result,
at certain sufficiently large values of the magnetic field the
magnetic susceptibility � can be greater than 1/4�, and the
homogeneous state of the sample becomes unstable, leading
to the formation of diamagnetic domains, which were first
observed by Condon.5 The structure of the diamagnetic do-
mains in metals was described by Condon and Walstendt6

and by Privorotski� and Azbel’7,8 and has been investigated
experimentally in some metals by resonance methods.9–12

Quantum oscillation effects are manifested particularly
clearly in layered conductors immersed in strong external
magnetic fields H0, since a much greater number of conduc-
tion electrons is involved in their formation than in the case
of ordinary metals.13,14 This is due to the quasi-two-
dimensional character of the energy spectrum of the charge
carriers in layered conductors. Their energy

��p� = �
n

�n�px,py�cos�npz

p0
� �1�

depends weakly on the projection of the momentum on the
normal to the layers, pz, and the classical trajectories in mo-
mentum space in a magnetic field that deviates substantially
from the layers are almost indistinguishable. In Eq. �1� p0

=� /a, where a is the distance between layers; the functions
�n�px , py� fall off with increasing index n, so that the maxi-
mum value of the function � �p , p � on the Fermi surface
1 x y
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��p�=�F can be much less than the Fermi energy, i.e.,

max�1�px,py� = ��F � �F. �2�

The domain structure of layered conductors in a mag-
netic field orthogonal to the layers was considered by Maniv
and Vagner.15

Let us examine the formation of diamagnetic domains in
organic layered conductors for arbitrary orientation of the
magnetic field with respect to the layers. The observation of
Shubnikov–de Haas oscillations of the magnetoresistance of
layered conductors for the most diverse orientations of the
magnetic field �see, e.g., the review article by Kartsovnik14

and the literature cited therein� indicates that at least one
sheet of the Fermi surface is a slightly corrugated cylinder.

The cross section S�� , p�� of this cylinder on the p�

= �p ·B� /B=const plane depends weakly on the projection of
the momentum onto the magnetic field direction:

�S��,p��
�p�

= �
n

In��,	�sin� np�

p0 cos 	
� � �S��,p��/p0. �3�

For some orientations of the magnetic field, any of the
coefficients In�� ,	� of the Fourier series in the linear ap-
proximation in the quasi-two-dimensionality parameter of
the energy spectrum, �, can vanish. For those values of the
angle 	 between the normal to the layers and the magnetic
field vector at which the largest of the coefficients I1�� ,	�
vanishes, the amplitude of the quantum oscillations of the
magnetic susceptibility and magnetoresistance increases
sharply,16 providing the most favorable conditions for obser-
vation of the domain structure.

The magnetic field that acts on the charge carriers is the
value averaged over a region of the order of the Larmor
radius, i.e., the magnetic induction B. As long as the mag-
netic susceptibility is small, one can neglect the difference
between B and H. However, at sufficiently low temperatures
the magnetic susceptibility can reach values of the order of
unity, and the magnetization M�B� and the magnetic field
H=B−4�M�B� become complicated functions of the mag-
netic induction, and for �
1/4� the sample breaks up into
alternating domains with different values of the induction.5,7
© 2007 American Institute of Physics
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The magnetic induction in the conductor can be represented
in the form B�y�=B0+B1�y�, where B1�y� is the nonuniform
contribution, which satisfies the equation

curl B1 =
4�

c
j�m�. �4�

Let us find the relation between the current density j�m�

=c curlM induced by an external magnetic field with induc-
tion B0= �B0 sin 	 ,0 ,B0 cos 	�, where 	 is the angle between
the magnetic field and the normal to the layers �the z axis�,
and c is the speed of light. The linearized kinetic equation for
the density matrix has the form17,18

i

�
�Ĥ0, �̂1� +

i

�
�Ĥ1, �̂0� = Î��̂1� . �5�

Here �̂0 and Ĥ0 are the equilibrium density matrices and

Hamiltonian in the one-electron approximation, �̂1 and Ĥ1

are the nonuniform additions to them, and Î��̂1���−1�̂1 is the
collision operator, the eigenvalues of which coincide in order
of magnitude with the inverse mean free time of the charge
carriers. Under conditions when it is important to take the
quantization of the electron energy levels into account, the
cyclotron frequency � is much greater than the collision
frequency ����−1�, and the magnetization current density
can be written in the form

j�m� = Tr�ĵ�̂� = �
,�

w − w�

� − ��
H1,��r�j�,�r�

−
e2

mc
A1�r��



w	�	2, �6�

where =n , py , p� ,� is a set of quantum quantum numbers
characterizing the state of the conduction electron. The � axis
in the coordinate system � ,y ,� is directed along the vector
B0, p�= pz cos 	− pxsin 	= �p ·B0� / p, �= ±1 is the projection
of the electron spin, w= �exp��−��+1�−1 is the occupation
probability of the state with quantum numbers n , py , p� ,�,
�=�n,py,p�

−�BB0�,

Ĥ1�r� = −
1

c

 d3r�Â1ĵ�r,r�� �7�

is the correction to the Hamiltonian, � is the chemical po-

tential, �B is the Bohr magneton,
ĵ�r,r�� =
e

2
�v̂�p̂ −

e

c
A0�y����r − r��

+ ��r − r��v̂�p̂ −
e

c
A0�y��� �8�

is the current density operator, and v�p�=���p� /�p.
The vector potential is conveniently chosen in the Lan-

dau gauge:

A�r� = �A�y�,0,0�,

A�y� = B0y + 

0

y

dyB1�y�  A0�y� + A1�y� . �9�

The matrix elements H1,� and j,��r� are calculated in
the basis of eigenfunctions � of the unperturbed Hamil-
tonian, which satisfy the equation

�̂�p̂ −
e

c
A0�y��� = ��. �10�

For determination of the character of the domain struc-
ture in layered conductors it is not so important to take into
account the anisotropy of the energy spectrum of the charge
carriers in the plane of the layers, and for the sake of brevity
in the calculations we shall keep only the first two terms in
the Eq. �1� for the energy of the charge carriers, and we shall
also assume that �0�px , py� is an isotropic function and that
�1�px , py� is a constant, denoted by �0, i.e., we use a rather
simple dispersion relation for the conduction electrons:

��p� =
px

2 + py
2

2m
− �0 cos

pz

p0
, �11�

where m is the effective mass of the electrons in the plane of
the layers.

In the leading approximation in the small parameter �
=�0 /�F the electron is a harmonic oscillator with frequency
�0= 	e 	B0cos � /mc. Expanding the nonuniform correction
to the vector potential into a Fourier integral,

A1�y� =
 dkA1�k�eiky ,

we obtain the following expression for the magnetization

current density:
�12�
where

�0 =
1

�2��2

e2

mc2

p0

�
, aB =� �

m�0
,

	n� =
1

�1/4�2nn!
exp�−

u2

2
�Hn�u� ,

Hn�u� is an Hermite polynomial, u= �y−y0� /aB, and y0

=e�p + p tan 	� / �cB �. The matrix element
� � 0
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�n	eiqu	n + p� =� n!

�n + p�!
ip�q2

2
� p

2
e

q2

4 Ln
p�p2/2� ,

where q=aBk is expressed in terms of the associated La-
guerre polynomials Ln

p�q2 /2�.
In the case of a weak inhomogeneity kr0�1 the matrix

element can be expanded in powers of q, and the linear mag-
netization current density takes the form

j�
�m� = c�

�B�

�y
+ c�r0

2�3B�

�y3 , �13�

where

� = − �0�
n�



−�

�

d�
�

�n
�n1

2wnp���,

� = −
�0

4 �
n�



−�

�

d�
�

�n
�n1�n1

2 +
1

4
�wnp��� ,

� =
p�

p0 cos 	
, r0 =

vF

�0
, n1 = n +

1

2
. �14�

The peculiarities of the quasi-two-dimensional electron
energy spectrum of layered conductors lead to oscillatory
dependence of the amplitude of the magnetic susceptibility
on the angle between the magnetic field and the normal to
the layers. In the linear approximation in the quasi-two-
dimensionality parameter � the areas of the electron orbits in
momentum space corresponding to the spectrum �11�,

S��,p�� =
2�m�

cos 	
�1 +

�0

�
J0��cos �� , �15�

where = ��2m� / p0�tan 	, are identical when the Bessel
function J0�� vanishes.19 For such orientations of the vector
B0 the amplitudes of the oscillatory �in inverse magnetic
field� parts of the kinetic and thermodynamic characteristics
of the conductor increase substantially.

Using the Poisson summation formula and the quasiclas-
sical quantization rules

S��,p�� =
2�	e	B0�

c
�n +

1

2
� ,

we find that, under the condition �2�F������F, the ex-
pressions for � and � become

� = −
2

�

e2

mc2

p0

�
� �

��0
�2

� �
l=1

�

�− 1�lJ0�l��������l�cos
2�l�

��0
cos

�lm

me cos 	
,

�16�

� =
1

4
� �

�F
�� . �17�

Here
��z� =
z

sinh z
, � =

2�2T

��0
, ���� =

2��0

��0
J0����� ,

me is the mass of the free electron. Neglecting the quantum
oscillations of the chemical potential, we set �=�F.

The amplitude of the oscillatory part of the magnetic
susceptibility �m��0��F /��0�2J0������ for �����1 is
equal in order of magnitude to �0��F /��0�2���0 /��F. For
the values 	=	i at which i= ��2m�F / p0�tan	i is a root of
the Bessel function J0�i�=0, the amplitude �m grows to
values of the order of �0��F /��0�2. At these orientations of
the magnetic field the dependence of the areas of section of
the Fermi surface S�� , p�� on the momentum projection p�

are manifested only in the terms quadratic in �, i.e.,
�S�� , p�� /�p��O��2�.

When �2	1−4���B0� 	 �1, the linear term of the ex-
pansion of j�m� in powers of B1�y� can be of the same order
of magnitude as the nonlinear term proportional to B1

3�y�. As
a result, the magnetization current density may be written in
the form

j�
�m� = c

�M�

�y
= c�

�B1

�y
+ c�r0

2�3B1

�y3 − c�
�B1

3

�y
, �18�

where �=−�2M�B0� /�B0
2���F /��0B0�2.

Maxwell’s Eq. �4� has the solution

B1�y� = b0
s

�1 + s2
sn� y

��1 + s2
,s� , �19�

describing a periodic domain structure with period Y
=4��1+s2K�s� and a domain-wall thickness �=��r0 /2�.
Here b0= ��2 /2���1/2��B0��� /�F�, and K�s� is the com-
plete elliptic integral of the first kind. The modulus s of the
Jacobi elliptic function sn determines the period Y and is
found from the condition of minimum �with respect to Y�
total thermodynamic potential, including the surface energy
at the domain walls. In the most important case in practice,
when the linear dimensions L of the sample are much greater
than the Larmor radius of the electron, Y ���2r0L �Ref. 8�.
Without loss of generality, it can be assumed that the size of
the domains is large compared to �.

Experiments on the propagation of electromagnetic
waves in a sample of finite dimensions allow one to trace the
formation of the domain structure and to determine its pa-
rameters. In the case of weak temporal and spatial disper-
sion, i.e.,

�� � 1, kr0 � 1, �kzvF� � 1, �20�

where � and k are the frequency and wave vector of the ac
field, the system can be tuned to the instantaneous values of
the ac fields, and one can use the dc expressions for the
current density and magnetization, plugging in the values of
the ac fields at the given instant. In the expressions for the
conduction current density one can neglect the gradient
terms proportional to powers of the small parameter �kr0�2.
As a result, one can obtain the following equation for the ac
fields B� and H�:
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�B

�t
= −

c2

4�
curl��̂ curl H� , �21�

where ��̂ curl H�i=�ik�curl H�k. For 	�	i the quantum cor-

rections to the conductivity tensor, proportional to the small
parameter ���0 /��F�1/2, are usually small compared with
the smoothly varying part, and the resistivity tensor corre-
sponding to the dispersion relation �11� in a coordinate sys-
tem � ,y ,� whose � axis is directed along the external mag-

netic field can be written in the form
�22�
where �0 and �zz��2�0 are the conductivities in the plane
of the layers and along the normal to the layers, respectively,
in the absence of external magnetic field.
When the wave vector k= �0,ky ,k�� lies in the y� plane,
the equation for the field component B�

��y ,� , t� has the form
�23�
where

H�̃ = �1 − 4���B�̃ − 4��r0
2
�2B�̃

�y2 + 4��B
�̃

−3
. �24�

For 1−4��
0 in the linear approximation in the small
wave amplitude the solution of Eq. �23� can be sought in
harmonic form, assuming B�

� ,H�
��exp�−i�t+ ik ·r�. As a

result, we obtain the following dispersion relation:

�2 − � c2

4�
�2

���11�33 − �13
2 �ky

2 + ��11�22 + �12
2 �k�

2�

��k�
2 + �1 − 4���ky

2 + 4��r0
2ky

4� + i�
c2

4�
�k�

2��11 + �22�

+ ��1 − 4����11 + �33�ky
2 + 4���11r0

2ky
4� = 0. �25�

Under the condition �−2���, which holds for quasi-
two-dimensional conductors, the imaginary part of the dis-
persion relation �25�, generally speaking, is of the same order
as the real part, and the eigenmodes are strongly damped. An
exception is the case of small 	 and ky, specifically: 	��2,
ky ��2k�. Then it is possible for a helicoidal wave to propa-
gate, with the frequency

� =
c2

4�
�12k

2 − i� c2

8�
���11 + �22�k2. �26�
Under conditions for which domain structure exists, i.e.,
for 1−4���0, the time-varying field along the OY axis is
nonuniform, leading to strong damping of the wave.

In layered conductors with an arbitrary electron energy
spectrum �1� the maxima in the angular dependence of the
amplitudes of the de Haas–van Alphen and Shubnikov–de
Haas oscillations are not as sharp, since the coefficients in
formula �3� do not vanish simultaneously for any orientation
of the vector B0 �Ref. 20�, although the conditions for obser-
vation of domain structure are undoubtedly more favorable
than for metals in which the charge carriers have a quasi-
isotropic energy.
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