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SHORT NOTES

Electrical and thermal conductivity of the Ti3AlC2 MAX phase at low temperatures
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Electrical and thermal conductivities of a sample containing 96% of MAX-phase Ti3AlC2 and 4%

of TiC were experimentally studied in the temperature range of 15–300 K. The maximum thermal

conductivity is observed at approximately 75 K. As the temperature increases, the fraction of pho-

non heat transfer decreases from �90% at low temperatures to �40% at the room temperature.
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The development of novel multifunctional materials

with specific processing characteristics1–5 is one of the most

important goals of modern solid state physics.

The so-called MAX phases with a general formula of

Mnþ1A�n, where M is the transition metal, A is the element

of the III-A or IV-A subgroup of the periodic system, and �
is carbon or nitrogen, represent a highly promising class of

such modern materials.1,6–8 These compounds possess a

unique combination of properties of metals and ceramics,

such as high hardness, refractoriness and elasticity, as well

as good thermal and electrical conductivity.

Elucidation of the electrical and heat transfer mecha-

nisms in these compounds is of great interest, as this pro-

vides an important tool for testing the adequacy of numerous

theoretical models and identification of empirical ways to

improve their processing characteristics.

In the present work, the thermal and electrical conduc-

tivity of a Ti3AlC2 MAX phase sample was studied.

The sample was made by sintering the original powder

using a hot-pressing unit with simultaneous passage of alter-

nating current of the order of several kA along the pressing

axis through the graphite mold and the powder itself, which

resulted in both heating and cleaning of the surface of pow-

der particles from oxides due to microdischarges. The

obtained sample contained 96% of Ti3AlC2 and 4% of TiC.

The electrical resistivity of the obtained sample was

measured according to the standard four-probe method; the

thermal conductivity according to the monoaxial continuous

heat flux method, and the temperature decrease along the

sample by a copper/constantan thermocouple.

The experimentally determined results for the electrical

resistivity and thermal conductivity of the Ti3AlC2 sample in

the temperature range of 15–320 K are presented in Fig. 1.

The results for electrical resistivity at the studied tem-

perature range may be very accurately approximated using

the equation,9 which describes the electron-phonon and

electron-defect scattering

q Tð Þ ¼ q0 þ qs�d
ph Tð Þ ¼ q0 þ C3

T

h

� �3 ðh=T

0

x3ex

ex � 1ð Þ2
dx: (1)

Here q0 is the residual resistance; h is the Debye temper-

ature; C3 is the adjustable coefficient.

Minimum approximation error Dq/q � 0.5% was

achieved at the values of parameters q0 ¼ 36.7 lX cm, h
¼ 611.5 K, C3 ¼ 161 lX cm.

The calculated value of the Debye temperature is consis-

tent with previously reported data.10

We note that the temperature dependence of the resis-

tance of the sample is characterized by a small value RRR �
2 [RRR ¼ qph/q0 � q(300 K)/q0(4.2 K)], which indicates a

high concentration of defects.

The temperature dependence of the thermal conductivity

of the sample was maximal at Tm � 75 K.

The Wiedemann-Franz law applies in the region of elas-

tic scattering of electrons11
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ke � L0T=q: (2)

Here ke is the electronic thermal conductivity, L0 ¼ 2.45

� 10�8 WX K�2 is the Sommerfeld value of the Lorentz

number.

The conditions for elastic scattering of electrons are sat-

isfied at low temperatures, where elastic electron-defect scat-

tering is predominant. Therefore, q(T) � q0, ke � L0T/q0,

which results in ke � 1 W m�1 K�1 at T � 15 K. The com-

parison of this value with the experimentally obtained value

of the low-temperature thermal conductivity (� 10 W m�1

K�1) shows that 90% of heat is transferred by phonons at

low temperatures.

Elastic electron-phonon scattering predominates to the

right side of the thermal conductivity maximum at suffi-

ciently high temperatures.11 Here, q(T) � q0(1 þ aT) and ke

¼ L0T/q(T) � const. Estimation according to (2) results in ke

¼ 10 W m�1 K�1 at T � 300 K, which is approximately

60% of the experimental value of thermal conductivity

experimental at this temperature. Thus, approximately 40%

of the transferred heat is accounted for by phonons.

Consequently, the fraction of heat transferred by pho-

nons in the Ti3AlC2 MAX phase decreases with the increase

in temperature. This result is consistent with the conclusions

of the theory,11 since the electronic thermal conductivity is

constant at high temperatures and the phonon conductivity

decreases as 1/T.
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Fig. 1. Electrical resistivity (1) and thermal conductivity (2) of the Ti3AlC2

MAX phase. The symbols represent experimentally obtained values, the

lines are drawn for q(T) in accordance with (1) and for k(T) by eye.
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