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Low-frequency quantum oscillations of the impedance of layered conductors at high
magnetic field
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The propagation of electromagnetic waves in layered conductors is investigated by the method of
the quantum kinetic equation. The quantum oscillations of the impedance for elastic
scattering on impurities is calculated. An expression is obtained for the low-frequency oscillations
of the impedance over a wide range of frequencies of the electromagnetic wave. ©2002
American Institute of Physics.@DOI: 10.1063/1.1480243#
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By studying the propagation of waves in organic co
ductors placed in a high magnetic fieldB, one can investigate
in detail the energy spectrum and relaxation properties of
charge carriers.1 In conductors having a layered structure t
electron energy spectrum has a quasi-two-dimensional c
acter, and the electron energy«(p) depends weakly on the
momentum projectionpz5p•n on the normaln to the layers.
Layered conductors at low temperatures exhibit the clea
manifestations of the de Haas–van Alphen~dHvA! and
Shubnikov–de Haas~SdH! quantum oscillation effects.2–11

The study of the SdH oscillations of the dc resistivity
layered conductors is the subject of a great number of th
retical and experimental papers~see, e.g., the reviews12 and
the references cited therein!. The experimental study of th
propagation of electromagnetic waves in organic conduc
has received much less attention,13–17 even though the ki-
netic phenomena in alternating fields carry rich informat
about the electron systems in conducting media. Among
papers mentioned is a study of tetrathiafulvalene-based c
pounds of the form (BEDT–TTF)2X ~X stands for a set of
various anions! in which the wave vectork and the static
magnetic field were directed along the normal to the laye
Below we shall examine the propagation of electromagn
waves in quasi-two-dimensional layered conductors in a
ometry used in some of the studies cited, i.e., in which
Poynting vector and the magnetic field are parallel ton. In
this case the alternating electromagnetic field is orthogo
to the vector of the quantizing magnetic field, and it is e
tremely important to take into account the quantum osci
tions of the kernel of the scattering operator for the cha
carriers. Here the amplitude of the SdH oscillations of
surface impedance is of a substantially different order
magnitude than in the approximation in which a magne
field-independent relaxation timet is used in the quantum
kinetic equation for the collision integral.18 In contrast to the
dHvA oscillations, the period of which is determined by t
extremal-area (Sextr) cross sections of the Fermi surface, t
SdH oscillations contain combination frequencies of the ty

n5
~nSmax1n8Smin!c
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wheren andn8 are any integers,c is the speed of light,e is
the charge of the electron, and\ is Planck’s constant.

The distribution of the electric field of frequencyv in
the conductor is easily found from Maxwell’s equations

S ]2

]z2 1
v2

c2 DEa1
4p iv

c2 j a52Ea8 ~0!,

supplemented by the constitutive relation connecting the c
rent densityj (z,t) with the electric field. To determine th
current density

j5eTr~ v̂ f̂ !5
2e2B

c~2p\!2 (
n,n850

` E dpzvn8nf̂ nn8 ~1!

it is necessary to find the density matrixf nn8 with the use of
the quantum kinetic equation;19 herevn8n is a matrix element
of the velocity operator. Solely for the sake of brevity in th
calculation we will use a rather simple dispersion relation
the charge carriers, in the form

«n~pz!5S n1
1

2D\V2A cosS apz

\ D , n50,1,2,3..., ~2!

where a is the distance between layers,V5eB/mc is the
cyclotron frequency,m is the effective mass of the conduc
tion electrons,A5h« f , and the quasi-two-dimensionalit
parameterh will be assumed not too small,

\V

« f
!h!1,

so that there are sufficient Landau levels on the Fermi s
face«(p)5« f that one may use a quasiclassical approxim
tion for calculating the impedance. We limit consideration
the case of the normal skin effect, when the relation betw
the current densityj i5eTr( v̂ i f̂ ) and the electric fieldE can
be treated, to sufficient accuracy, as local:

j i~r ,t !5s i j Ej~r ,t !.

The approximation of a local relation is completely a
missible when the drift of the conduction electrons along
wave vectork over the mean free timet of the charge car-
riers is much less than the skin depthd, i.e.,

hyt!d. ~3!
© 2002 American Institute of Physics
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Thanks to the symmetry of the spectrum it is sufficient
consider only the components of the conductivity tensor
the plane of the layers. For circular polarization of the wa
E65Ex6 iEy , the conductivity tensor becomes diagonal.

In order for the quantum oscillations to be substant
the mean free time of the charge carriers must be m
greater than the period of gyration of the electron along
orbit (Vt@1). We shall take into account only the elas
scattering on impurities, assuming that the range of the s
tering potential is much less than the de Broglie wavelen
of the electrons. This allows us to calculate the conductiv
tensor without having to assume that the interaction poten
of the electron with the impurity is small. The calculation
done by the method of the quantum kinetic equation, follo
ing Refs. 18–20.

The electron gas is described by a density matrix wh
satisfies the quantum kinetic equation. We write the latte
the form proposed in Ref. 19:

2 iv f̂ 11
i

\
@«̂; f̂ 1#1

i

\
nimpTra@V̂;F̂0~ f̂ 1!#

5
i

\ FeE• v̂

iv
; f̂ ~0!G2

i

\
nimpTra@V̂;F̂1#; ~4!

]F̂0~ f̂ !

]t
1

i

\
@«̂1V̂;F̂0~ f̂ !#52

i

\
@V̂; f̂ #;

]F̂1

]t
1

i

\
@«̂1V̂;F̂1#5

i

\ FeE• v̂

iv
;F̂0~ f̂ ~0!!G ,

where f̂ (0) is the Fermi–Dirac distribution function,f̂ 1 is the
correction linear in the field to the density matrix,V̂ is the
impurity operator,F̂5F̂01F̂1 is the binary correlation op
erator of the electron and one impurity,nimp is the impurity
concentration, the trace Tra is taken over the states of th
impurity, anda is the set of quantum numbers characteriz
the state of the impurity; from now on, the subscripta will
be dropped from all notations except Tra . The system of
equations~4! is a chain of Bogolyubov equations broken o
at the two-impurity correlation operator. The impurity is a
sumed to be uniformly distributed and infinitely heavy. W
use the gauge

A5~0,Bx,0!1
cE

iv
, w50.

The energy of the electron in the field of the wave h
the form Ĥ152(eE• v̂)/( iv) and contains the velocity op
erator, which we write in theun,Py ,Pz& representation,
which is the natural one for the given gauge.Py determines
the coordinate of the center of the electron orbitx0

5(cPy)/(eB), andPz is the same as the kinematic mome
tum componentpz . Unlike the coordinate operator, whic
enters the Hamiltonian through the use of the gaugeA
5(0,Bx,0), w52E•r , the matrix elements of the velocit
operator do not depend onPy :
n
,

l,
h
s

t-
h
y
al

-

h
n

-

s

yx6 i yy5y65y0
62

eE6

ivm
, ~5!

where

y0nn8
1

52
i\

m S 2eB\

c
n8D 1/2

dn11,n8 ,

y0nn8
2

5
i\

m S 2eB\

c
nD 1/2

dn21,n8 .

Thus, taking the electric field into account through the use
a vector potential allows one to avoid an additional summ
tion in the expressions for the density matrix and subst
tially simplifies the calculations.

Equations~4! can be written in the form

2 ivX̂1
i

\
@«̂1V̂;X̂#5Ŷ, ~6!

whereX̂ is the operator which we are seeking, andŶ is the
right-hand side of the equation. It was shown in Ref. 19 t
Eq. ~6! has a solution of the form

X̂5
\

2p E dzĜ1S z1
v

2
1V̂D ŶĜ2S z2

v

2
1V̂D . ~7!

The Green’s functionĜ6 satisfies the relation

Ĝ6~z2V̂!5Ĝ6~z!1Ĝ6~z!T̂6~z!Ĝ6~z!, ~8!

whereTnm5^wnuV̂ucm& is theT matrix, wn is the eigenfunc-
tion of the Hamiltonian without the impurity, andcn is the
wave function of the electron in the presence of the impur

We now calculate the Green’s function for a layered co
ductor. Following Ref. 20, one can show that for a sho
range impurity at

x,y!
r L

nf
, z!a, ~9!

wherenf5« f /(\V) andr L is the Larmor radius, the Green’
function can be written in the form

G6~r ,r 8,E!5(
n

fn~r !fn* ~r 8!

E2«n6 id

5F~r ,r 8!@Gcl~r 2r 8,E!1Gq
6#, ~10!

where

F~r ,r 8!5expF i\c

2eB
~x1x8!~y2y8!G ;

Gcl is the real part of the Green’s function in the absence
magnetic field, and the dependence ofGq on (r 2r 8) can be
neglected. In the case of a quasi-two-dimensional spectr
Gcl is rather complicated for explicit calculation. Unlike th
case of the quadratic spectrum,Gcl depends onE and also
depends on (r 2r 8) in a complicated way. However, the ex
plicit form will not be needed in the calculations that follow
For calculatingGq we use the Poisson summation formu
as a result of which the expression forGq takes the form
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Gq
6~«!57

im

2\2a

3F112(
k51

`

~21!kexpS 6
2p ik«

\V D J0S 2pkA

\V D G ,

~11!

whereJ0 is the Bessel function. The series appearing in
~11! is conditionally convergent, but it can be shown th
when the Dingle broadening of the Landau levels is tak
into account, a small factorCD

k 5exp(2k/Vt) will appear in
the oscillatory part of the Green’s function, and then t
series becomes absolutely convergent.

As was shown in Ref. 20, the electron wave function
the field of the impurity satisfies Dyson’s equation

cn~r !5wn~r !1E G~r ,r 8,E!V~r 8!cn~r 8!d3r 8.

When the Green’s function in the form~11! is substituted
in, the wave functioncn(r ) in the region specified by in
equalities~9! can be represented in the form

cn~r !5
wn~Rimp!

12~2p\2/m! f impGq
6~E!

c0~r !, ~12!

wherec0(r ) satisfies the equation

c0~r !511E Gcl~r ,r 8,E!V~r 8!c0~r 8!d3r 8,

Rimp is the coordinate of the impurity; the total scatteri
amplitudef imp is given by the expression

f imp5
m

2p\2 E V~r !c~r !d3r ; ~13!

Gcl(r ,E) is a smooth function ofE and varies substantially
over energy intervalsDE;« f . However, for calculating the
galvanomagnetic coefficients, only the energy region n
the Fermi level is important, where

DE5E2« f;max~\V,\v!!« f .

Thus the dependence onE of Gcl(r ,E) and c0(r ) can be
neglected, takingE.« f . The expression for theT matrix in
the case of a quasi-two-dimensional spectrum can be wr
in the form

Tmn
6 ~E!5t6~E!wm* ~R0!wn~R0!,

t6~E!5
~2p\2/m! f imp

12~2p\2/m! f impGq
6~E!

, ~14!

which agrees with formula~7! of Ref. 20 for the case of a
quadratic dispersion relation. Essentially, the energy dep
dence enters only in the kernel of theT matrix.

In calculating the oscillatory part of the conductivity te
sor, only the off-diagonal elements of the velocity opera
are important. The contribution from the diagonal part ofv̂
in the formula for the current,

jdiag5eTr~ v̂diagf̂ !52
e2E

ivm
Tr~ f̂ !52

e2E

ivm
ne

is expressed in terms of the electron densityne and cannot
oscillate as the magnetic field varies. In the expression
the density matrix the diagonal part ofv̂6 can also be ne-
glected. In fact,v̂ enter the expression forf̂ only in the form
.
t
n

e

ar

n

n-

r

r

of the combinationeE• v̂/ iv, but because the diagonal com
ponents of the velocity are linear in the fieldE, the corre-
sponding correction tof̂ will be quadratic in the field. Since
we are neglecting the diagonal components ofv̂ in the equa-
tion for the current, we will be interested only in the of
diagonal part of the density matrixf̂ . As was shown in Ref.
19, for the off-diagonal components of the density matrix t
collision integralin impTra@Va ;F0( f 1)#nm /\ appearing in the
system of equations~4! reduces to multiplication off 1 by the
quantity

1

tnm
5

i

\
nimp@ t1~«m1\v!2t2~«n2\v!#. ~15!

The right-hand side of the equation forF̂0 in system~4!
contains the commutator with the impurity operator. The
fore, in the explicit expression forF̂0 , the operatorV̂ will
appear together with theT matrix, but it can be canceled ou
by reduction with Dyson’s equation:

T̂65V̂1V̂Ĝ6T̂65V̂1T̂6Ĝ6V̂, ~16!

where now the expression forF̂0 can be written as

F̂05
i

2p E dz@2Ĝ1~z!T̂1~z! f̂ ~0!Ĝ2~z!

1Ĝ1~z! f̂ ~0!T̂2~z!Ĝ2~z!

2Ĝ1~z!T̂1~z! f̂ ~0!Ĝ2~z!T̂2~z!Ĝ2~z!

1Ĝ1~z!T̂1~z!Ĝ1~z! f̂ ~0!T̂2~z!Ĝ2~z!#. ~17!

We note thatF̂0( f̂ (0)) has the meaning of an impurity cor
rection to the Fermi–Dirac function:

f̂ ~0!~ «̂1V̂!5 f̂ ~0!~ «̂ !1F̂0~ f̂ ~0!!.

The calculation off̂ 1 can be reduced to the evaluation
F̂1 . For this we writeF̂1 and f̂ 1 in the form of a sum:

F̂15F̂a1F̂b , f̂ 15 f̂ a1 f̂ b ,

for which the system of equations~4! will take the form

2 ivF̂a1
i

\
@«̂;F̂a#5

i

\ FeE• v̂

iv
;F̂0G ,

2 ivF̂b1
i

\
@«̂;F̂b#52

i

\
@V̂;F̂1#,

2 iv f̂ a1
i

\
@«̂; f̂ a#1 t̂21 f̂ a5

i

\ FeE• v̂

iv
; f̂ ~0!G ,

2 iv f̂ b1
i

\
@«̂; f̂ b#1 t̂21 f̂ b52

i

\
nimpTra@V̂;F̂1#. ~18!

It is not hard to see that

f nm
b 5

2 iv1 i ~«n2«m!/\

2 iv1 i ~«n2«m!/\11/tnm
nimpTraFnm

b . ~19!

It can be shown thatF̂a corresponds to a shift of the energ
level due to the presence of the impurity and can be
glected. Indeed, the corresponding contribution to the c
ductivity
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sFa
;Tr@ ŷ;F̂0#ŷ;E dP̄z(

n
~ F̄n11,n11

0 2Fn,n
0 !n

;E dP̄z(
n

F̄n,n
0 ;Tr~ f̂ ~0!~ «̂1V̂!2 f̂ ~0!~ «̂ !!

is proportional to the difference of the electron densities
the presence and absence of the impurity, i.e., it does
depend on the magnetic fieldB. Thus we obtain

f nm
1 5

i

\ FeE• v̂

2 iv
; f ~0!G

nm

2 iv1
i

\
~«n2«m!1

1

tnm

1

2 iv1
i

\
~«n2«m!

2 iv1
i

\
~«n2«m!1

1

tnm

nimpTraFnm
b . ~20!

Since only some of the terms appearing inF̂b are important,
we write it in the following form:

F̂b5
i

2p E dz1H Ĝ1S z11
v

2 D FeE• v̂

iv
;F̂0~ f̂ ~0!!G

3Ĝ2S z12
v

2 D1Ĝ1S z11
v

2 D T̂1S z11
v

2 D
3Ĝ1S z11

v

2 D FeE• v̂

iv
;F̂0~ f̂ ~0!!GĜ2S z12

v

2 D
1Ĝ1S z11

v

2 D FeE• v̂

iv
;F̂0~ f̂ ~0!!G

3Ĝ2S z12
v

2 D T̂2S z12
v

2 D Ĝ2S z12
v

2 D
1Ĝ1S z11

v

2 D T̂1S z11
v

2 D Ĝ1S z11
v

2 D
3FeE• v̂

iv
;F̂0~ f̂ ~0!!GĜ2S z12

v

2 D
3T̂2S z12

v

2 D Ĝ2S z12
v

2 D J . ~21!
n
ot

The first term in~21! corresponds to a shift of the energ
level due to the presence of the impurity, and it can be
glected. The next term contains an expression of the fo
T̂v̂T̂, which vanishes upon summation overPy in ~20! as a
consequence of the orthogonality of the Hermite polynom
als. For the same reason, only the part with the commut

@eE• v̂/ iv ;F̂0# is important in the rest of the terms.
The expression forf̂ 1 simplified in this way must be

substituted into the equation for the current~1!. We note that
the T matrix is nondiagonal inPy andPz , and each appear
ance of it in formula~21! leads to the necessity of summin
over these quantum numbers. Thus, to simplify the calcu
tions that follow it would be desirable to reduce express
~21! to a form in which theT matrix enters each term onl
once. This can be done by employing the following arg
ments.

1. As we know, the scattering tensor obeys the opti
theorem, which in our case is conveniently written in t
form

T̂1~a!~Ĝ1~a!2Ĝ2~b!!T̂2~b!5T̂1~a!2T̂2~b!;

22p i T̂1~a!d~ «̂2a!T̂2~a!5T̂1~a!2T̂2~a!, ~22!

which can easily be obtained from the Born expansion of
T matrix or by substituting the Green’s function andT matrix
in explicit form.

2. It follows from the explicit form of theT matrix that
it obeys the relation

T̂6~a!5
t6~a!

t1~b!
T̂1~b!, ~23!

which together with the optical theorem gives an efficie
way of simplifying the tensor expressions.

After all the transformations have been done, the expr
sion for the density matrix becomes extremely awkward, a
we will not write it out. After some calculations, the condu
tivity tensor can be written in the forms65sa

61sb
6 ,

where
sa
656

ie2

2p2\2v(
n
E dPz

n@ f ~0!~«n6\V!2 f ~0!~«n!#

v7V2
nimp

\
@ t1~«n1\v!2t2~«n2\v!#

, ~24!

sb
656

ie2nimp

2p2\2v~v7V!(n
E dPz

n

v7V2
nimp

\
@ t1~«n1\v!2t2~«n2\v!#

F2
i

2p
~v6V!

3E dz
t1~z!2t2~z!

«n1v7V2z1 id

f ~0!~z!2 f ~0!~«n!

z2«n2 id
1

i

2p
~v6V!E dz

t1~z!2t2~z!

«n2v6V2z2 id

f ~0!~z!2 f ~0!~«n!

z2«n1 id G , ~25!
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wherene is the electron density, andsa
6 andsb

6 correspond
to f̂ a and f̂ b in the density matrix. For brevity in the writing
of these formulas we have omitted certain terms which
important for the classical part ofs6 but do not contribute to
the oscillatory part of the conductivity. The given express
can be used to calculate the conductivity for any values ov,
although elementary estimates of the penetration depth o
electromagnetic wave into the conductor show that for
layered conductors under study, the resonance regionv
2V;1/t) corresponds to the case of the anomalous s
effect and cannot be treated in the local-coupling approxim
tion. In the absence of resonance and forvÞ0 the main
contribution to the quantum oscillations of the conductiv
tensor is given by the correction linear in 1/t. The second-
order correction in 1/t becomes important only for the stat
casev!V, and therefore in the expressions quadratic in
inverse relaxation time one can setV2v.V. We note that
for taking the trace Tr in expressions~24! and~25!, the den-
sity of statesn~«! appearing in the trace in the formula for th
current~1! is expressed in terms of the Green’s function~11!
as

eB

c~2p\!2 (
n
E dPz ...5

1

~2p\!3 E n~«!d«...

5E d«

2p i
@Gq

22Gq
1#... ~26!

To simplify the remaining calculations somewhat, let us
sume that the oscillations of the scattering tensor are sm
i.e.,

f imp

a S \
V

A D 1/2

CD! l , ~27!

and we will keep only the leading terms in the expansion
powers of\V/« f and 1/Vt, assuming that 1/Vt@\V/« f .
After ~11!, ~14!, and~26! have been substituted into~24! and
~25!, the expression for the conductivity will contain pro
ucts of series:

(
k

`

~21!k expS 2p ik«

\V D J0S 2pkA

\V D
3(

l

`

~21! l expF2p i l

\V
~«1D!GJ0S 2p lA

\V D
5(

k,l

`

~21!k1 l expS 2p i l D

\V DexpF2p i«

\V
~k1 l !G

3J0S 2pkA

\V D J0S 2p lA

\V D , D50,6\v, ~28!

the required absolute convergence of which, as we have
is ensured by the Dingle broadening of the Landau lev
The terms of the series withk,lÞ0 in Eq. ~28! contain the
Bessel function, which gives an additional small factor
A\V/A. Thus the main contribution to the high-frequen
oscillations of the conductivity will come from the part o
the sum~28! with kÞ l 50 andlÞk50. In addition, we drop
the products withk1 l 50, the phase of which does not d
pend on« ~they cause oscillations at the difference freque
cies!. As will be seen from the calculations below, this w
e

n

he
e

in
-

e

-
ll,

n

id,
s.

f

-

cause the phase of the oscillations of the corresponding
of the conductivity tensor to be independent of« f , with the
result that its amplitude will not be suppressed by the us
temperature smearing but it will be hit twice by the Ding
factor CD . Thus, in the absence of resonance (v2V@1/t)
the quantum correction to the conductivity tensor due to
presence of an impurity has the form

sq
65

2e2ne

mt

1

~v7V!2

3H S 16
3i

Vt D (
k51

`

expS 2p ikv

V D J0
2S 2pkA

\V DCD
2

1S 16
3

2

i

Vt D (
k51

`
~21!kiV

pkv
cosS 2pk« f

\V D
3S expS 2p ik

v

V D21D J0S 2pkA

\V DCDCtJ , ~29!

whereCt5@2p2kBT/(\V)#/@sinh(2p2kBT/(\V))# is a factor
causing temperature smearing,

1

t
5

4\p2Cimpnimpf imp
2

ma

is the relaxation time due to the impurity19 and is numeri-
cally equal to the nonoscillatory part of expression~15!; f imp

is the total scattering amplitude~13!, Cimp51 if f imp!a and
Cimp5(a/ f imp)

2 if f imp@a.
As was noted in Ref. 20, the quantum oscillations of t

impedance and the quantities characterizing the propaga
of an electromagnetic wave in a conductor are determi
mainly by the quantum nature of the collision integral as
ciated with scattering on impurities. In the collisionless lim
the impedance oscillations are due to oscillations of the m
netization. In Ref. 20 only the oscillations at the fundamen
harmonics were considered. Low-frequency oscillations
the combination frequencies do not appear in the magne
tion oscillations. Thus, to a sufficient degree of accuracy o
can assume that the total conductivity tensor has the f
s65scl

61sq
6 , where scl

65nee
2/@m(2 iv6 iV11/t)# is

the classical, nonoscillatory part of the conductivity tenso
Since we are considering only the case of the norm

skin effect, the expressions given for the conductivity co
pletely describe the process of electromagnetic wave pro
gation. In the approximation of local coupling of the curre
density with the electric field, the latter is damped expon
tially in the sample:

E6~z,t !5E0
6 exp~ ikz

6z2 ivt !,

where

kz
65S 4p ivs6

c2 D 1/2

.

The impedance and the penetration depth of the field into
conductor are related tokz

6 by the relations

Z65
4p

c2

v

kz
6 , d65~ Im kz

6!21.
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When the smallness of the amplitude of the quantum os
lations is taken into account, the expression for the imp
ance can be rewritten as

Z65Z6
cl H 12

i

~v7V!t F S 16
3i

Vt D
3 (

k51

`

expS 2p ik
v

V D J0
2S 2pkA

\V DCD
2

1S 16
3

2

i

Vt D (
k51

`
~21!kiV

pkv
cosS 2pk« f

\V D
3FexpS 2p ikv

V D21GJ0S 2pkA

\V DCDCtG J , ~30!

whereZ6
cl is the part of the impedance which is nonoscill

tory in the inverse magnetic field.
The unusual temperature dependence of the lo

frequency oscillations has a simple physical explanation.
low-frequency oscillations of the impedance are formed
the interference of the oscillations from two extremal cro
sections, giving rise to a factor

cosS S12S2

eB\/c D1cosS 4pA

\V D ,

whereS1,252pm(« f6A), which results in a dependence
the low-frequency contribution on the magnetic field. If t
overlap integral of the wave functions of electrons belong
to neighboring layers is nearly independent of energy, i
A(«).const, then taking the temperature smearing of
Fermi function into account will not lead to a decrease in
amplitude of the oscillations. Even ifA(«) does depend on
the energy of the charge carriers, thendA(«)/d«.h, and
with increasing temperature the oscillation amplitude, wh
is proportional to exp@2(2p2kBT)(udA/d«u)/(\V)#, falls off
much more slowly than do the amplitudes of the remain
harmonics. This gives reason to hope that low-freque
quantum oscillations of the impedance might be observe
synthetic complexes based on tetrathiafulvalene even at
uid hydrogen temperature, where their fundamental harm
ics are utterly small. In spite of the fact that the low
frequency oscillations of the impedance at the combinat
frequencies appear in higher orders in the magnetic sm
parameter\V/(h« f), these oscillations have been succe
fully observed at liquid helium temperatures for the case
the static magnetoresistance,22 and Prof. V. G. Peschansk
has informed us that these observations agree with the t
retical calculation.23
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