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ABSTRACT

A theoretical investigation of the combined resonance of interlayer conductivity and spin magnetization, in conductors with quasi-two-
dimensional electronic energy spectra. Analytical expressions are obtained for the surface impedance, magnetic susceptibility, and the reso-
nance interlayer conductivity component caused by Rashba–Dresselhaus spin-orbit interaction, with allowance for spatial dispersion.
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1. INTRODUCTION

High-frequency resonances are observed in almost all con-
ducting systems that are placed in a strong external magnetic field,
if the mean free path of the charge carriers is significant enough
for their dynamic properties to manifest. If the spin-orbit interac-
tion and the spatial inhomogeneity of the high-frequency electro-
magnetic field are neglected, then the electrons’ orbital and spin
dynamics are independent, and the resonance absorption in non-
magnetic conductors is caused either by transitions between
Landau levels, or by the spin-flip. Spin-orbit interaction forms a
connection between orbital and spin motion, and enables the res-
onance that is caused by transitions that occur simultaneously
with changes in both the Landau level number, and the spin
projection — the combined resonance.1,2

In common metals, spin-orbit coupling is usually insignifi-
cant. For example, experimental studies concerning the spin-Hall
effect in single aluminum crystals3,4 at helium temperatures yield a
potential difference due to spin-orbit interaction that is about
equal to 10−10–10−9 V. In semiconductors, and two-dimensional
electronic systems based on semiconductors, the kinetic and ther-
modynamic characteristics are very sensitive to features of the
charge carrier energy spectrum, and even a small change in the
energy bands due to the spin-orbit interaction can lead to notice-
able effects.5–11 For these reasons, combined resonance occurs pri-
marily in semiconductors, semimetals,1,2 and two-dimensional
conducting systems.5,12 Another type of material in which com-
bined resonance is possible is a layered conducting structure with
a quasi-two-dimensional (Q2D) electronic energy spectrum.

Layered conductors of organic origin are an example of highly aniso-
tropic conductors, in which different types of high-frequency reso-
nances have been experimentally observed.13–23 The main structural
elements of these substances are the organic molecules or molecular
complexes that have donor or acceptor properties. The most well-
known examples of such molecules include TTF, BEDT-TTF,
BEDO-TTF, etc. In Q2D conductors, the ion-radicals of these mole-
cules are packed into layers that are separated by layers of counterion
molecules. These organic molecules are in close proximity to each
other, which leads to a significant overlap of the charge carrier wave
functions, and as a result, the carriers can move freely from molecule
to molecule, forming a conducting plane. In a direction perpendicu-
lar to the layers, the organic molecules are separated from each
other, and the probability of charge carrier transfer from one con-
ducting plane to another is small. In a number of compounds, the
electrical conductivity along the layers at helium temperatures can
exceed 106 Ω−1 × cm−1, and decreases with increasing temperature.
In the transverse direction it will be 3–5 orders of magnitude lower.

Organic conductors have complex molecular and crystal struc-
tures, but their electronic band structures are simple. Their Fermi
surface (FS) is strongly anisotropic, and can consist of sheets that
are quasi-one-dimensional and Q2D. Studies on the angular oscil-
lations of magnetoresistance, and quantum magnetic oscillations
effects24 at liquid helium temperatures, have shown that the Q2D
elements of the FS of well-known organic compounds usually
appear as a weakly corrugated cylinder. The anisotropy of the elec-
tronic energy spectrum of a Q2D conductor can be characterized
by the small parameter η, the square of which is equal to the ratio
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of the conductivities along the normal n to the layers and in the
plane of the layers, in the absence of a magnetic field. The FS cross
section area SF(pB) by the pB = pB/B = const plane has a weak
dependence on the electron momentum projection pB in the direc-
tion of the magnetic field B, and manifests only in the first-order
of the anisotropy parameter η. The resonance phenomena occur-
ring during the absorption of electromagnetic radiation in Q2D
conductors should demonstrate more clearly than in ordinary
metals with comparable mean free charge carrier paths, since
almost all electrons on the FS surface are involved in their manifes-
tation, and not just the select group at the extreme FS cross section.

The difference between the physical properties of layered
conductors, ordinary metals, and two-dimensional conducting
systems is primarily manifested by the transfer phenomena in the
direction normal to the layers, especially in the appearance of a
series of magnetoresistance maxima as the angle θ changes
between vectors B and n.24,25 A prior work,26 based on the
Rashba1,12–Dresselhaus27 spin-orbit interaction model, examines
the combined resonance of interlayer conductivity in Q2D conduc-
tors with an inclined magnetic field, while neglecting spatial disper-
sion. It is shown that in the range of θ values in which the angular
oscillations tan θ � 1 appear, the main contribution to the reso-
nance at combined frequencies comes from Dresselhaus interaction.
This article theoretically examines combined resonance of interlayer
conductivity and spin magnetization, and accounts for spatial dis-
persion. A numerical analysis is performed, which provides a quali-
tative idea as to the dependence that the kinetic coefficients have on
the angle between the magnetic field and the normal to the layers,
and their dispersion properties.

2. CURRENT DENSITY EQUATION

According to general current density equations for a system of
electrons in an alternating electromagnetic field,28 the current
density in the one-particle approximation, taking into account the
time and space dispersion, can be written as

ji(ω, k)¼ i
X
v,v0

f0(εv)� f0(εv0 )
εv�εv0

vĵ jk(0)v0
� �Ð

d3r e�ikr vĵ ji(r)v
� �

ωvv0 �ω� iτ�1
vv0

Ekðω;kÞ:

(1)

Here, E(r,t) =E(ω,k) exp (ikr– iωt) is the electric field, f0(εv) is the
equilibrium distribution function of conduction electrons with
energy εv, in an individual state with quantum numbers v,
ωvv0 ¼ (εv � εv0 )/�h, τ�1

vv0 ¼ (τ –1v þ τ –1v0 )/2, and τv and τv0 are the
phenomenological quasiparticle lifetimes in the v and v0 states, �h is
Planck’s constant, vj ĵi(r)jv0

� �
are the matrix elements of the

current density operator

ĵ(r) ¼ e
2
{v̂(p̂)δ(r� r0)þ δ(r� r0)v̂(p̂)}þ c rot μ̂0δ(r� r0), (2)

which is the sum of the orbital ĵ(l)(r) and spin ĵ(s)(r) components,
v̂ ¼ @ε̂(p)

@p̂ , p̂ = – iℏ∂/∂r–eA0(r)/c is the kinematic momentum

operator, A0(r) is the vector potential of the constant uniform mag-
netic field B, e is the electron charge, c is the speed of light,

μ̂0 ¼ gμB
2

� �
σ̂ is the electron magnetic moment operator, μB is Bohr’s

magneton, g is the effective g-factor, and σ are Pauli matrices. The
two-component spinors jvi are eigenfunctions of the single-particle
Hamiltonian ε̂(p̂). For the processes considered below, the width
ℏ/τv of the εv level should be significantly less than the distance
Δε = εv–εv1between adjacent energy levels.

The electron energy in the field of the crystal lattice of layered
conductors is weakly dependent on the momentum projection
pz = pn on the normal to the layers, and can be written as a rapidly
converging series in the tight binding approximation

ε̂(p̂) ¼ ε0(px , py)þ
X1
n¼1

εn( px , py , η) cos
npz
p0

: (3)

Here, the functions εn(px,py, η) decrease significantly as their number
increases, the largest being ε1(px,py, η) ≃ηεF , where εF is the Fermi
energy, p0= �h/a, a is the distance between layers. Formula (3) is
written in the xyz coordinate system, in which the z-axis is parallel to
the direction of the lowest conductivity, and the y axis can be directed
perpendicular to the magnetic field B= (B sin θ, 0, B cos θ). In addi-
tion, let us use another coordinate system ξyζ, in which the ζ axis is
parallel to B, and choose the calibration of the vector potential
A0(r) = (–By,0,0) (Fig. 1). The momentum components in both coor-
dinate systems are related by the rotation transformation with respect
to the angle θ between the normal to the layers and the magnetic field.

In accordance with Formula (3), the electron Hamiltonian is
determined by expression

ε̂(p̂) ¼ ε0( p̂x , p̂y)� μ̂0Bþ
X1
n¼1

εn( p̂x , p̂y , η) cos
n p̂z
p0

þ V̂so: (4)

Let us write the spin-orbit interaction operator as the sum

V̂so ; V̂R þ V̂D ¼ γRσ̂(p̂� n)þ γDσ̂(ex p̂x � ey p̂y) (5)

of the Rashba V̂R and Dresselhaus V̂D interaction operators. Here, n
is the direction of the crystal’s high symmetry axis, which is assumed
to coincide with the normal to the layers, γR and γD are the interac-
tion constants, ex,ey are the unit vectors along the axes x,y, :

FIG. 1. The Fermi surface and coordinate systems.
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σ̂ξ ¼ 0 1
1 0

� �
, σ̂y ¼ 0 �i

i 0

� �
, σ̂ζ ¼ 1 0

0 �1

� �
: (6)

For the considered conducting systems, the operators of the electron
motion energy along the normal to the layers, and spin-orbit interac-
tion, should be considered as perturbations. The full set of quantum
numbers v = n, pξ, pζ,σ consists of the Landau level number n, the
projections of the momentum pξ, pζ and spin sζ= σζ/2 ; σ/2. The
spin component |σi of the zeroth-approximation wave function is an
eigenfunction of the operator σ̂ζ.

Let us perform the canonical transformation of the operators
ε̂ and ĵ:

F̂
0 ¼ e�ŜF̂eŜ ¼ ε̂þ [F̂, Ŝ]þ 1

2!
[(�F, �S), Ŝ]þ . . . , F̂ ¼ ε̂, ĵ, (7)

which reduce the Hamiltonian (4) to a spin-diagonal form. In the
zeroth approximation, the transformed Hamiltonian coincides with
the unperturbed operator (4) ε̂(0), and the matrix elements of the Ŝ
operator in the first order of V̂so are equal to

vjŜjv0� � ¼ vjV̂N
so jv0

� �
ε(0)v � ε(0)v0

, (8)

where V̂N
so is the spin-off diagonal part of operator V̂so. This formula

assumes that the spin resonance frequency ωs = gμBB/ ℏ is not equal to
the cyclotron frequency ωB and its harmonics lωB, i.e., the lines of the
combined and cyclotron resonances should not coincide; otherwise, at
some values of n and n0 the denominator in Eq. (8) can vanish.

Using Eqs. (1) and (7), the current density can be written as a
series in powers of spin-orbit interaction constants, in which the
matrix elements hvj ĵ0i(r)jv0i are calculated based on the eigenfunc-
tions of the unperturbed Hamiltonian.

3. COMBINED RESONANCE OF INTERLAYER
CONDUCTIVITY

The spin-diagonal matrix elements of the operator ĵ(l)z of the
orbital current density component (2) do not contribute to the
current that is caused by transitions at the combined frequencies,
and therefore the combined resonance of the interlayer conductiv-
ity is determined by the product

hvj ĵ(1)0z (0)jv0ihv0j
ð
d
3

r e�ikr ĵ(1)
0

z (r)jvi

in Eq. (1), where ĵ(l)
0

z (r) ¼ [ ĵ(l)z (r), Ŝ].
In order to find matrix elements hvj ĵ(1)0z (r)jv0i, let us use the

model conduction electron dispersion law. We restrict ourselves to the
zeroth and first Fourier harmonics of the momentum projection onto
the normal to the layers in Eq. (3), neglect the anisotropy in the plane
of the layers, and set ε1(px,py, η) = –εη= –ηvFp0. As a result, we arrive at

ε(p) ¼ p2x þ p2y
2m

� εη cos
pz
p0

, (9)

here m is the effective mass, vF=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2εF/m

p
. When the inequality

η tan θ � 1 (10)

is satisfied, the Schrödinger equation for the unperturbed Hamiltonian
ε̂(0) is reduced to the harmonic oscillator equation having the fre-
quency ωB = |e|B cos θ/(mc).

Let us write the resonance width as τ�1
vv0 ; τ –1ls ¼ τ –1s þ τ –1l

where τs is the spin-flip time, and τ –1l is the resonance width at the
transition of an electron from the Landau level n0 ¼ nþ l to the
level n with conservation of the spin projection. Assuming that
E(r)∼ exp (iky), after simple calculations, we find a correction to
the interlayer conductivity, which describes the resonance at com-
bined frequencies

σ(so)zz (ω, k) ¼ iη2
ωBω2

p

π2
w(θ)

�
X
n

ðπ
�π

dβ
f0(εn,1)� f0(εn,�1)

ωs
jan,n(k)j2h0(ω)

	

þ
X1
l¼1

f0(εnþl,1)� f0(εn,�1)
ωBl þ ωs

h(þ)
l (ω)

�

þ f0(εnþl,�1)� f0(εn,1)
ωBl � ωs

h(�)
l (ω)

�
jan,nþl(k)j2



, (11)

where ωp =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πn0e2/m

p
is the plasma frequency, n0 is the electron

density, and β ¼ pB/(p0 cos θ). The subscript of the conserved
quantity pB is omitted from the electron energy εn,σ,pB ; εn,σ . The
frequency functions

h0(ω) ¼ ωþ iτ�1
s

(ωþ iτ�1
s )� ω2

s

,

h(+)
l (ω) ¼ ωþ iτ�1

ls

(ωþ iτ�1
ls )2 � (ωBl+ ωs)

2

(12)

at τ –1ls ! 0 have abrupt maxima at frequencies ω, equal to the com-

bined resonance frequencies ωr = |Ω(+)
l j, where Ω(+)

l ¼ lωB + ωs,
and the function of angle θ

w(θ) ¼ γ2R(ωB þ ωscos θ)
2 þ γ2D(ωs � ωBcos θ)

2

a2B(ω
2
B � ω2

s )
2 (13)

determines the contributions from Rashba and Dresselhaus interac-
tions to σ(so)

zz to aB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h/(mωB)

p
.

The coefficients

an,n0 (k) ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
n0 þ 1
2

r
n0 þ 1jeiaBkusin(β þ αu)jn� �

�
ffiffiffi
n
2

r
n0jeiaBkusin(β þ αu)jn� 1
� �
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with the help of the formula (see Ref. 29)

njeizujnþ 1
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n!
(nþ l)!

s
(i sgn z)l

z2

2

� � l
2

e�
z2
4 Lln

z2

2

� �

and recurrence relations for the generalized Laguerre polynomials
Lln(z), can be written as

an,nþl(k) ¼ il

2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n!
(nþ l)!

s

� eiβz
lþ1
2
1 e�

z1
2 Lln(z1)� e�iβsgnlþ1(q� α)z

lþ1
2
2 e�

z2
2 Lln(z2)

n o
:

(14)

Here, |ni are the normalized Hermite functions of the dimension-
less coordinate u, z1 = (q + α)2/2, z2 = (q–α)2/2, q = aBk, α = (aB/r0)
tan θ, r0=p0/mωB. At large values of n � 1, the asymptotic repre-
sentation of the Laguerre polynomials30 makes it possible to express
Eq. (14) using the Bessel functions Jl:

an,nþl(k) ¼ il

4
{eiβ(qþ α)Jl

ffiffiffiffiffi
2n

p
(qþ α)

h i
�e�iβsgnlþ1(q� α)jq� αjJl

ffiffiffiffiffi
2n

p jq� αj
� �o

: (15)

Equation (15) describes the oscillatory dependence of σ(so)
zz on the

angle θ.
In the expression describing the electron energy spectrum

εn,σ ¼ �hωB nþ 1
2

� �
þ �hωsσ

2
þ ε?, (16)

where

ε? ¼ �εη e
�α2

4 Ln
α2

2

� �
cos β

n�1
!�εηj0(

ffiffiffiffiffi
2n

p
α) cos β,

we neglect the second-order terms of V̂so, i.e., those proportional to
γ2R and γ2D, since they lead energy level corrections, but do not
affect the resonance intensity and the angular dependence of the
kinetic coefficients.

Each term in the sum over l in Eq. (11) determines the asymp-
totic behavior of the conductivity σ(so)

zz near the +lth resonance

ω≈|Ω(+)
l j. The first term with l = 0 in Eq. (11) corresponds to pure

spin transition, and the resonance width is determined by the
inverse spin-flip time τ�1

s .
According to Eq. (15), the conductivity (11) vanishes in a

magnetic field perpendicular to the layers, i.e., at θ=0, if the spatial
dispersion is neglected in the chosen models of the electron energy
in the field of the crystal lattice (4), and spin-orbit coupling (5).
The spatial dispersion of the kinetic coefficients in the presence of
a high-frequency electromagnetic field ωτl ≃ ωBτl�1 can be char-
acterized by the parameter κ=(ηωpvF/ωBc)

2. If the electric field is
polarized in the plane of the layers, then η=1. In the case of a
normal skin effect, the depth of the skin layer δ ≃ k�1 ≃ rB/

ffiffiffi
κ

p �

rB is much greater than the cyclotron radius rB ¼ vF/ωB, and in
order to implement the conditions of the extremely anomalous
skin effect, the inequality δ ≃ rB/κ1/3 � rB must be satisfied.
Although for the considered geometry of the problem, when the
electric current flows perpendicular to the layers, usually, because
of the smallness of the anisotropy parameter η, δ . rB, the spatial
dispersion effect can be significant in structures with high enough
conductivity, such as in the organic metal (BEDT-TTF)2IBr2 with a
charge carrier density of n0≈ 1021 cm−3.31

If the number of Landau levels below εF is large, then the con-
ductivity (11) undergoes de Haas–van Alphen oscillations. Using
the Poisson formula, we can write Eq. (11) as the sum

σ(so)
zz (ω, k) ¼ �σzz(ω, k)þ ~σzz(ω, k), (17)

of the smooth

�σzz(ω, k) ¼ iη2
ω2
p

4π
w(θ) h0(ω)U0 þ

X1
l¼1

[h(þ)
l (ω)þ h(�)

l (ω)]Ul

( )

(18)

and oscillatory with respect to B−1 components

�σzz(ω, k) ¼ iη2
ω2
pωB

2π
w(θ)

� h0(ω)
ωs

Q0 þ
X1
l¼1

h(þ)
l (ω)

Ω(þ)
l

� h(�)
l (ω)

Ω(�)
l

" #
Ql

( )
: (19)

Here

Ql ¼
X1
j¼1

(�1)j

j
{UlJ0(jΔ)þ VlJ2(jΔ)}Ψ(jλ) sin

πjωs

ωB
cos

2πjμ
ωB

, (20)

Ψ λð Þ ¼ λ=sh λ; λ¼ 2π2T= �hωBð Þ,
Δ ¼ 2πεηJ0ðα1Þ=ð�hωBÞ,

U1 ¼ 1
2

ðqþ αÞ2J2l ðq1 þ α1Þ þ ðq� αÞ2J2l ðq1 � α1Þ
� �

,

V1 ¼ sgnlþ1ðq� αÞjq2 � α2jJlðq1 þ α1ÞJlðjq1 � α1jÞ,
q1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ=ð�hωBÞ

p
q ¼ krB,

α1 ¼ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ=ð�hωBÞ

p
¼ ðmvF=p0Þtan θ,

T is the temperature, μ is the chemical potential. The amplitudes
of the oscillating harmonics in the sum Ql are modulated by the
quasiperiodic functions J0( jΔ), J2( jΔ), the argument of which
depends not only on B−1, but also on tan θ. If spatial dispersion
is neglected, the conductivity σ(so)

zz (ω, 0) is determined by
Eqs. (17)–(19), in which the coefficients Ul and Vl are equal

Ul ¼ α2J2l (α1), Vl ¼ (�1)lþ1α2J2l (α1):

Under the condition ε? ≃ ηεF � �hωB, Eq. (19) describes the
oscillations of interlayer conductivity with changes in the inverse
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magnetic field. If ηεF ≃ �hωB and T< �hωB/(2π2), it is necessary to
account for the oscillatory dependence of the chemical potential μ
on B−1, and near the resonance ω≈|Ω(+)

l j, and the relaxation time
τl as a function of B−1. In the region of sufficiently low tempera-
tures T< �hωB/(2π2), at ηεF � �hωB and at arbitrary values of θ, the
amplitude of the conductivity component that oscillates with the
inverse of the magnetic field ~σzz is

ffiffiffi
Δ

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηεF/(�hωB)

p
times

smaller than the smooth component �σ(so)
zz . However, the oscilla-

tory component for the values θ= θi, at which α1∼tan θi is a root
of the Bessel function J0(α1) = 0, increases to about �σ(so)

zz .
The resonance conductivity given by Eqs. (11) and (13) can

be represented as the sum σ(so)
zz ¼ σR þ σD of the Rashba and

Dresselhaus interactions. Having written the cyclotron frequency
as ωB= ω0 cos θ, where ω0;jejB/(mc) in Eq. (13), it is easy to see
that σR ≃ σD at θ≃1, but in the range of θ values in which the
angular oscillations tan θ�1 appear, the asymptotic behavior of
σ(so)
zz is determined by the Dresselhaus spin-orbit interaction

σR ≃ σD cos2θ � σD. The angular dependence of the smooth
and oscillating components of the interlayer conductivity at charac-
teristic parameter values, is shown in Figs. 2 and 3, respectively.

Let us assume that the conductor occupies the half space
y>0, and that the condition ηωp�ω is fulfilled, at which the dis-
placement current can be neglected in Maxwell’s equations. An
important characteristic of the conducting medium is the surface
impedance tensor

Zik ¼ �i
8ω
c2

ð1
0

dk[D�1(ω, k)]ik, i, k ¼ {x, z}, (21)

which binds the tangential components of the electric field on the
surface to the total current, where Dik={k

2δik � (4πiωc�2)
(σ ik � σ ikσ iy

σyy
)}. In layered conductors the inequalities |σxzσzxj ≃

jσyzσzyj � jσzzσxxj, jσzzσyyj are fulfilled,25 and therefore, the

conductivity tensor in the xz,yz planes can be considered diagonal.
Let us expand the integrand for the impedance component Zzz into
a series in powers of σ(so)

zz , and keep the first two terms:

Zzz ¼ Z(0)
zz þ ΔZ(so)

zz ¼ �i
8ω
c2

ð1
0

dk
k2 � 4πiωc�2σzz(ω, k)

þ 32πω2

c4

ð1
0

dk σ(so)
zz (ω, k)

[k2 � 4πiωc�2σzz(ω, k)]
2 : (22)

Here, the first term is the impedance at σ(so)
zz ¼ 0, and the

second is the correction due to spin-orbit interaction. The inter-
layer conductivity in the main approximation σzz(ω, k) can be
easily found with the help of Eq. (1):

σzz(ω, k) ¼ i
η2ω2

p

8π2
X
n,σ

ðπ
�π

dβ � @f0(εn,σ)
@n

	 jAn,n(q)j2
ωþ iτ�1

þ2
X1
l¼1

f0(εn,σ)� f0(εnþl,σ)

l[(ωþ iτ�1
l )2 � (ωBl)]

2 (ωþ iτ�1
l )jAn,nþl(q)j2

)
,

(23)

where

An,nþl(q) ¼ njeiqusin(β þ αu)jnþ l
� � il�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!

(nþ l)!

s

� eiβz
l
2
1e

�z1
2 Lln(z1)� e�iβsgnl(q� α)z

l
2
2e

�z2
2 Lln(z2)

n o
,

and the value τ determines the width �h/τ of the n-th energy level of
the electron. In the case of εF � �hωB the summation over n can

FIG. 2. The dependences of Re�σR /σ1 (curve 1) and Re�σD/σ2 (curve 2) on θ, where σ1,2 ¼ η2(ω2
p/4πω0)(γR,D /vF )

2, at parameters mvF/p0 = 2.5, ω = 1.8ω0, ωs = 1.4ω0,
ωτl = 20, ωτs = 200, k = 0 (a) and kvF/ω0 = 0.2 (b). The abrupt maximum at θ≈ 1.16 corresponds to resonance at the frequency ω = ωs + ωB, here and in other figures.

Low Temperature
Physics ARTICLE scitation.org/journal/ltp

Low Temp. Phys. 46, 000000 (2020); doi: 10.1063/10.0001914 46, 000000-1025

Published under license by AIP Publishing.

https://aip.scitation.org/journal/ltp


be replaced by integration, and Eq. (23) can be transformed into

σzz(ω, k) ¼ i
η2ω2

p

8π
J20(q1 þ α1)þ J20(q1 � α1)

ωþ iτ�1

	

þ2
X1
l¼1

J2l (q1 þ α1)þ J2l (q1 � α1)

(ωþ iτ�1
l )2 � (ωBl)

2
(ωþ iτ�1

l )

)
: (24)

By changing the integration variable k ¼ λ(κω/ω1/2
B) /rB, we write the

resonance correction to the impedance as follows:

ΔZ(so)
zz ¼ 8υF

c2

ffiffiffiffiffiffiffiffi
ω

κωB

r ð1
0

dλs(so)zz [ω, (κω/ωB)
1/2λ]

{λ2 � iszz[ω, (κω/ωB)
1/2λ]}

, (25)

where szz is the conductivity attributed to η2ω2
p/(4πωB), i.e.,

szz = 4πωBσzz/(η2ω2
p), s

(so)
zz ¼ 4πωBσ(so)

zz /(η2ω2
p). If κ� 1, then ΔZ(so)

zz

can be expanded into a series in powers of
ffiffiffi
κ

p
, and the first term

of the series is

ΔZ(so)
zz ¼ 2πvF

c2

ffiffiffiffiffiffiffiffi
ω

κωB

r
s(so)zz (ω, 0)

[�iszz(ω, 0)]
3/2 : (26)

In the vicinity of ω = ωr+Δω = |lωB+ωs|+Δω, the asymptotic behav-
ior of Eq. (26) looks like

ΔZ(so)
zz � πvF

c2

ffiffiffiffiffiffiffiffi
ωr

κωB

r
τ�1
ls þ iΔω

Δω2 þ τ�2
ls

α2
1J

2
l (α1)

� γ2R(ωB þ ωscosθ)
2 þ γ2D(ωs � ωBcosθ)

2

r2B(ω
2
B � ω2

s )
2[�iszz(ωr , 0)]

3/2
: (27)

In the region of 0 < κ≤ 1 the integral in Eq. (25) as a function
of κ does not undergo significant changes, therefore, with an

increase in κ from κ � 1 to κ ≃ 1, the correction to the impedance
due to spin-orbit interaction decreases according to 1/

ffiffiffi
κ

p
:

Equations (11), (13), and (26) can be used to experimentally
find the absolute values of the constants γR and γD.

26 Pure spin
transitions with l = 0 at the frequency ωs are of particular interest,
since τs > τl. Additionally, ωBτl decreases with increasing θ, as does
the intensity of the l-th resonance.

4. COMBINED RESONANCE OF SPIN MAGNETIZATION

Together with spin transitions, non-uniform high-frequency
magnetic field B∼(r,t) can also excite transitions at combined fre-
quencies, even without taking spin-orbit coupling into account.
The current density given by Eq. (1) is proportional to the eddy
electric field and, correspondingly, includes terms that are propor-
tional to the magnetic field. The orbital component of operator (2)
in Eq. (1) determines the conductivity, and the spin component
ĵ(s)=c rot μ̂0δ(r–r

0) determines the high-frequency magnetization
and paramagnetic susceptibility.32

Setting k = (0,k,0) from Maxwell’s equations

j(m) ¼ c rotM, rotE ¼ � 1
c
@B
@t

(28)

we obtain the following expression for the magnetization due to
the spin component of the current density operator (2).

Mi(ω, k) ¼ � �hωωB

4π
χ0

X
n,n0 ,σ,σ 0

ðπ
�π

dβ

� f0(εn,σ)� f0(εn0 ,σ 0 )
εn,σ � εn0 ,σ 0

n0jeiqujnh ij j2 σjσ̂kjσ0h i σ0jσ̂ ijσh i
(εn,σ � εn0 ,σ 0 )/�h� ω� iτ�1

jn�n0 j,s

� B�
k (ω, k): (29)

Here, j(m) is determined by Eq. (1), in which j = j(s),

FIG. 3. Qualitative dependences of Re ~σR /σ1 (a) and Re ~σD/σ2 (b) on θ, where σ1,2 ¼ η2(ω2
p/4πω0)(γR,D /vF )

2, at parameters mvF/p0 = 2.5, ω = 1.8ω0, ωs = 1.4ω0,
2π2T/(ℏω0) = 1, ωτl = 10, ωτs = 100, ηεF/(ℏω0) = 1, η = 1/30, and kvF/ω0 = 0.2. Slow angular oscillations are caused by the functions J0( jΔ), J2( jΔ) in Eq. (20).
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χ0 ¼ μ20mp0/(π�h
3) is the static paramagnetic susceptibility, B∼(ω,k)

=(c/ω)[k�E(ω,k)], i,k={ξ, ζ} the matrix elements hσ 0jσ̂kjσi are
expressed in terms of Kronecker symbols

σ 0jσ̂ξjσ
� � ¼ δσ,1δσ 0 ,�1 þ δσ,�1δσ 0 ,1, σ 0jσ̂ζ jσ

� � ¼ δσ,σ 0 :

The magnetization component, which is perpendicular to the
magnetic field, is caused by transitions with a change in the spin
projection, and describes the paramagnetic and combined reso-
nances, is equal to

Mξ(ω, k) ¼ χξξ(ω, k)B
�
ξ (ω, k)

¼ �ωωB

2π
χ0

X
n

ðπ
�π

dβ
f0(εn,1)� f0(εn,�1)

ωs

	
jbn,n(q)j2h0(ω)

�
X1
l¼1

f0(εnþl,1)� f0(εn,�1)
ωBl þ ωs

�
h(þ)
l (ω)

þ f0(εnþl,�1)� f0(εn,1)
ωBl � ωs

h(�)
l (ω)

�
jbn,nþl(q)j2 B�

ξ (ω, k)



,

(30)

where

bn,nþl(q) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n!
(nþ l)!

s
q2

2

� � l
2

e
q2

4 Ll4
q2

2

� �
n�1
! Jl

ffiffiffiffiffiffiffiffi
2nq

p� �
:

At εF � �hωB, after standard transformations, the paramagnetic
susceptibility can be written as the sum

χξξ(ω, k) ¼ �χξξ(ω, k)þ ~χξξ(ω, k) (31)

of the smooth

�χξξ(ω, k) ¼ �ωχ0 J20(q1)h0(ω)þ
X1
l¼1

J2l (q1) h(þ)
l (ω)þ h(�)

l (ω)
h i( )

(32)

and quantum oscillatory components

~χξξ(ω, k) ¼ �2ωωBχ0

� J20(q1)
h0(ω)
ωs

þ
X1
l¼1

J2l (q1)
h(þ)
l (ω)

Ω(þ)
l

� h(�)
l (ω)

Ω(�)
l

" #( )

�
X1
j¼1

(�1)j

j
J0(jΔ)Ψ(jλ) sin

πjωs

ωB
cos

2πμj
�hωB

: (33)

Equations (30)–(33) are the sum of the magnetic susceptibil-
ity’s asymptotic behavior near the ± l-th resonance ω � jΩ(+)

l j.
Upon neglecting the spatial dispersion, i.e., when q1=0, only one
term at l=0 remains in Eqs. (32) and (33), which describes the elec-
tron paramagnetic resonance. The magnetic susceptibility corre-
sponding to the combined resonance is maximized at q1 ¼ krB ≃ 1,
and at large values q1 � 1 it decreases as 1/krB. The angular
dependences of the smooth and oscillatory magnetic susceptibility
components are shown in Fig. 4. The angular dependence of mag-
netic susceptibility component ~χξξ that oscillates with changes in
B−1 is similar to the dependences of the oscillating component of
the resonance conductivity considered above and the static mag-
netic susceptibility in a strong magnetic field.33 In the region of
sufficiently low temperatures, at ηεF � �hωB and at arbitrary
values of θ, the oscillation amplitude ~χξξ ≃ J0(Δ)�χξξ ≃ �χξξ/

ffiffiffi
Δ

p
isffiffiffi

Δ
p ≃ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ηεF/(�hωB)
p

times less than that of the smooth component
�χξξ. However, the oscillatory component for θ= θi, at which α1∼tan θi
is a root of the Bessel function J0(α1) = 0, it is equal to �χξξ by order of
magnitude. For these directions of the magnetic field, the dependence
of the cross section area SF(pB) on the momentum projection pB
appears in the second-order terms of η.

FIG. 4. (a) The dependence of Im �χ/χ0 on θ at kvF/ ω0 = 1 (1), 0.3 (2), 10 (3). (b) The qualitative dependence of Im �χ/χ0 on θ kvF/ ω0 = 1. The slow angular oscillations
are caused by the function J0( jΔ) in Eq. (33). The parameter values are: mvF/p0 = 2.5, ω = 1.8ω0, ωs = 1.4ω0, ωτl = 10, ωτs = 100, 2π

2T/(ℏω0) = 1, ηεF/(ℏω0) = 1, η = 1/30.
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The correction to the impedance ΔZ(s)
zz , under the resonance

conditions of spin magnetization, can be found using Eq. (22) for
ΔZ(so)

zz , into which, instead of σ(so)
zz (ω, k), one should substitute the

correction to conductivity due to the spin current j(m):

σ(s)
zz (ω, k) ¼ �i

k2c2

ω
χξξ(ω, k)cos

2θ: (34)

After simple transformations, we get

ΔZ(s)
zz ¼ �i

32πνF
c2

ffiffiffiffiffiffiffiffi
ω

κωB

r
cos2 θ

�
ð1
0

dλλ2χξξ[ω, (κ, ω/ωB)
1/2λ]

(λ2 � iszz[ω, (κω/ωB)
1/2λ])

2 : (35)

If the incident wave is polarized along the normal to the
layers, and normal skin effect conditions are possible, then the

principal term of the expansion ΔZ(s)
zz in a series of

ffiffiffi
κ

p
powers

ΔZ(s)
zz ¼ �i

8π2νF
c2

ffiffiffiffiffiffiffiffi
ω

κωB

r
χξξ(ω, 0)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�iszz(ω, 0)

p cos2 θ (36)

describes the electron paramagnetic resonance.
By analogy with Eq. (22), the impedance component Zxx can

be written as:

Zxx ¼ Z(0)
xx þ ΔZ(s)

xx ¼ �i
8ω
c2

ð1
0

dk
k2 � 4πiωc�2σ͡xx(ω, k)

� i
32πω
c2

sin2 θ
ð1
0

dk k2χξξ(ω, k)

k2 � 4πiωc�2σ͡xx(ω, k)½ �2 , (37)

where σ͡xx ¼ σxx � σxyσyx/σyy . In the εF � �hωB approximation,
the components σ ij, i, j ¼ {x, y} look like:34

σxx(ω, k) ¼
iω2

p

4π
2J1(q1)
ωþ iτ�1

þ
X1
l¼1

J2l�1(q1)þ J2lþ1(q1)� 2Jl�1(q1)Jlþ1(q1)

(ωþ iτ�1
l )2 � (ωBl)

2

( )
,

σyy(ω, k) ¼
iω2

p

4π

X1
l¼1

J2l�1(q1)þ J2lþ1(q1)� 2Jl�1(q1)Jlþ1(q1)

(ωþ iτ�1
l )2 � (ωBl)

2
(ωþ iτ�1

l ),

σxy(ω, k) ¼
ω2
p

4π

X1
l¼1

J2l�1(q1)� J2lþ1(q1)

(ωþ iτ�1
l )2 � (ωBl)

2
lωB:

(38)

The impedance correction ΔZ(s)
xx is maximized at

κ1 = (ωpvF/ωBc)
2≃1, and in the limiting case κ1� 1 it decreases

as κ�2/3
1 .
In order for combined and cyclotron resonance to manifest, it

is necessary for the electron to make several revolutions around its
orbit in a magnetic field, over the course of its mean free path. In
ordinary metals, achieving this type of mean free path length for
charge carriers corresponds to the conditions of the extremely
anomalous skin effect, and therefore the magnetic susceptibility
(31) is small with respect to the parameter δ/rB � 1. In organic
conductors, the fulfillment of the ωτ l ≃ ωBτ l � 1 ratio, under the
condition that δ/rB ≃ 1, is much more favorable. This is one more
reason why it is possible to experimentally observe the combined
resonance of magnetization in layered conductors, in addition to
the fact that almost all FS electrons participate in resonance forma-
tion, as mentioned in the Introduction.

5. CONCLUSION

The experimentally observed resonance absorption of micro-
wave radiation in organic compounds is a superposition of peaks
that correspond to different types of resonances. For example, at

helium temperatures, organic metals (BEDT-TTF)2MHg(SCN)4
(M = K,Tl) with antiferromagnetic ordering, in a magnetic field
perpendicular to the conducting plane, display narrower lines
against the background of peaks that correspond to cyclotron res-
onance. The amplitudes of these lines are 5–10 times smaller, and
are presumably caused by the electron paramagnetic and antifer-
romagnetic resonances.17 The experimental data in layered con-
ductors can be identified and assigned by analyzing the absorbed
power and other conductor characteristics as a function of the
direction and magnitude of the magnetic field, as well as the FS
parameters. Under normal skin effect conditions, resonance cor-
rections to impedance are proportional to σ(so)

zz and χξξ. In con-

trast to σ(so)
zz , the magnetic susceptibility does not contain any

oscillating factors in the form of J2l
mvF
p0

� �
tan θ

h i
: The angular

dependence of the smooth component �χξξ is determined by the

dependence of the resonance functions (12) h(+)
l on ωB∼cos θ,

and the angular dependence of the quantum ~χξξ. component that
oscillates with changes in B−1, as follows from (33), also includes
the factors J0( jΔ), which describe the slow oscillatory dependence
on tan θ, and the absolute value of the magnetic field. The
obtained results can be used to detect the combined resonance of
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interlayer conductivity and spin magnetization not only in
organic conductors, but also in other low-dimensional layered
structures of inorganic origin.
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