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ABSTRACT

The temperature dependencies of the excess conductivity σ0(T) and possible pseudogap (PG), Δ*(T), in a Dy0.6Y0.4Rh3.85Ru0.15B4 polycrystal
were studied for the first time. It was shown that σ0(T) near Tc is well described by the Aslamazov–Larkin (AL) fluctuation theory, demon-
strating a 3D–2D crossover with increasing temperature. Using the crossover temperature T0, the coherence length along the c axis, ξc(0),
was determined. Above the level of T2D > T0, an unusual dependence σ0(T) was found, which is not described by the fluctuation theories in
the range from T0 to TFM, at which a ferromagnetic transition occurs. The range in which superconducting fluctuations exist is apparently
quite narrow and amounts to ΔTfl≈ 2.8 K. The resulting temperature dependence of the PG parameter Δ*(T) has the form typical of
magnetic superconductors with features at Tmax ≈ 154 K and the temperature of a possible structural transition at Ts∼ 95 K. Below Ts,
dependence Δ*(T) has a shape typical for PG in cuprates, which suggests that the PG state can be realized in Dy0.6Y0.4Rh3.85Ru0.15B4 in this
temperature range. Comparison of Δ*(T) with the Peters–Bauer theory made it possible to determine the density of local pairs near Tc,
〈n↑n↓〉(TG)≈ 0.35, which is 1.17 times greater than in optimally doped YBa2Cu3O7–δ single crystals.

Published under license by AIP Publishing. https://doi.org/10.1063/10.0000125

1. INTRODUCTION

Recent studies of physical properties of new materials have
shown that researchers increasingly encounter so-called unconven-
tional superconductivity.1,2 For example, excitonic or magnonic
mechanisms of superconducting (SC) pairing of charge carriers in
such materials can be different from those of phonons.3 In addi-
tion, the pairing symmetry in unconventional superconductors
may differ from that described by the Bardeen–Cooper–Schrieffer
(BCS) theory, and the superconducting order parameter often van-
ishes at some points of the momentum space (e.g. in the case of
p- or d-wave symmetry).3 In the BCS theory, the total spin of an
electron pair is equal to zero (S = 0), whereas, for example, in
triplet superconductors, S = 1, which also falls beyond the scope of
this theory. Nonconventional superconductors additionally include
those in which magnetism coexists with superconductivity (mag-
netic superconductors), which also contradicts the BCS theory.3–6

One of the most prominent representatives of magnetic super-
conductors are the triple rare-earth rhodium borides RERh4B4 (RE
is a rare-earth element).6 In these materials, various types of mag-
netic ordering can be observed depending on the type of rare earth

(such as ferromagnetic (FM), antiferromagnetic (AFM), as well as
spiral spatially modulated magnetic structures). In the case of FM
superconductors (e.g. ErRh4B4), transition to the superconducting
state occurs at higher temperatures, followed by FM ordering at
lower temperatures, which suppresses superconductivity.

This is observed in the study of certain bulk properties (mag-
netization, electrical resistance, etc.), e.g. in the form of recursive
superconductivity (i.e. the transition of a material from a supercon-
ducting to a normal state at low temperatures under the action of
internal magnetism.4,6 In the case of AFM materials, such as
NdRh4B4, SmRh4B4, TmRh4B4, the AFM transition was also
observed below the temperature of the SC transition, but, in con-
trast to FM compounds, superconductivity was suppressed only
partially, thus providing the coexistence of these two types of
ordering down to the lowest temperatures.4,6

The most interesting case of superconductivity-magnetism
coexistence was observed in systems where magnetic rare earth was
partially replaced by a non-magnetic element.7 Such compounds
include, among others, rare-earth rhodium borides Dy1–xYxRh4B4
(x = 0, 0.2, 0.4) with a tetragonal body-centered crystal structure of
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the LuRu4B4 type.6 Magnetic ordering in these materials appears
above the SC transition temperature and coexists with supercon-
ductivity to the lowest temperatures.8,9

In Ref. 8, it was shown that the magnetic transition in
Dy1–xYxRh4B4 with x = 0, 0.2, 0.4 is ferrimagnetic, and the mag-
netic transition temperature TC strongly depends on the concentra-
tion of nonmagnetic Y and decreases with increasing concentration
from 37 K in DyRh DyRh4B4 to 7 K in Dy0.2Y0.8Rh4B4.
Consequently, when concentration of Y increases from 4.7 K for
DyRh 4B4 to 10.5 K in YRh4B4, the superconducting transition
temperature Tc also increases.8 Measurements of heat capacity of
Dy0.8Y0.2Rh4B4, Dy0.6Y0.4Rh4B4 and Dy0.6Y0.4Rh3.85Ru0.15B4
showed that a further magnetic transformation can occur below the
superconducting transition temperature.10

It is not improbable that low-temperature magnetic transitions
are possible at other concentrations of Y. In particular, it was found
recently that the behavior of certain physical quantities in magnetic
superconductors Dy1–xYxRh4B4 (x = 0, 0.2, 0.4) is uncharacteristic
of systems with conventional superconductivity. These specifics
include the paramagnetic Meissner effect11,12 and the nonmono-
tonic behavior of dependencies Hc2(T) and Δ(T).9,13–15

Studies of solid solutions of Dy(Rh1–xRux)4B4 showed that the
replacement of rhodium by ruthenium may change the type of
magnetic interactions: AFM ordering for x < 0.5 and ferromagnetic
ordering for x > 0.5. This may be due to the change in the
Ruderman–Kittel–Kasuya–Yosida (RKKY)-exchange interaction
that occurs between Dy atoms through conduction electrons of Rh
or Ru atoms.16 We have recently investigated the magnetic proper-
ties of Dy0.6Y0.4Rh3.85Ru0.15B4 (to be published soon) and showed
that below 19 K, there is a transition to the FM state (μ sat ≈ 6.2μB
per Dy3+ ion at 2 K), and below 6.7 K, superconductivity takes
place and both of these states coexist.

Thus, the study of physical properties of the Dy1–yYy (Rh,
Ru)4B4 boride family with different contents of dysprosium
(responsible for magnetic interactions) and rhodium-ruthenium
compound (responsible for both magnetic interactions and super-
conductivity) is of considerable interest in terms of studying
various aspects of superconductivity-magnetism coexistence, as
well as for revealing signs of non-conventional superconductivity.
In this work, for the first time, we thoroughly investigated the
behavior of excess conductivity of Dy0.6Y0.4Rh3.85Ru0.15B4 near Tc
within the framework of existing fluctuation theories, and
addressed the issue of the possible existence of a pseudogap state,
its nature, and susceptibility to magnetic ordering.

1.1. Samples and Experimental Methods

The samples of Dy0.6Y0.4Rh3.85Ru0.15B4 were prepared by
argon-arc melting of the initial components, followed by annealing
for several days, as described in Ref 14. As a result, we obtained
single-phase textured polycrystalline samples with a LuRu4B4 struc-
ture (space group I4/mmm) (Fig. 1), as evidenced by the results of
X-ray phase-sensitive and X-ray diffraction analyses.8,9 The critical
temperature of the SC transition is Tc (R = 0) ∼6.4 K (Fig. 2). Based
on literature sources, we believe that the geometric parameters of
the crystal lattice in our case are: a = b≈ 7.45 Å, c≈ 15 Å.9 Partial
replacement of Rh with Ru made it possible to synthesize samples

at normal pressure, which would be impossible without such
replacement.6 It is known that the tetrahedra of Rh4B4/RU4B4 have
different orientations and are shown enlarged in Fig. 1. In the
LURU4B4 structure, the Dy and Y atoms occupy the Lu positions.
It can be seen that the Dy atoms in the planes are surrounded by
nonequivalent tetrahedra of Rh4B4/Ru4B4, because the distances
between Rh or Ru atoms in diversely oriented tetrahedra are notice-
ably different: 2.98 and 3.10 Å, respectively.

Electrical resistance measurements were performed using a
standard four-probe circuit on a Quantum Design PPMS-9 auto-
mated system at alternating current I = 8 mA f = 97 Hz). Figure 2
shows the temperature dependence of the resistivity ρ(T) of the test

FIG. 1. Idealized tetragonal body-centered crystalline structure of
Dy0.6Y0.4Rh3.85Ru0.15B4.

FIG. 2. Temperature dependence ρ(T) of a Dy0.6Y0.4Rh3.85Ru0.15B4 polycrystal.
The straight red line defines ρN (T) which is extrapolated to the lower tempera-
tures. The insert shows a more accurate method for determining T* = 167 K
using the criterion (ρ – ρ0)/aT = 1.

19
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sample. In the temperature range between T* = (167 ± 0.5) K and
∼280 K, the dependence ρ(T) is linear with the slope a = dρ/
dT = 0.14. The slope was determined by linear curve fitting and
confirms the excellent linearity of ρ(T) with a standard error of
0.0012 ± 0.0002 over the entire temperature range noted. As usual,
T* >> Tc was defined as the temperature at which the resistive
curve deviates from linearity to lower values5,17 (Fig. 2). It can be
seen that below T* ρ(T) takes the form characteristic of magnetic
superconductors with positive curvature.5,18

For a more accurate determination of T* (with an accuracy
of ±0.5 K), we used a modified straight line equation [ρ(T) – ρ0]/
aT = 1,19 as shown in the insert in Fig. 2. Here, the same as above,
a = dρ/dT denotes the slope of the temperature dependence of
resistivity in the normal state, ρN (T), which is extrapolated to the
low-temperature region, and ρ0 is the residual resistance deter-
mined by the intersection of ρN with the Y axis.

Both methods give the same values of T*.
From resistive measurements, the fluctuation contributions to

the excess conductivity σ0(T) were determined and the temperature
dependence of the pseudogap parameter Δ*(T) was calculated and
analyzed. The results obtained show that in the region of SC fluctu-
ations near Tc σ0(T) is well approximated by the Aslamazov–Larkin
(AL) fluctuation theory for three-dimensional systems.20 However,
the SC fluctuation region is very small and unexpectedly expands
with increasing temperature σ0(T), showing its maximum near the
FM transition temperature TFM ∼19 K. The corresponding depen-
dence Δ*(T) has a form similar to that found in FeSe0.94 polycrys-
tals.21 Despite this, the density of nearby local pairs 〈n↑n↓〉, derived
from the comparison of Δ*(T) with the Peters–Bauer theory22

turned out to be 1.17 times greater. A detailed analysis of these
results is provided below.

2. RESULTS

2.1. Fluctuation conductivity

The temperature dependence of excess conductivity was deter-
mined conventionally using the equation in Refs. 17 and 23

σ0(T) ¼ σ(T)� σN (T) ¼ 1
ρ(T)

� 1
ρN (T)

: (1)

An important parameter for further analysis is the reduced
temperature

ε ¼ T � Tmf
c

Tmf
c

, (2)

which is included in all equations in this article. Here, Tc
mf > Tc is

the critical temperature in the mean-field approximation, which
separates the region of fluctuation conductivity (FLC) from the
region of critical fluctuations or fluctuations of the SC parameter of
the A order immediately near Tc, unaccounted for in the
Ginzburg–Landau theory.24,25 This indicates that the correct deter-
mination of Tc

mf plays a decisive role in the FLC and PG calcula-
tions. For this purpose, we use the fact5,17 that near Tc in all
HTSCs, σ0(T) is always described by the standard equation of the

Aslamazov–Larkin theory20 with a critical exponent λ = –1/2,
which determines FLC in any three-dimensional (3D) system:

σ0AL3D ¼ C3D
e2

32�hξc(0)
ε�1=2, (3)

where ξc(0) is the coherence length along the c axis and C3D is the
coefficient (C-factor) by which the theory data defined by Eq. (3)
should be multiplied to align them with experimental results. As is
known,26,32 the closer the C-factor to 1, the better the structure of
the sample, and vice versa. Trimerization of a HTSC near Tc
is most likely caused by Gaussian fluctuations in 2D metals
that include HTSC compounds exhibiting a pronounced
quasi-two-dimensional anisotropy of the conductive properties
[Ref. 17 and references therein].

Taking account of Gaussian fluctuations brings the critical tem-
perature of an ideal 2D metal to zero (Mermin–Wagner–Hohenberg
theorem), and its final value is only obtained when trimerization
factors are included.27–29 Thus, 3D FLC is always realized in HTSCs
when T approaches Tc.

30,31 As a result, it is determined by extrapo-
lating the linear dependence σ0–2 in the 3D-fluctuation region from
T to its intersection with the temperature axis, because, when
T →Tc

mf, σ0 should diverge as (T – Tc
mf) [see Eq. (3)].32 Note that, in

each case, Tc
mf > Tc. In cuprates, this shift is ∼1–2 K, which, to a first

approximation, gives the value of critical fluctuations above Tc.
It should be emphasized that, when Tc

mf is determined cor-
rectly, σ0(T) in the 3D fluctuation region near Tc is always described
by Eq. (3). Another characteristic temperature is the Ginzburg tem-
perature TG > Tc

mf, marked as ln εG = –5.0 in Fig. 3, up to which
fluctuation theories are applicable. This temperature is usually
determined by the Ginzburg criterion, which applies when the GL
mean-field theory becomes inapplicable when describing the SC
transition.33,34 It can be seen (Fig. 3) that below TG, the data
deviate downward from the AL line, indicating a transition to criti-
cal fluctuations near Tc.

32,35

FIG. 3. (a) Dependence of ln σ0 on ln ε of a Dy0.6Y0.4Rh3.85Ru0.15B4 polycrystal
in comparison with fluctuation theories near Tc: 3D AL (1, dotted line), 2D MT
(2, solid curve). (b) Derivative d (ln σ0)/d (ln ε) of ln ε. All characteristic temper-
atures are indicated by vertical dashed lines.
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By determining Tc
mf = 6.62 K, Eq. (2) can be used to find ε(T)

and construct the dependence σ0(ε) in the double logarithmic coor-
dinates accepted in the literature (Fig. 3). Within the model of local
pairs (LP),36–38 it was shown that the FCL measured for all HTSCs
without exception always shows a crossover from a 3D state
(ξc(T) > d) near Tc to 2D (ξc(T) < d) as T increases [Refs. 5, 17, 31, 32,
and references therein], where d = c ≈ 15 Å is the cell dimension
along the c axis.30 At the crossover temperature T0 ξc(T0)
= ξc(0) ε0

–1/2 = d.30 Hence,

ξc(0) ¼ d
ffiffiffiffiffi
ε0

p
, (4)

which makes it possible to determine ξc(0). On the upper panel
of Fig. 3, the dependence of ln σ0 on ln ε is constructed in com-
parison with fluctuation theories. As expected, above TG ≈ 6.67 K
(ln εG = –5.0) and up to T0 = 6.8 K (ln ε0 = –3.45), σ0(T) is well
described by Eq. (3) (dashed line 1) with ξc(0) = (2.67 ± 0.02) Å
determined according to Eq. (4), and C3D = 0.38. Above T0, the
data deviate upward from the linear dependence, indicating a
transition to the region of 2D fluctuations. Clearly, between T0

and T2D = 7.1 K (ln ε2D = –2.58), ln σ0(ln ε) is determined by the
Maki–Thompson fluctuation contribution (MT2D)39, 40 [Eq. (5)]
(solid curve 2) of the Hikami–Larkin (HL) theory for HTSCs:

σ0MT2D ¼ e2

8d�h
1

1� α=δ
ln

δ

α

1þ αþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2α

p

1þ δþ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2δ

p
� �

ε�1, (5)

applied in the field of 2D fluctuations.26, 30 Here, the communi-
cation parameter

α ¼ 2
ξc(0)
d

� �2

ε�1, (6)

steaming parameter

δ ¼ β
16
π�h

ξc(0)
d

� �2

kBTτw, (7)

and the phase relaxation time, τw is given by equation

τwβT ¼ π�h=(8kBε) ¼ A=ε, (8)

where A = 2.998⋅10–12 s⋅K. Factor β = 1.203 (l/ξab), where l is the
mean free path and ξab is the coherence length in the ab plane,
takes into account the approximation of the pure limit (l > ξ).17,26

In this case, however, the region of MT fluctuations is very small,
ΔTfl = T2D – TG ≈ 0.4 K [Fig. 3(a)]. At ln ε2D = –2.58, which we
designated as T2D, the experimental points deviate upward from
the MT curve, and the first derivative of the experimental curve
becomes zero [Fig. 3(b)]. Above T2D, FLC no longer conforms to
the classical fluctuation theories.

In HTSCs, with an increase in temperature above the region
of 2D fluctuations, the experimental data normally deviate down-
ward from the MT curve.17,26 The unusual behavior of FLC discov-
ered in this case is most likely due to the presence, as noted above,
of a large magnetic moment in dysprosium as part of our com-
pound (∼6.2μB). As a result, the ln σ0–ln ε relationship in the

indicated temperature range has several singular points. It can be
seen [Fig. 3(a)] that above T2D the experimental data can be
approximated by two lines that intersect at ln ε01≈ –0.85, showing
a dramatic change in the dependence slope at this temperature. At
this point, the first derivative has an inflection point [Fig. 3(b)],
which is confirmed by the second derivative (not shown) demon-
strating a maximum at this point.

It must be emphasized that at this temperature, temperature
dependence Δ*(T) displays a small but sharp minimum (Fig. 5)
designated as T01. This minimum at Δ*(T) is observed in all the
studied HTSCs: cuprates,5,17,41 pnictides18 and chalcogenides of
FeSe.21 It corresponds to the temperature T01 that places an upper
limit on the region of SC fluctuations near Tc, where fluctuation
Cooper pairs (FCPs) behave almost like classical Cooper pairs, but
without long-range ordering – the so-called ‘short-range phase
correlations’.22,42–45 Moreover, in this temperature range, the ln σ0–
ln ε dependence always conforms to the classical fluctuation
theories of AL20 and MT.30

Based on these considerations, we believe that in the case of
Dy0.6Y0.4Rh3.85Ru0.15B4, this minimum also corresponds to the
temperature T01≈ 9.4 K, which is designated in Fig. 3(a) as ln ε01.
Accordingly, in Dy0.6Y0.4Rh3.85Ru0.15B4, the SC fluctuation range is
very small: ΔTfl = T01 – TG = (9.4–6.67) K ≈ 2.8 K. This is notably
smaller than ΔTfl = 10.4 K obtained for the FeSe0.94 sample with
Tc = 9 K and without defects,21 but, curiously, greater than
ΔTfl = 1.45 K, measured for an optimally subsidized (OS) single
crystal of YBa2Cu3O7–δ (YBCO) with Tc ∼ 91.1 K.46 This result
indicates that the sample under study may contain a certain
number of defects, presumably in the form of grain boundaries
forming a polycrystal.

In the local pairs model, it is assumed that in HTSC,
ξc(T) = ξc(0) (T/Tc

mf – 1)–1/2 = ξc(0) ε
–1/2,47 increasing with decreas-

ing temperature, at T = T01 becomes equal to the distance between
the conducting layers d01 (in YBCO, these are CuO2 planes) and
connects them with the Josephson interaction,31 which explains the
appearance of 2D FLC below T01.

17,26 Accordingly, ξc(T) = d at
T = T0, and below T0 in HTSCs, 3D FLC is implemented, as noted
above. Since ξc(0) = (2.67 ± 0.02) Å is already defined above accord-
ing to (4), the simple relation ξc(0) = dε0

1/2 = d01ε01
1/2 makes it possi-

ble to find d01 = d(ε0/ε01)
1/2 ≈ 4.08 Å, taking into account that in

this case d = 15 Å. In fact, this is the distance between the Dy/Y
atoms and the Rh/Ru/B tetrahedra, and therefore between the cor-
responding conducting planes in Dy0.6Y0.4Rh3.85Ru0.15B4 along the
c axis (Fig. 1). Indeed, 4d01≈ 16.3 Å is in good agreement with the
unit cell size along the c axis.

Above T01 (ln ε01≈ –0.85), FLC increases rapidly, reaching a
maximum at the Curie temperature, TFM ∼19 K, obtained from
magnetic measurements. Accordingly, at this temperature, the first
derivative is equal to zero [Fig. 3(b)]. Between TFM and T01, there is
another singular point, which is the inflection point on the ln σ0–ln
ε dependence at T = TRh–Rh, which is almost invisible on the scale
used, but is observed as a maximum on the first derivative at ln
εRh–Rh≈ –0.12 [Fig. 3(b)]. It is of interest to estimate to what char-
acteristic distances this temperature corresponds in the structure of
Dy0.6Y0.4Rh3.85Ru0.15B4. At TRh–Rh, we obtain dRh–Rh = d(ε0/εRh–
Rh)

1/2 ≈ 2.85 Å, which, possibly accidentally, is the distance between
Rh atoms (or, respectively, Ru atoms) in Rh/Ru–B4 tetrahedra

Low Temperature
Physics ARTICLE scitation.org/journal/ltp

Low Temp. Phys. 45, 000000 (2019); doi: 10.1063/10.0000125 45, 000000-1196

Published under license by AIP Publishing.

https://aip.scitation.org/journal/ltp


designated, respectively, as the yellow and green cubes in Fig. 1.
Parameters of the sample are presented in Table I.

It can be assumed that at T < TFM, ordered magnetic moments
begin to prevent the formation of FLC more intensively. This
process slows down significantly at T≤ T01, indicating the increas-
ing role of SC fluctuations in the FLC formation. Curiously, accord-
ing to our estimates, d01≈ 4.08 Å = d/4. This result suggests that
the forming quasicoherent FCPs restore the effective distance
between the conducting layers to its geometric value. Below T2D [ln
ε2D = –2.6 in Fig. 3(a)], a rapid increase in FLC begins, which
becomes very intense in the region of 3D fluctuations at T < T0 [ln
ε0 = –3.45 in Fig. 3(a)].

In all probability, this is not only due to the rapid increase in
the number of FCPs, but also to a sharp increase in the superfluid
density ρs in the region of 3D fluctuations,44,48–50 since near Tc,
FCPs are already covered by the Josephson interaction in the entire
bulk of the superconductor.17,26

We can thus assume that it is the interplay of magnetism and
superconductivity that is responsible for the unusual dependence of
ln σ0 on ln ε discovered in Dy0.6Y0.4Rh3.85Ru0.15B4. It should be
expected that the dependence Δ*(T), which is analyzed in the next
section, should also be unusual.

2.2. Analysis of Dependence Δ*(T)

In resistive measurements of HTSC cuprates, the pseudogap is
manifested as the deviation of the longitudinal resistivity ρ(T) at
T < T* from its linear dependence in the normal condition above
T*.23 This gives rise to excess conductivity σ0(T) (1). It is assumed
that, if there were no processes in the HTSCs causing the PG to
open at T*, then ρ(T) would remain linear up to ∼Tc. It is thus
obvious that the excess conductivity σ0(T) appears as a result of the
PG opening and, therefore, should contain information about its
magnitude and temperature dependence.

We also share the view that the PG in cuprates arises due to
the formation of local pairs (LPs) at T < T*.17,41–44 In this case, the
classical fluctuation theories of both AL and MT, which is modified
for HTSCs by Hikami and Larkin (HL),30 well describe the experi-
mental dependence σ0(T) in cuprates, but only up to T01, i.e.
usually in the range of ∼15 K above Tc.

5,17 Understandably, to
obtain information about Δ*(T), we need an equation that would
describe the entire experimental curve from T* to Tc and contain
Δ*(T) in an explicit form. In the absence of a rigorous theory, this
equation was proposed in:17,41

σ0(ε) ¼ e2A4(1� T=T*)(exp(�Δ*=T))

16�hξc(0)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ε*c0sh(2ε=ε

*
c0)

p , (9)

where (1 – T / T*) and exp (–Δ* / T) take into account, respectively,
the dynamics of LP formation at T≤ T* and their destruction near
Tc; A4 is a numerical coefficient that has the meaning of the
C-factor in the theory of FLC.17,26,32 Parameters T*, ε and ξc (0) are
defined from the analysis of resistivity and FLC. It is important
that other parameters, such as the theoretical parameter ε*c0,

51

coefficient A4, and Δ*(TG), can also be defined from experiment
within the framework of the LP model.

It must be emphasized that in HTSC cuprates, at T≤ T*, not
only do all the parameters of the samples change, but the density
of electronic states (DOS) at the Fermi level also begins to
decrease,52,53 which, by definition, is called the pseudogap.54 As
may be assumed, this also involves the rearrangement of the Fermi
surface,23,55 which breaks up into Fermi arcs below T*.50,53 It is
believed that a correct understanding of the PG physics should also
answer the question about the mechanism of SC pairing in HTSCs,
which remains controversial.17,22 However, we do not know of any
DOS measurements for Dy0.6Y0.4Rh3.85Ru0.15B4. Therefore, the
question of the PG appearance in this system remains open. Let us
analyze σ0(T) in Dy0.6Y0.4Rh3.85Ru0.15B4 in the framework of our
LP model using Eqs. (9) and (10), but without referring to Δ*(T) as
the pseudogap.

Analysis of the ln σ0–ln ε dependence (Fig. 4) shows that in
the temperature range of 41 K < T < 71 K, indicated by arrows at ln
εc01 = 1.64 and ln εc02 = 2.27, σ0–1 ∼ exp ε.51 This peculiarity turns
out to be one of the main properties of the majority of HTSCs.5,17

As a result, in the range of εc01 < ε < εc02 (insert in Fig. 4), ln (σ0–1)
is a linear function of ε with a slope α* = 0.14, which defines the
parameter ε*c0 = 1/α*≈ 7.14.51 This makes it possible to obtain reli-
able values of ε*c0, which, as established,5,17,41 significantly affect
the form of the theoretical curves shown in Fig. 4 at T >> T01.
Accordingly, in order to find the coefficient A4, calculations will be
performed using Eq. (9) and combined with the experiment in the
3D AL fluctuation region near Tc, where it is a linear function of
the reduced temperature ε, with a slope of λ = –1/217,41 (Fig. 4).
As seen in Fig. 4 and Eq. (9) with A4 = 11, ε*c0 = 7.14 and
Δ*(TG) = 3.5kBTc (red curve in Fig. 4), as expected, well describes
the experiment in the temperature range of T* to TG. An exception
is the temperature range from TFM to T0, where, as noted above, a
strong influence of magnetism is assumed. Curiously, in this tem-
perature range with T exceeding ln ε≈ –1.4, theoretical curve (9)
increases rapidly and, starting from ln (εFM) = 0.66, describes the
experiment perfectly well.

The correct value of Δ*(TG), which is used in Eq. (9), is found
by combining the theory with experimental points constructed as
ln σ0 from 1/T, as e.g. in Refs. 5, 41, and 46. In addition, it is
assumed that Δ*(TG) = Δ (0), where Δ is the SC gap.48,56 We
emphasize that it is the magnitude of Δ*(TG) that determines
the true value of the PG and is used to estimate the BCS ratio

TABLE I. Values of the parameters describing the specifics of σ0(T) in Dy0.6Y0.4Rh3.85Ru0.15B4.

ρ(10 K), Tc, Tc
mf, Tg, T0, T01, ATfl, d01, ξc(0),

C3DμOhm⋅cm K K K K K K Å Å

99. 8 6.4 6.62 6.67 6.8 9.4 2.8 4.08 2.67 ± 0.02 0.38
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2Δ(0)/kBTc = 2Δ*(TG)/kBTc in a specific sample.5,41,46 The best
approximation of the ln σ0–1/T relationship by Eq. (9) for
Dy0.6Y0.4Rh3.85Ru0.15B4 is achieved at 2Δ*(TG)/kBTc = 7.0 ± 0.1.
This value of 2Δ*(TG)/kBTc is typical for HTSC cuprates of
Bi1.6Pb0.4Sr1.8Ca2.2Cu3Ox (Bi2223) (Tc ≈ 110 K)57 and Bi2212
with various Tc,

58 but is somewhat unexpected for
Dy0.6Y0.4Rh3.85Ru0.15B4 with Tc= 6.4 K. However, it is significant
that the same value of 2Δ(Tc)/ kBTc ∼ 7.2 is obtained from the anal-
ysis of the Andreev spectra for Au–Dy 0.6Y0.4Rh3.85Ru0.15B4 con-
tacts in a zero magnetic field at T = 1.6 K (see Fig 2 in Ref. 14. Lee
us note that large values of 2Δ1(Tc)/ kBTc ∼ 9 (Δ1 ≈ 3.5 meV) and
2Δ2(Tc)/ kBTc ∼ 6.5 (Δ2 ≈ 2.5 meV) for FeSe single crystals with
Tc = 8.5 K, according to the authors, indicate a very unusual mech-
anism of SC pairing in FeSe associated with the band structure
specifics.59 Thus, the large value of ratio 2Δ(Tc)/ kBTc ∼ 7 in
combination with the relatively small value of Tc and a
large intrinsic magnetic moment of Dy indicates an unconven-
tional (possibly triplet10–15 SC pairing mechanism in
Dy0.6Y0.4Rh3.85Ru0.15B4, which is different from the BCS mecha-
nism.3–6 The obtained result allows us to explain the relatively
small value of ξc (0) = (2.67 ± 0.02) Å found in the experiment,
which is typical for HTSCs with strong coupling.5,17,32,51,56

Since cuprates reveal an abnormally large energy gap
Δ(0) = Δ0, the ratio 2Δ/kBTc ∼ 7 significantly exceeds the limit of
the BCS theory for d-wave superconductors (2Δ/kBTc ∼ 4.28).60,61

The large deviation of the 2Δ/kBTc ratio from the BCS theory can
be explained in the strong coupling theory,62–64 if a decisive contri-
bution to the pairing mechanism is made by delayed interactions
with bosons of low-energy Ω0 which is comparable with the Δ0
parameter.57 Among these theories, the most popular is the model
in which Cooper pairing in HTSCs is realized as a result of the
interaction between electrons and spin fluctuations.65–67

It is assumed that the so-called resonant spin mode makes a
significant contribution,68 which gives Cooper pairing a delayed
strongly coupled nature67,69,70 and makes it possible to explain the
observed large ratio of 2Δ/kBTc.

57,58 Spin-fluctuation interaction
leads to electron repulsion. However, if processes with high
momentum transfer predominate in the spin fluctuation exchange,
this may result in the formation of Cooper pairs with the d-wave
symmetry of the order parameter.65,67 In this case, Δ0 corresponds
to the maximum value of the energy gap.

The experimental proof of the d-wave symmetry of the energy
gap in cuprates (e.g. see Ref. 57 and references therein) served as a
strong argument in favor of the spin-fluctuation HTSC model.
However, recent findings of high angular resolution photoemission
spectroscopy (ARPES),71 and scanning tunneling spectroscopy72–74

showed that the pairing mechanism in HTSCs can have a weakly
coupled nature because the critical temperature Tc is defined by
ΔSC which is significantly lower than Δ0. As a result, 2ΔSC/kBTc ∼
4.3, which corresponds to the BCS theory for a d-wave supercon-
ductor.60 In this case, low-frequency spin excitations underlying
the spin-fluctuation model62–64,68 are not critical. Therefore,
despite the progress in the spectroscopy of bosonic excitations in
cuprates,61–64 it has not been possible, so far, to prove the effective-
ness of the interaction of electrons with low-frequency bosonic
modes, which could explain the observed large ratio of 2Δ0/
kBTc.

58,60,75 This conclusion, however, contradicts the results of
microcontact spectroscopy (MCS),58,75 as well as the conclusions of
the theory,76,77 from which it follows that 2Δ/kBTc ∼ 5 for YBCO
and 2Δ/kBTc ∼ 7 for BiSCCO Similar results are obtained from the
PG analysis in cuprates.5,17,41,46 Thus, the question remains open.

Unfortunately, similar studies have not been carried out for
Dy0.6Y0.4Rh3.85Ru0.15B4 Therefore, the mechanism of the SC state
implementation in these compounds is apparently even more
complex, especially if we take into account the large intrinsic mag-
netic moment of Dy ions. A large value of 2Δ*/kBTc ∼ 7, which is
not typical for such values of Tc, also speaks in favor of this conclu-
sion. It can also be assumed that the formation of excess conductiv-
ity in HTSCs, including Dy0.6Y0.4Rh3.85Ru0.15B4, corresponds
precisely to Δ0, which explains the large values of 2Δ/kBTc observed
in these compounds. We assumed that the temperature dependence
of the PG can provide an answer to some of the questions raised.

Solving Eq. (9) with respect to Δ*(T), we obtain

Δ*(T) ¼ T ln
e2A4(1� T=T*)

σ0(T)16�hξc(0)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ε*c0sh(2ε=ε

*
c0)

p , (10)

where σ0(T) is the excess conductivity experimentally measured
over the entire temperature range of T* to Tc

mf. The fact that σ0(T)
is well described by Eq. (9) (Fig. 4) suggests that Eq. (10) yields a
reliable magnitude and temperature dependence of Δ*. Figure 5
displays the analysis of Δ*(T) according to (10) and using the fol-
lowing parameters defined from the experiment: Tc

mf = 6.62 K,
T* = 167 K, ξc (0) = 2.67 Å, ε*c0 = 7.14, A4 = 11 and Δ*(TG)/kB = 22 K.
The obtained dependence is typical for magnetic HTSCs such as
EuFeAsO0.85F0.15,

18 FeSe0.94,
21 and, as can be seen, differs signifi-

cantly from the similar dependence for non-magnetic cuprates.17,26

The curve Δ*(T) (Fig. 5) depicts a number of features that are

FIG. 4. Dependence of ln σ0 on ln ε in the Dy0.6Y0.4Rh3.85Ru0.15B4 polycrystal
in comparison with Eq. (9) (solid red curve). Insert: parameter definition of
theory51 ε*c0 = 1 / α = 7.14 (see text).
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observed at the corresponding characteristic temperatures. Thus,
below T* = 167 K, a pronounced maximum is observed at
Tmax = 154 K, which is typical of magnetic superconductors.5,18

Then, a minimum follows at a temperature of Tmin ≈ 95 K. In FeSe
compounds,21,59 a similar minimum corresponds to a structural
phase transition from a tetra- to an ortho-phase at Ts ∼ 90 K, indi-
cating the possibility of a similar structural transition in
Dy0.6Y0.4Rh3.85Ru0.15B4. Below Tmin, Δ*(T) increases, showing a
wide maximum at Tpair ≈ 36 K, followed by a minimum at
T01 = 9.4 K. This behavior resembles the dependence Δ*(T) for cup-
rates and indicates the possibility of implementing the PG state in
the interval of T < Tmin, as is assumed in FeSe at T < Ts.

78 To
confirm this assumption, dependence Δ*(T) in Fig. 6 is plotted in
the temperature range of 0–100 K and 12–24 K along the Y axis.
Dependence Δ*(T) of this type, with a broad maximum at
Tpair≈ 36 K and a pronounced minimum at T01 = 9.4 K, is
typical of well-structured cuprates,17,41 which confirms the assump-
tion made. Thus, it can be expected that, below Tpair in
Dy0.6Y0.4Rh3.85Ru0.15B4, fluctuation Cooper pairs (FCPs) begin to
form, as in the case of cuprates.17,27–29,44 Accordingly, below
T01, the system goes into the region of SC fluctuations, in which, as
noted above, FCPs behave almost like SC pairs, but without long-
range ordering (the so-called ‘short-range phase correlations’). As a
result, below T01, dependence Δ*(T) in Dy0.6Y0.4Rh3.85Ru0.15B4
appears completely the same as in all other HTSCs: near Tc, as
always, a maximum is observed at T ∼T0 and a minimum at
T = TG (see the insert in Fig. 5). Below TG, there is a sharp jump of
Δ*(T) at T → Tc

mf, but this is already a transition to the region of
critical fluctuations, where the LP model does not work. Thus, the
LP model makes it possible to determine the exact values of TG
and, as a result, to obtain reliable values of Δ*(Tc

mf ) ≈ Δ*(TG) = Δ
(0)≈ 2 meV and 2Δ*(Tc)/kBTc ≈ 7. Notably, on Δ*(T), there is no

sharply defined peculiarity at the magnetic transition temperature
TFM = 19 K, except that Δ*(T) begins to decrease slightly more
intensively at T < 19 K than is observed in FeSe.21 However, strictly
speaking, the magnetic maximum observed in Fig. 3 at TFM (ln
εFM = 0.66), is no longer so noticeable in Fig. 4. That is, even on
the ln σ0–ln ε dependence, the peculiarity during the magnetic
transition is very weakly expressed.

At the same time, the form of dependence Δ*(T) in
Dy0.6Y0.4Rh3.85Ru0.15B4 near Tc, with a maximum at T ∼T0 and a
minimum at T = TG (see the insert in Fig. 5) is, in fact, the same as
the temperature dependence of the local pair density in HTSCs,

FIG. 5. Temperature dependence of the PG parameter Δ*(T)/kB for a
Dy0.6Y0.4Rh3.85Ru0.15B4 polycrystal. The insert shows Δ*(T) / kB in the region of
superconducting fluctuations near Tc. All characteristic temperatures are
arrowed.

FIG. 6. Temperature dependence of the PG parameter Δ*(T)/kB of
Dy0.6Y0.4Rh3.85Ru0.15B4 near Tc.

FIG. 7. Comparison of the experimental dependencies Δ*/Δ*max on T/T*
(rhombi) of a Dy0.6Y0.4Rh3.85Ru0.15B4 polycrystal with theoretical dependencies
〈n↑n↓〉 of T/W for the three values of the interaction U/W: 0.3, 0.4 and 0.6.22
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〈n↑n↓〉 calculated in the Peters–Bauer (PB) theory22 in the frame-
work of the 3D Hubbard model with attraction for various values
of temperature T/W, interaction U/W and the filling factor, where
W is the bandwidth. This allows us to compare the experimental
values of Δ*/Δ*max with the PB theory and estimate the value of
〈n↑n↓〉 in Dy0.6Y0.4Rh3.85Ru0.15B4 at TG. For this purpose, let us
bring the values of Δ*/Δ*max at TG in coincidence with a minimum,
and at T0 with the maximum of each theoretical curve calculated
for various values of U/W. The fitting results for the three values of
U/W are shown in Fig. 7. It can be seen that the best agreement of
the results, moreover in a wide range of T/W, 0 to 0.7, is observed
at U/W = 0.4. Hence, 〈n↑n↓〉 (TG) ≈ 0.35, which is noticeably
greater than 〈n↑n↓〉 (TG) ≈ 0.3 obtained for optimally doped
YBaCuO single crystals.38 This somewhat unexpected result can be
explained by two reasons. Firstly, the strong intrinsic magnetism of
Dy contributes to the growing number of PCFs. Here, it is assumed
that the role of magnetism in the SC pairing mechanism in
Dy0.6Y0.4Rh3.85Ru0.15B4 is very prominent. Secondly, as discussed
in the Introduction, there is a possibility of unconventional, e.g.
triplet, pairing in the superconductors8–11 whose strong magnetism
coexists with superconductivity, which appears to be another con-
tribution factor to the increase in 〈n↑n↓〉.

3. CONCLUSIONS

Temperature dependencies of the excess conductivity σ0(T)
and the possible pseudogap (PG), Δ*(T), were first studied in the
magnetic superconductor Dy0.6Y0.4Rh3.85Ru0.15B4. It was shown
that σ0(T) near Tc well described by the 3D Aslamazov–Larkin
equation, demonstrating a 3D-2D crossover with increasing tem-
perature. Using the crossover temperature T0, the coherence length
was measured along the c axis, ξc (0) = (2.67 ± 0.02) Å, which corre-
lates with the literature data for strong coupling HTSCs.5,17,32,38,78

The pronounced effect of magnetism is found in the unusual
dependence of ln σ0 on ln ε with a maximum at TFM ∼ 19 K,
which is associated with the system transition to the ferromagnetic
state with decreasing temperature.

The dependence Δ*(T) revealed a number of peculiarities
typical of superconductors admit the possibility of the superconduc-
tivity–magnetism interplay. This is a high narrow maximum at
T = 154 K, typical of magnetic superconductors, followed by a
minimum at Tmin≈ 95 K. In FeSe compounds, a similar minimum
corresponds to the structural phase transition from the tetra- to the
ortho-phase at Ts ∼ 90 K,21 indicating the possibility of a similar
structural transition in Dy0.6Y0.4Rh3.85Ru0.15B4. Below Tmin, Δ*(T)
again increases, demonstrating a broad maximum at Tpair≈ 36 K,
followed by a minimum at T01 = 9.4 K. This form of Δ*(T) is similar
to the temperature dependence of the pseudogap in cuprates,17,26

which indicates the possibility of implementing the PG state in
Dy0.6Y0.4Rh3.85Ru0.15B4 at T < Tmin, as is the case in FeSe at T < Ts.

78

It was shown that, below T01, Δ*(T) in Dy0.6Y0.4Rh3.85Ru0.15B4 is the
same as in all HTSCs with a maximum at T ∼ T0 and a minimum at
T = TG,

5,17,26 which indicates a common behavior of both magnetic
and nonmagnetic superconductors in the region of superconducting
fluctuations near Tc.

Meanwhile, the analysis of Δ*(T) in Dy0.6Y0.4Rh3.85Ru0.15B4
reveals a number of peculiarities. The first is an unexpectedly large

value of 2Δ*(Tc)/kBTc = 7.0 ± 0.1. It is remarkable, however, that the
same value of 2Δ(Tc)/kBTc ∼ 7.2 is obtained from the Andreev
spectral analysis of Au–Dy0.6Y0.4Rh3.85Ru0.15B4 contacts measured
in a zero magnetic field at T = 1.6 K.14 This result indicates a more
complicated mechanism of the SC state implementation in such
superconductors as compared to cuprates, especially taking into
account the large intrinsic magnetic moment of Dy ions. Secondly,
it is the high density of local pairs 〈n↑n↓〉 obtained by comparing
the experimental values of Δ*/Δ*max with the Peters–Bauer
theory.22 The measured 〈n↑n↓〉 (TG) ∼ 0.35 appears 1.17 times
greater than 〈n↑n↓〉 (TG) obtained for optimally doped YBaCuO
single crystals.38 This result can be explained by the fact that strong
intrinsic magnetism of Dy can contribute to the increasing number
of FCPs. In this regard, the role of magnetism in the SC pairing
mechanism in Dy0.6Y0.4Rh3.85Ru0.15B4 is assumed to be very impor-
tant. Furthermore, as discussed in the Introduction, the possibility
of unconventional, e.g. triplet, pairing in superconductors8–12

whose strong magnetism coexists with superconductivity can also
lead to the increase in 〈n↑n↓〉.
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