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Eigenmodes of the electromagnetic field in the presence of a magnetic domain
structure
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The spectrum of weakly damped eigenmodes of the electromagnetic field in metals in a
quantizing magnetic field are determined under conditions such that a magnetic domain structure
exists. © 2003 American Institute of Physics.@DOI: 10.1063/1.1542469#
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At low temperatures the thermodynamic and kine
characteristics of a metal placed in a quantizing magn
field H5(0,0,H0) have an oscillatory dependence on t
inverse magnetic field. The cause of these oscillations is
presence of features of the density of states of the ch
carriers due to the energy quantization in the magnetic fi
Here the charges are actually acted upon by a field avera
over regions of the order of the Larmor radius, i.e., a m
netic inductionB. As long as the magnetic susceptibilityx is
small, the difference betweenB andH can be neglected. I
the distance between energy levelsD«>\V of the charge
carriers in the magnetic field is much larger than the car
temperatureT and the level width\/t but much smaller than
the Fermi energy«F , i.e.,\/t, T!\V!«F , the oscillatory
part of the magnetic susceptibility can reach values of
order of unity, and the magnetizationM ~B! and the magnetic
field H5B24pM (B) become functions of the magnetic in
duction. Here\, V, andt are Planck’s constant, the cyclo
tron frequency, and the mean free time of the conduct
electrons, respectively. In this case the problem of taking
magnetism of the medium into account is a self-consis
problem even in conductors that do not have magnetic or
ing. If x.1/4p the state of the system becomes unstab
and the sample separates into alternating domains with
ferent values of the magnetic induction.1,2

In this paper we investigate the weakly damped eig
modes of the electromagnetic field in uncompensated me
under conditions such that the distribution of the magne
induction has a stationary domain structure. The alterna
electromagnetic field in the metal is determined by the s
tem of Maxwell’s equations

curl B5
4p

c
J, curl E52

1

c

]B

]t
, div B50, ~1!

wherec is the speed of light in vacuum,J5 j1 j 8 is the total
current density, consisting of the conduction current densj
due to the electric fieldE and the magnetization current de
sity j 85c curlM induced by the magnetic field.

In the case of weak temporal and spatial dispersion

v!V, kr0!1, kzvFt!1,
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k2[u124px~B0!u!1, ~2!

wherer 0 is the radius of curvature of the orbit of the char
carriers in the uniform fieldB05(0,0,B0), vF is their Fermi
velocity, andv andk are the frequency and wave vector
the alternating fieldB(y,z,t). The integral expressions fo
the current density and magnetization can be reduced to l
form, i.e., they can be written in the form of an expansion
powers of the alternating electric and magnetic fields a
their derivatives. Fork2[u124px(B0)u!1 the linear term
of the expansion of the magnetic fieldH in powers ofB(r ,t)
can turn out to be of the same order of magnitude as
nonlinear terms, and the wave processes become sub
tially nonlinear. For small-amplitude waves it is sufficient
take into account only the nonlinear correction to the m
netization, which is proportional to the third power ofB.3,4 In
the expression for the current density one can stop at
linear approximation in the electric fieldE and neglect the
gradient terms, which are proportional to powers of the sm
parameter (kr0)2, and the quantum oscillatory correctio
which is proportional to (\V/«F)1/2. The current densityj 8
induced by the magnetic field is determined by the magn
zation componentMz , since the vectorM is directed pre-
dominantly alongB0 . The expression forj 85( j x8,0,0) can be
written in the form3–5

j x85c~curl M !x5c
]Mz

]y
5cx~B0!

]Bz

]y
24pcb

]Bz
3

]y

14pacr0
2 ]3Bz

]y3 , ~3!

whereb5z(«F /\VB0)2, anda andz are numerical coeffi-
cients of the order of unity which depend on the concr
form of the dispersion relation for the charge carriers.

In the stationary case in the absence of electric field
solution of system~1! for x(B0).1/4p has the form

B1~y!5b0

m

A11m2
snS y

dA11m2
, m D ~4!
© 2003 American Institute of Physics
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and describes a periodic domain structure with periodY
54dA11m2K(m) and domain-wall thickness d
5A4par 0 /k. Here

b05~k2/2pb!1/2'kB0~\V/«F!,

K~m!5E
0

1

dt@~12t2!~12m2t2!#21/2[K

is a complete elliptic integral of the first kind. The modul
m of the Jacobi elliptic function sn determines the periodY
and is found from the condition that the total thermodynam
potential, including the surface energy at the boundaries
the domains, be minimized with respect toY. In a case of
more practical importance, when the linear dimensionsL of
the sample are significantly larger than the Larmor radius
the electron, the estimateY;Ak2r 0L is valid.6 Without loss
of generality one can assume that the domain sizes are
compared tod, i.e., Y@d, or

K@p. ~5!

Then it is easily noted thatm is close to unity, since the
asymptotic expressionK'22 ln(12m2) holds forK@1.

We set Bz(y,z,t)5B1(y)1B;(y,z,t), where
B;(y,z,t)5b(y)e2 ivt1 ikzz is a small space–time perturba
tion. Linearizing the system of Maxwell’s equations~1! with
respect toB;(y,z,t) and eliminating the electric fieldE, we
obtain the following equation for the time-dependent fie
B;(y,z,t):

]B;

]t
52

c2

4p
curl ~ r̂ curl H;!. ~6!

Here

~ r̂ curl H;! i5r i j ~curl H;! j , Hx
;5Bx

; , Hy
;5By

; ,

Hz
;52k2Bz

;112pbB1
2~y!Bz

;24par 0
2

]2Bz
;

]y2 .

The resistivity tensor can be written in the form of a sum
symmetric and antisymmetric parts:r i j [r i j

(s)1r i j
(a) . The

componentsr i j
(s) are of the same order of magnitude and te

toward constant values forB0→`. We shall assume that th
tensorr i j

(s) is reduced to its principal axes. Generally spea
ing, this is valid only in the case when the magnetic field
directed along an axis of symmetry of the crystal. Howev
taking the off-diagonal components of the resistivity ten
into account does not lead to a qualitative change in the w
spectrum but only gives rise to additional terms in the wa
damping decrement which do not alter its order of mag
tude.

In the leading approximation in powers of the small p
rameter (Vt)21 the diagonal components of the resistivi
tensor have the valuesrxx5b1r0(12 ivt), ryy5b2r0(1
2 ivt), andrzz5b3r0 . Herer05s0

21, s0>vp
2t/4p is the

static electrical conductivity of the metal in the absence
magnetic field,vp is the frequency of plasma oscillations
the charge carriers, andb1 , b2 , and b3 are dimensionless
coefficients of the order of unity which depend on the co
crete form of the dispersion relation of the charge carri
and for simplicity will be assumed equal to unity. In th
expression for the antisymmetric part of the resistivity ten
c
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r i j
(a) it is sufficient to keep only the leading, Hall componen

rxy52ryx5B0 /ce(ne2nh), wherene andnh are the elec-
tron and hole densities, ande is the absolute value of the
electron charge.

Under these conditions the system of equations~6! takes
the form

]Bx
;

]t
52

c2rxy

4p

]

]z S ]Hz
;

]y
2

]By
;

]z D
1

c2r0

4p S ]2

]y2 1~12 ivt!
]2

]z2DBx
; ,

]By
;

]t
52

c2rxy

4p

]2Bx
;

]z2 2
c2r0

4p
~12 ivt!

]

]z S ]Hz
;

]y
2

]By
;

]z D ,

]Bz
;

]t
5

c2rxy

4p

]2Bx
;

]z]y
1

c2r0

4p
~12 ivt!

]

]y S ]Hz
;

]y
2

]By
;

]z D .

~7!

EliminatingBx
; andBy

; from these equations and neglectin
terms proportional to (Vt)22, we obtain the following equa-
tion for b(y):

Fkz
22 ig~12 ivt!vS 4p

c2urxyu
D GFk2

]2b~y!

]y2

212pb
]2

]y2 ~b~y!B1
2~y!!14par 0

2 ]4b~y!

]y4 G
52 igvS 4p

c2urxyu
D ]2b~y!

]y2 1F S 4p

c2urxyu
D 2

v22kz
4

12ig~12 ivt!vkz
2S 4p

c2urxyu
D Gb~y!. ~8!

Here

g5~s0urxyu!21'Une2nh

ne1nh
U~Vt!21;~Vt!21!1.

This equation determines the amplitude and frequenc
the eigenmodes of the electromagnetic field in the prese
of a periodic domain structure.

The case when the expression in square brackets on
right-hand side of Eq.~8! equals zero corresponds to a wa
with frequency

v5
k2cB0

4peune2nhu ~12 ig!, ~9!

propagating along the direction of the external magne
field. In this case Eq.~8! goes over to a Lame´ equation, and
its solution is expressed in theta functions.7

In the limiting caseg!k2 the solution of this equation
has the form

b~y!5L cnS y

dA11m2
, m D dnS y

dA11m2
,m D , ~10!

where cn and dn are Jacobi elliptic functions. By virtue
inequality~5! the functionb(y) is substantially nonzero only
in the region of a domain wall, i.e., in the vicinity of th
points yn52nKdA11m2, wheren is an integer. In the re-
gion uy5ynu@d the time-dependent fieldB;(r ,t) is a heli-
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coid wave propagating along the direction ofB0 . If dissipa-
tive effects are neglected, the remaining components of
magnetic field have the values

S Bx
;

By
;D 52kdA~11m2!S 1

i D snS y

dA11m2
,m D e2 ivt1 ikz.

~11!

We consider the case of arbitrary propagation direct
of the wave. We introduce a new unknown functionu(y)
such thatb(y)5d2u(y)/dy2. The equation for this function
can be written as

u~4!~j !1F26m2sn2~j,m!1~11m2!S 11 i
g

k2

V

hz
2D G

3u9~j!5~11m2!2Wu~j!, ~12!

where

W5H V22hz
4

hz
2 F11 ig~12 iv0tV!

V

hz
2G

12ig~12 iv0tV!VJ ,

hz5
kzd

k
, V5

v

v0
, v05

cB0k2

4peune2nhud2 ;
c2Vk2

vp
2d2 .

When condition~5! holds and the variablej lies in the inter-
val

~2m21!K<j<~2m11!K

the elliptic sine can be replaced by the hyperbolic tange
sn(j,1)5tanhj. Assumingm51 in Eq. ~12!, we obtain

um
~4!~jm!1S 6

cosh2 jm
2412in Dum9 ~jm!54Wum~jm!.

~13!

Here jm[j22mK, where m is an integer,2K<jm<K,
andn5(g/k2)(V/hz

2).
In the region2K<jm<0 the solution of this equation

can be sought in the form of a series in powers of e2jm:

um
~2 !~jm ,l!5e2ljm(

n50

`

an~l!e2njm, ~14!

wherel is a parameter which is not a negative integer.
Substituting expression~14! into Eq. ~13! and collecting

the coefficients of equal powers of e2jm, we obtain an infinite
system of linear equations for the unknownsan(l):

F~0!a050,

2C~0!a01F~1!a150,

F~0!a012C~1!a11F~2!a250,

F~n22!an2212C~n21!an211F~n!an50, n>2,
~15!

where

F~n![~n1l!42S 12
in

2 D ~n1l!22
W

4
,

e

n

t:

C~n![~n1l!412S 12
in

4 D ~n1l!22
W

4
.

In the case 0<jm<K the solution of equation~13! can
be written in the form of a series in powers of e2jm:

um
~1 !~jm ,l!5e22ljm(

n50

`

an~l!e22njm ~16!

with the same coefficientsan(l) that satisfy the system o
equations~15!, wherea0 can be specified arbitrarily and th
remaining coefficients are found from the recursion relatio

a1522a0

C~0!

F~1!
, a2522a1

C~1!

F~2!
,...

an52
an22F~n22!12an21C~n21!

F~n!
. ~17!

A simple numerical analysis shows that forn→` the coef-
ficientsan have the following properties:

an→0,Uan11

an
U→120, sgn Re

an11

an
521,

sgn Im
an11

an
521.

The first equation of system~15! implies a discrete rela-
tion betweenl andV andhz :

F~0![l42S 12
in

2 Dl22
W

4
50. ~18!

The four roots of this equation,

l1,256A1

2 S 12
in

2
2AS 12

in

2 D 2

1WD 1/2

,

~19!

l3,456A1

2S 12
in

2
1AS 12

in

2 D 2

1WD 1/2

together with expressions~14! and ~16! determine the four
linearly independent solutions of equation~13!:

um~jm!55 (
i 51

4

Aium
~2 !~jm ,l i !, 2K<jm<0,

(
i 51

4

Cium
~1 !~jm ,l i !, 0<jm<K,

~20!

where

um
~2 !~jm ,l i !5e2l ijmS 11 (

n51

`

an~l i !e
2njmD ,

~21!

um
~1 !~jm ,l i !5e22l ijmS 11 (

n51

`

an~l i !e
22njmD ,

a0(l i)51, and Ai and Ci are constants. Series~21! con-
verges absolutely in the entire domain of definition excep
the pointjm50, where it converges conditionally. It follow
from formulas~21! that um

(1)(0,l i)5um
(2)(0,l i).
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The functions~20! form a fundamental system of solu
tions of the differential equation~13!. In the interval (2m
11)K<j<(2m13)K ~or 2K<jm11<K) the solution of
equation~13! should be sought in the form

um11~jm11 ,l i !5Cum~jm22K,l i !, ~22!

whereC is a constant.
If dissipative effects are neglected completely, i.e.,

g→0, the real valuesW.0 correspond to imaginaryl1 , l2

and reall3 , l4 . The wave processes correspond to the
lutions u(jm ,l1) and u(jm ,l2). Assumingl1,256 ihy/2,
wherehy is real, we find from Eq.~21! in the limit g→0 that
the frequency of the eigenmodes of the electromagnetic fi
has the value

v5v0hzAhz
21hy

21
hy

4

4
. ~23!

Let us construct a solution of equation~12! in the interval
0<jm<2K in the form a traveling wave. In a neighborhoo
of the pointjm5K the sum in expressions~21! has order of
magnitudeO(e22K). Splicing the asymptotic expression
um

(1)(jm ,2 ihy) andum11
(2) (jm11 ,ihy) for jm→K and using

relation ~22!, we obtain

u~jm!5um
~1 !~jm ,2 ihy!5C2eihyjm5um11

~2 ! ~jm11 ,ihy!

5Cum
~2 !~jm22K,ihy!5CA1eihy~jm22K !. ~24!

Equating the coefficients of eihyjm, we find C2

5CA1e22ihyK. Summing the two asymptotic expressio
um

(1)(jm) and um11
(2) (jm11) and then subtracting off thei

common part~24!, we obtain a solution of equation~12!
which is valid on the interval 0<jm<2K:

u~jm!5C2eihyjmS 11 (
n51

`

an~2 ihy!e22njm

1 (
n51

`

an~ ihy!e2n~jm22K !D . ~25!

It follows from relation~22! that the multiplicative factorC
has the value

C5
u~2K !

u~0!
5expF2i argS11(

n51

`

an~ ihy!D12ihyKG[e2iKs.

~26!

The solution of equation~12! can be written in the form
r

-

ld

u~j!5eisjF~j!, ~27!

whereF(j) is a periodic function with period 2K, and the
dimensionless wave numbers[&kyd has the value

s5hy1
arg~11(n51

` an~ ihy!!

K
. ~28!

The complex conjugate of function~25! is also a solution of
equation~12!.

Relation~23! implies the folowing dispersion relation o
the traveling wave:

v5
cB0

4peune2nhu FkzAkz
21

k2hy
2~ky!

d2 S 11
hy

2~ky!

4 D G ,

~29!

where hy is determined as a function ofky by expression
~28!.

In the case of weak spatial dispersionkzvF!t21, the
damping is due solely to the scattering of electrons, Imv
;gv. When the opposite inequality holds,t21!kzvF!V,
the eigenmode spectrum remains the same, while the exp
sion for the damping decrement acquires additional te
due to Čerenkov absorption of the electromagnetic field
electrons moving in-phase with the wave. In that case
quantization of the energy levels of the electrons has a s
stantial influence on the damping of the wave.8
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