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Analytical expressions have been obtained for the resonance component of the interlayer conductivity of
quasi-two-dimensional conductors in an inclined magnetic field in the presence of the Rashba–Dresselhaus
spin–orbit coupling. It has been shown that the Dresselhaus interaction makes the main contribution to res-
onances at combination frequencies in the range of angles between the magnetic field and normal to the con-
ducting layers where angular oscillations of the conductivity occur. The results can be used to experimentally
determine the absolute values of the spin–orbit coupling constants.
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INTRODUCTION
The study of magnetic resonance absorption is a

verified method for obtaining information on the band
structure and other characteristics of conducting sys-
tems. In a uniform electromagnetic field and when the
spin–orbit coupling is negligible, the orbital and spin
dynamics of electrons are independent and resonance
absorption is due either to transitions between Landau
levels or to spin f lip. The spin–orbit interaction cou-
ples the orbital and spin motions and allows combina-
tion resonance caused by transitions with change in
both the number of the Landau level and the spin pro-
jection [1, 2].

The spin–orbit coupling in normal metals is usu-
ally negligibly weak; for this reason, the combination
resonance of the conductivity occurs in semiconduc-
tors, semimetals [1, 2], and two-dimensional systems
[3]. Layered conducting structures with a quasi-two-
dimensional (Q2D) electron energy spectrum consti-
tute an additional class of materials where combina-
tion resonance is possible. In particular, low-dimen-
sional organic conductors are strongly anisotropic
conductors where high-frequency resonances of dif-
ferent types were experimentally observed (see reviews
[4–6] and references therein). The basic structural
elements of these materials are organic molecules,
e.g., TTF, BEDT–TTF, and BEDO–TTF, which
have donor or acceptor properties. Ion radicals of
these molecules in Q2D conductors are packed into
conducting layers separated by molecular counterion
layers. The electrical conductivity along layers in some
compounds at room temperature can exceed
103 Ω‒1/cm and increases with decreasing tempera-

ture, whereas the conductivity in the transverse direc-
tion is about 1 Ω–1/cm and lower.

Although organic conductors have a complex
molecular and crystal structure, their electron band
structures are quite simple. The Fermi surface of
organic conductors is strongly anisotropic and can
consist of quasi-one-dimensional and Q2D sheets.
Studies of angular oscillations of the magnetoresis-
tance and quantum magnetic oscillation effects [7] at
liquid helium temperatures show that Q2D elements
usually have the shape of a weak corrugated cylinder.
Tetrathiafulvalene salts  and

 exemplify Q2D organic metals
whose Fermi surface consists of only one weakly cor-
rugated cylinder. The anisotropy of the electron
energy spectrum of a Q2D conductor can be charac-
terized by a small parameter η whose square is the
ratio of the conductivities along the normal n to the
layers and in the planes of the layers in the absence of
a magnetic field. The energy of the electron in the field
of the crystal lattice in the tight binding approximation
can be represented in the form of a rapidly convergent
series

(1)

Here, , a is the distance between the layers,
and  is the reduced Planck constant. The functions

 decrease strongly with an increase in their
number; the largest function is , where εF is
the Fermi energy. The area of the cross section of the
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Fig. 1. Fermi surface and coordinate systems.
Fermi surface  by the  plane
depends slightly on the projection of the electron
momentum  on the direction of the magnetic field
B: such a dependence occurs only in the first order in
the anisotropy parameter η. The resonance effects at
the absorption of electromagnetic radiation in Q2D
systems should be more pronounced than those in
quasi-isotropic conductors at comparable mean free
paths of charge carriers because almost all electrons on
the Fermi surface, rather than a separate group in the
extreme cross section of the Fermi surface, are
involved in the formation of these effects.

The difference of layered conductors in physical
properties from both normal metals and two-dimen-
sional conducting systems is primarily manifested in
the transport phenomena in the direction of the nor-
mal to the layers, in particular, in the appearance of a
series of maxima of the magnetoresistance under the
variation of the angle θ between the vectors B and n [8,
9]. Angular oscillations of the interlayer magnetoresis-
tance were observed not only in organic metals [7] but
also in other low-dimensional inorganic layered con-
ductors, e.g., [10–12]. In this work, the combination
resonance of the interlayer conductivity in Q2D con-
ductors in an inclined magnetic field is theoretically
studied within the model of Rashba [1, 3] and Dressel-
haus [13] spin–orbit coupling. Analytical expressions
are obtained for the resonance component of the con-
ductivity depending on the magnitude and direction of
the magnetic field. It is shown that the Dresselhaus
interaction makes the main contribution to resonances
at combination frequencies in the angular range

 where angular oscillations of the conductiv-
ity occur.

EQUATION FOR THE CURRENT DENSITY

The current density describing the time and spatial
dispersion has the form [14]

(2)

The kernel of the integral operator (retarded Green’s
function) in the single-particle approximation can be
written as

(3)

Here,  is the ac electric field, 

 is the equilibrium distribution
function of quasiparticles with the energy  in an indi-
vidual state with the quantum numbers  and tempera-
ture T, μ is the chemical potential, ,
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, and  and  are the phenome-
nological lifetimes of quasiparticles in the states ν and

, respectively. For the processes considered below,
the width  of the level  should be much smaller
than the distance  between adjacent
energy levels. In Eq. (3),  are the two-component
spinors, which are the eigenfunctions of the single-
particle Hamiltonian  and  are the
matrix elements of the current density operator

(4)

Here, ,  is the kine-
matic momentum operator, e is the elementary
charge, c is the speed of light,  is the
magnetic moment operator of a conduction electron,
μB is the Bohr magneton, g is the effective g-factor, 
are the Pauli matrices, and  is the vector potential
of a uniform static magnetic field.

Formula (1) is written in the  coordinate sys-
tem, where the z axis is the direction of the minimum
conductivity and the y axis can be perpendicular to the
magnetic field . We use another
coordinate system  with the ζ axis along the vector
B and take the gauge of the vector potential

 (Fig. 1). The momentum compo-
nents in both coordinate systems are related to each
other by the transformation of rotation by the angle 
between the normal to the layers and the magnetic
field.

The Hamiltonian of the electron is taken in the
form

(5)

with the spin–orbit interaction
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which is the sum of the Rashba and Dresselhaus inter-
action operators. Here, n is the unit vector of the high
symmetry axis of the crystal, which is assumed to
coincide with the normal to the layers; γR and γD are
the Rashba and Dresselhaus spin–orbit coupling con-
stants, respectively; ex and ey are the unit vectors along
the x and y axes, respectively; and ,
where

For the considered conducting systems, the operators
of both the energy of motion of the electron along the
normal to the layers and the spin–orbit coupling
should be treated as perturbations. The complete set of
quantum numbers  consists of the num-
ber of the Landau level n, the momentum projections
pξ and pB, and spin projection . The
spin component of the wavefunction in the zeroth
approximation is an eigenfunction of the operator .

The canonical transformation of the operators 
and 

(7)

reduces the Hamiltonian to the spin-diagonal form. In
the zeroth approximation, the transformed Hamilto-
nian coincides with the unperturbed operator  and
the matrix elements of the operator  in the first order
in  are

(8)

where  is the spin off-diagonal component of the
operator . In this formula, it is assumed that the fre-
quency of the electron paramagnetic resonance (EPR)

 is not equal to the cyclotron frequency
ωB and its harmonics lωB; i.e., combination and cyclo-
tron resonance lines should not coincide; otherwise,
the denominator in Eq. (8) can be zero at some n and

 values.

The matrix elements of the operator  of the
component of the orbital part of the current density
(4) are diagonal in spin. Therefore, the combination
resonance of the interlayer conductivity is determined
by the product  in Eqs. (2)
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ξ ζ= σ , σ ,σσ̂ ( )y

ξ ζ
−⎛ ⎞ ⎛ ⎞ ⎛ ⎞= , = , = .σ σ σ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠

0 1 0 1 0
ˆ ˆ ˆ1 0 0 0 1y

i
i

ξν = , , , σBn p p

ζ ζ= σ ≡ σ/2 /2s

ζσ̂

ε̂
ĵ
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Ŝ

soV̂

V

ν ν

〈ν ν 〉
〈ν ν 〉 = ,

ε − ε
so

(0) (0)
'

ˆ| | 'ˆ| | '
N

S

Vso
ˆN

Vso
ˆ

ω = μ �B /s g B

'n

( )ˆ l
zj

〈ν ν 〉〈ν ν〉( ) ( )ˆ ˆ' '| ( )| ' ' | ( ')|l l
z zj jr r

⎡ ⎤= ,⎣ ⎦
( ) ( ) ˆˆ ˆ'( ) ( )l l
z zj j Sr r
JETP LETTERS  Vol. 110  No. 7  2019
COMBINATION RESONANCE
OF THE INTERLAYER CONDUCTIVITY

Under the assumption that  and 
, the correction to the interlayer con-

ductivity, which describes the resonances at combina-
tion frequencies can be easily obtained from Eqs. (2)
and (3) in the form

(9)

where  =  When the
electric current f lows along the normal to the layers,
the depth of the skin layer δ is determined by the con-
ductivity component , which is smaller than the
conductivity in the plane of the layers by a factor of

, and the spatial dispersion can usually
be neglected [15].

To determine the matrix elements , it is
necessary to use a particular model of the electron
energy spectrum. Let the energy of the electron (1) be
determined by the zeroth and first Fourier harmonics
of the momentum projection on the normal to the lay-
ers. Neglecting anisotropy in the plane of the layers
and setting , one can represent Eq. (1)
in the form

(10)

where m is the effective mass, , and
. The case where the energy spectrum in

the plane of the layers is specified by an arbitrary pos-
itive definite quadratic form of the quasimomentum is
reduced to Eq. (10) by means of transformations of
rotation and extension of the coordinate axes. The
Schrödinger equation for the unperturbed Hamilto-
nian  is reduced to the equation of a harmonic
oscillator with the frequency . If
the angle  between the magnetic field and normal to
the layer is close to π/2, the closed cross sections of the
Fermi surface  are strongly prolonged, the
electron cannot make the complete semiclassical orbit
in the momentum space in the mean free path time,
and dynamic resonance effects are not manifested.
For this reason, the inequality  is assumed.

The width of the resonance can be represented in
the form , where  is the spin-

flip time and  is the width of the resonance at the
transition of the electron from the Landau level
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 to the level n with the conservation of the
spin projection. The simple calculations give

(11)

Here,  is the plasma frequency,  is
the electron density, and . The sub-
script of the conserving quantity  is omitted in the
equilibrium distribution function of electrons .
The functions of the frequency

(12)

at  have sharp maxima at the combination res-
onance frequencies , where

, whereas the function

(13)

of the angle θ determines the contributions to 
from the Rashba and Dresselhaus interactions, where

. At large n values, the coefficients
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describe the oscillatory dependence of  on the
angle θ, where , , and

 are the associated Laguerre polynomials. The
asymptotic representation of Laguerre polynomials
[16] allows the expression of  in terms of the Bessel
functions Jl

In the expression for the energy of the electron
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the resonance and the angular dependence of the
kinetic coefficients.

Each term in the sum over l in Eq. (11) determines
the asymptotic behavior of the conductivity  near
the ±lth resonance . The first term with 
in Eq. (11) corresponds to pure spin transitions and the
width of the resonance is determined by the inverse
spin f lip time .

According to Eq. (14) for , the conductivity 
in a magnetic field perpendicular to the layers, i.e., at

, and in the absence of spatial dispersion van-
ishes within the chosen models of the energy of the
electron in the field of the crystal lattice and the spin–
orbit coupling. The coefficients  in the spatially
nonuniform field are also nonzero at . In partic-
ular, when the electric field is  (disper-
sion in the direction of B is manifested in the first
order in η), at  and , the conductivity

 is given by Eq. (11) with

where , , and  is the
cyclotron radius. Angular oscillations occur at large

 values. For the considered geometry of the prob-
lem,  and the qualitative picture of the
angular dependence of the resonance part of the inter-
layer conductivity given by Eq. (9) is described by
Eq. (11).

If the number of Landau levels below εF is large, the
conductivity specified by Eq. (11) undergoes de Haas–
van Alphen oscillations. The Poisson formula and
standard transformations allow the representation of
Eq. (11) in the form
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is the oscillatory component as a function of .
Here, ,

The amplitude of oscillating harmonics in the sum 
is modulated by the quasiperiodic function

where the argument  depends

not only on  but also on .

At , Eq. (17) describes oscillations

of  as a function of the inverse magnetic field. In
the case  strictly speaking, it is necessary to
take into account the oscillation dependence of the
chemical potential μ on , which is determined from
the equation of conservation of the number of elec-
trons, and, near the resonances , the depen-

dence of the relaxation time  on . At sufficiently
low temperatures , at  and
arbitrary θ values, the oscillatory component of the
conductivity  is smaller than
the smooth component  by a factor of

. However, the oscillatory compo-
nent for  at which  is a root of the Bes-
sel function  increases to about . For
these directions of the magnetic field, the dependence
of the area of the cross section of the Fermi surface

 on the momentum projection  appears in
terms quadratic in η.

The resonance conductivity given by Eq. (11) can
be represented as the sum  of contribu-
tions from the Rashba and Dresselhaus interactions.
According to Eqs. (11) and (13),
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where . In the angular range ,
where angular oscillations of the conductivity are
manifested, the asymptotic behavior of  is deter-
mined by the Dresselhaus spin–orbit coupling,
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quency  are of most interest because  and, in
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addition, an increase in θ is accompanied by a
decrease in  and, correspondingly, in the intensity
of the lth resonance.

CONCLUSIONS

A high-frequency nonuniform electromagnetic field
can induce transitions at combination frequencies even
in the absence of the spin–orbit coupling [17]. The cur-
rent density given by Eq. (2) is proportional to the eddy
electric field and, correspondingly, includes terms pro-
portional to the magnetic field .

The spin part  of operator (4) in
Eqs. (2) and (3) determines the high-frequency mag-
netization excited by the ac field  and the paramag-
netic susceptibility . In the case 

, resonances of the magnetization at combi-
nation frequencies are due to the matrix elements

.

The structure of resonance absorption of micro-
wave radiation in organic compounds is a superposi-
tion of peaks corresponding to different types of reso-
nances. Because of the similarity of the pictures of
combination resonance of the conductivity, EPR, and
combination resonance of the spin magnetization,
there is the problem of identification of experimental
data. Unlike , the paramagnetic susceptibility
does not contain oscillating factors such as

. A simple calculation shows that
the angular dependence of the smooth part  is
determined by the dependence of resonance functions

 specified in Eqs. (12) on , and the angu-
lar dependence of the quantum part  oscillatory as

a function of  also includes additional factors
. Thus, the analysis of the dependence of the

absorbed power on the orientation of the magnetic
field and the parameters of the Fermi surface makes it
possible to certainly distinguish the combination reso-
nance of the interlayer conductivity from EPR and
other types of resonances.
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