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We investigated the properties of a system where the itinerant electrons coexist and interact with the preformed 
local pairs. Using the nonperturbative continuous unitary transformation technique we show that Andreev-type 
scattering between these charge carriers gives rise to the enhanced diamagnetic response and is accompanied by 
appearance of the Drude peak inside the pseudogap regime ω ≤ 2∆pg. Both effects are caused by the short-range 
superconducting correlations above the transition temperature Tc. In fact, the residual diamagnetism has been de-
tected by the torque magnetometry in the lanthanum and bismuth cuprate superconductors at temperatures up to 
~ 1.5Tc. In this work we show how the superconducting correlations can be observed in the ac and dc conductivity. 

PACS: 74.25.N– Response to electromagnetic fields; 
72.10.–d Theory of electronic transport; scattering mechanisms; 
05.10.Cc Renormalization group methods; 
71.10.Li Excited states and pairing interactions in model systems. 
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1. Introduction 

One of important aspects concerning the role of elec-
tron correlations in the cuprate oxides refers to the pseudo-
gap phase (existing above the transition temperature cT ) 
and its relationship with the true superconducting state [1]. 
Origin of the entire pseudogap state is still a matter of con-
troversy [2], but a number of experimental data [3–12] clear-
ly indicate that the superconducting correlations emerge 
gradually upon approaching cT  from above. Precursor sig-
natures are seen, e.g., in a weak diamagnetic response 
above the superconducting dome (reported by the torque 
magnetometry [4]) or the short-scale superconducting corre-
lations (detected by the early ultrafast spectroscopy [5] and 
the recent transient effects [13,14]). Physically these effects 
are driven by the preformed pairs which are correlated above 

cT  only on some finite spatial and/or temporal scales. 
Consequences of the short-range correlated preformed 

pairs can be also probed by the finite-frequency optical 

conductivity. Rich experimental data on the electrodyna-
mic properties [15,16] have been so far discussed in terms 
of the extended Drude model, determining the frequency-
dependent relaxation time ( )τ ω . Interpretation of the pre-
cursor effects within such framework is rather complicated 
because, on one hand, the depleted single-particle spectrum 
suppresses the subgap optical weight, and, on the other hand, 
appearance of the pair correlations gives rise to the zero-
frequency Drude peak [17], signalling a fragile superfluid 
stiffness. Similar fluctuation effects have been also report-
ed for the thin samples of the strongly disordered s-wave 
superconductors [18]. These physical processes have been 
studied within the diagrammatic approximation for the cur-
rent-current response function, using the dressed single 
particle propagators [19–21], imposing the selfconsistent 
conserving scheme [22] or inventing other sophisticated 
methods for the vertex corrections [23,24]. 

In this paper we address qualitative changes of the con-
ductivity driven by the preformed pairs, going beyond 
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the usual perturbative framework. For this purpose we 
adopt phenomenological scenario describing the local (pre-
formed) pairs coexisting and interacting with single (un-
paired) electrons. We treat on equal footing the boson and 
fermion degrees of freedom, by means of the continuous 
unitary transformation [25,26] that is reminiscent of the 
numerical renormalization group techniques [27]. Such non-
perturbative scheme has been used by us [28] to determine 
the response function beyond the BCS approximation [29]. 
Here we focus on its physical implications for the real part 
of the frequency-dependent conductance due to the pre-
formed local pairs. In particular, we show that the Drude-
like feature appears in the subgap (infrared) regime and it 
acquires more and more spectral weight upon approaching 

cT  from above. We confront this prediction with the exper-
imental data obtained for Bi2223 cuprates. 

2. Preformed pairs scenario 

Effects of the preformed pairs (of whatever origin) can 
be studied using the boson-fermion Hamiltonian 

 † †

,

ˆ ˆˆ ˆ ˆ=H c c E b bσσ
σ
ξ + +∑ ∑k k q q qk

k q
  

 ( )† † †
,

,

1 ˆ ˆˆ ˆ ˆ ˆ .g b c c b c c
N ++ ↓ ↑ ↑ ↓

+ +∑ k p k pk p k p k p
k p

 (1) 

This model describes the itinerant electrons (fermion oper-
ators (†)ĉ σk ) coexisting with the tightly bound pairs (boson 
operators (†)b̂q ), where ξk  measures the energy with respect 
to chemical potential µ and Eq  is the energy of preformed 
pairs measured with respect to 2µ . For treating the Bose–
Einstein (BE) condensed pairs (i.e., =q 0  mode) one can 
simplify (1) to the standard BCS Hamiltonian with 

=
,

ˆ
=

b
g

N −∆ − q 0
k k k  . 

It is the purpose of our study here to address the role of 
finite momentum pairs b̂ ≠q 0. 

Specific argumentation in favor for the boson-fermion 
scenario (1) has been discussed by various groups [30–37]. 
This Hamiltonian can be derived from the plaquettized 
Hubbard model using the contractor method [33]. Such mo-
del has been shown [34] to capture the Anderson’s idea of 
the resonating valence bond picture. The Hamiltonian (1) has 
been also deduced on phenomenological grounds [35–37] 
as realistic prototype for the correlated electrons (holes) in 
CuO2 planes. It also accounts for the resonant Feshbach 
interaction operating in the ultracold fermion atoms such 
as 6Li or 40K [38–40]. 

3. Single particle vs collective features 

For studying influence of the preformed pairs on the 
single-particle electron spectrum (and vice versa) we con-
struct the unitary transformation ˆ ( )U l , diagonalizing the Ha-

miltonian †( ) = ( ) ( )H l U l HU l  in a continuous manner. 
The transformed Hamiltonian ( )H l  evolves with respect to 
a formal parameter l  via the flow equation [25,26] 

 
ˆ ( ) ˆˆ= [ ( ), ( )]dH l l H l
dl

η  (2) 

with the generating operator 

 1( )ˆ ( ) ( )dU ll U l
dl

−η ≡ .  

Hamiltonians 0 1
ˆ ˆ ˆ( ) = ( ) ( )H l H l H l+  (where 0

ˆ ( )H l  describes 
the diagonal part and 1

ˆ ( )H l  is the off-diagonal term) can 
be asymptotically diagonalized 

 1
ˆ ( ) = 0lim

l
H l

→∞
 (3) 

applying the following generating operator [25] 

 0 1
ˆ ˆˆ ( ) = ( ), ( ) .l H l H l η    (4) 

During the unitary transformation all the model parameters 
are continuously renormalized to their asymptotic (fixed 
point) values [26]. 

Adopting this algorithm (4) we have constructed [41,42] 
the continuous unitary transformation for the model (1), 
choosing 

† †
0

,

ˆ ˆˆ ˆ ˆ( ) = ( ) ( )H l l c c E l b bσσ
σ
ξ +∑ ∑k k q q qk

k q
 

and 1 0
ˆ ˆ ˆ( ) = ( ) ( )H l H l H l− . The generating operator (4) is 

then given by 

 ( )† †
,

,

1 ˆˆ ˆ ˆ( ) = ( ) h.c. ,l l b c c
N + ↑ ↓

η α −∑ k p k p k p
k p

 (5) 

where , ,( ) = ( )[ ( ) ( ) ( )]l g l l l E l+α ξ + ξ −k p k p k p k p . Substitut-
ing (5) to the flow equation (1) one obtains [41] 

 
2

,ln ( ) = ( ) ( ) ( ) .d g l l l E l
dl + − ξ + ξ − k p k p k p  (6) 

This Eq. (6) implies an exponential decay of the boson-fer-
mion coupling , ( )g lk p  in the limit l →∞ . Simultaneously, 
the fermion and boson energies are renormalized according 
to the flow equations [41] 

 , ,
2( ) = ( ) ( ) Bd l l g l n

dl N − −ξ α∑k k q k k q k q
q

, (7) 

, , , ,
2( ) = ( ) ( ) 1 ,F Fd E l l g l n n

dl N − − − ↑ ↓
 − α − −  ∑q k k q k q k k q k

k
 

  (8) 

where ,
Fn σk  ( Bnq ) denotes the fermion (boson) occupancy. 

We have selfconsistently solved the Eqs. (6)–(8) for the fix-
ed charge concentration 
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tot ,
,

= 2F Bn n nσ
σ

+∑ ∑k q
k q

. 

The (asymptotic) dispersions ( )liml l→∞ξ ≡ ξk k
  and 

( )limlE E l→∞≡q q  revealed that [41,42]: 
a) the fermionic spectrum is gaped around µ with the Bo-

golubov-type quasiparticle branches existing below and 
above cT  (see Fig. 1), 

b) the low-energy bosonic spectrum is characterized 
above cT  by the parabolic function 2( ) / 2 Bmq  with tem-
perature-dependent effective mass Bm  (Fig. 2) which 
evolves at temperatures < cT T  into the sound-wave Gold-
stone dispersion | |sv q . 

We would like to emphasize that the Bogolubov quasi-
particle branches surviving above cT  have been later on 
confirmed experimentally by the angle resolved photo-
emission spectroscopy for the bismuth [9] and lanthanum 
compounds [10]. Similar effect has been also reported by 
the k-resolved radiofrequency spectroscopy for the ultra-

cold potassium atoms [44]. This typical superconducting 
feature has been observed in the normal state even in ab-
sence of the long-range pair coherence. 

The high- cT  cuprate oxides are nearly two-dimensional 
materials where the superconductivity is driven in CuO2 
planes. For this reason we can interpret the temperature 
dependent mass Bm  of the preformed pairs as a quantity 
related with the residual Meissner effect in the reduced 
dimensions [46]. This aspect has been recently emphasized 
by the ETH group [47] within the quantum Monte Carlo 
studies of the present model (1). Following the same rou-
tine we show in Fig. 3 the diamagnetic magnetization 

( )dM T  obtained from the continuous unitary transfor-
mation for the two-dimensional case with tot = 2n . We can 
notice that the increasing mobility of the preformed pairs 
substantially enhances the magnetization. This behavior 
can be independently explained by the direct calculation of 
the current-current response function (discussed in the next 
section). 

4. Effect of the preformed pairs on the response 
function 

The residual Meissner effect and the conductivity can 
be obtained from the response function , ( , )α βΠ τ ≡q

, ,
ˆ ˆ ˆ( )T j jτ α − β≡ − 〈 τ 〉q q  (where ,α β denote the Cartesian , ,x y z  

coordinates) with the current operator defined as 

 †
,,

= ,2

ˆ ˆ ˆ= c c + σσ+ σ ↑ ↓
∑ ∑q q k qkkk

j v  (9) 

and velocity 1−= ∇ εk k kv  . Within the continuous unitary 
transformation it is convenient to compute the current-cur-
rent response function , ( , )iα βΠ νq  using the statistical av-
erages with respect to the diagonalized Hamiltonian ˆ ( )H ∞ . 
This, however, requires that the current operator (9) has to 
be analyzed in the same transformation routine as the Ha-
miltonian. Some technical details concerning derivation of 

, ( , )iα βΠ νq  are outlined in the Appendix. In the asymptotic 

Fig. 2. (Color online) Enhancement of the preformed pairs’ mo-
bility 1 / Bm  with the decreasing temperature obtained from 
selfconsistent solution of the flow equations (7), (8) for the con-
stant charge concentration tot = 2n . The bandwidth D is used as 
a unit for energies. Inset shows the bosonic dispersion Eq  for 
a few representative temperatures. 

Fig. 3. (Color online) Residual diamagnetism induced above cT  
by the preformed electron pairs. Magnetization has been comput-
ed using ( ) 1 / ( )B

dM T m T∝  suitable for the two-dimensional 
hard-core boson gas [46] in analogy to quantum Monte Carlo 
(QMC) studies [47] of the present model. 

Fig. 1. (Color online) Schematic view of the gaped fermion spec-
trum with the Bogolubov-type quasiparticle branches surviving 
above cT . Results are obtained for the boson-fermion model (1) 
using the procedure discussed in Ref. 43. 
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limit l →∞  we obtain two contributions to the response 
function, from: (a) the BE condensed pairs and (b) the fi-

nite momentum preformed pairs (see Fig. 1 in Ref. 28). 
Explicit form of the response function is given by [28]

 ___________________________________________________  

 , ,, ,
2 2

1 1( , ) = ( ) ( )FD FDi f f
i iα β +

+ α + β + +

    Π ν ξ − ξ − +    ν + ξ −ξ ν − ξ + ξ   
∑ q q k q k q kk k k q k k q kk

q  

   

v v   

 , ,
1 ( ) ( )1 ( ) ( )

( )
FD FD

BE BE
f f

f E f
i EN

′+
′ ′ ′− +

′ ′+ −′

 − ξ − ξ
 + − ξ + ξ −  ν − ξ + ξ −

∑ k q k
k k q k k k q k

k q k k kk

 

 

  

   

 

1 ( ) ( )
( ) ( ) ,

( )
FD FD

BE BE
f f

f E f
i E

′+
′ ′− +

′ ′+ −

− ξ − ξ   − − ξ + ξ   ν+ ξ + ξ − 

k q k
k k k q k

k q k k k

 

 

  

 (10) 
 ______________________________________________  

with the Fermi–Dirac [ ] 1( ) = exp ( / ) 1FD Bf k T −ω ω +  and 
Bose–Einstein [ ] 1( ) = exp ( / ) 1BE Bf k T −ω ω −  functions, 
respectively. The coefficients 

 , , , , ,+ − − −≡ + +k q k q k q q k q k q       

 , , , ,− − + −+ +k q k q k q k q q    , (11) 

 ( ), , , ( ), , ( ),′ ′ ′+ − + − + − + −≡ − ×k k q k q k q q k q k q q    

 ( ), , , ,′ ′− −× −k k q k k q   (12) 

denote the asymptotic values of parameters introduced in 
the l-dependent current operator (A.1). This response func-
tion (10) generalizes the standard BCS result [29,45] tak-
ing into account the finite momentum preformed pairs 

Bn ≠q 0. They enter the response function through the terms 
proportional to , ,′k k q  and their influence leads to ap-
pearance of the Drude peak in the subgap optical conduc-
tivity (Fig. 4). 

Let us remark, that in the superconducting state the 
electrodynamic response is dominated by the BE-condens-
ed ( =q 0) pairs. In such situation the coefficients (11), (12) 
simplify to the usual BCS coherence factors 

2
, = ( )u u+ ++k q k q k k q kv v  and , , =

1 ( ) =BEf E
Nk k q q 0

2= ( )q qu u+ +−k k k kv v  [28]. Since the preformed pairs are 

concentrated in the low-momentum (long-wavelength) 
states (see Fig. 4), therefore some of these BCS features 
can be preserved also in the pseudogap state above cT . 

5. Fluctuation conductivity above Tc 

We now analyze how the preformed pairs show up in 
the ac (dynamic) conductivity defined by [45] 

 , ,
1( , ) = Im ( , ) .α β α β σ ω − Π ω ω

q q  (13) 

For specific considerations we focus on two-dimensional 
lattice version of the boson-fermion model (1), character-
ized by the tight-binding dispersion = 2 [cos ( )xt k aξ − +k

cos ( )]yk a+ −µ . In this expression t is the hopping inte-
gral, and the bandwidth D ≡ 8t is used as a unit for the en-
ergies. We assume that (initially) the preformed pairs are 
dispersionless (localized) = 2BE ∆ − µq  but they acquire 
some itineracy due to boson-fermion coupling , .gk p  We 
have constructed the numerical codes using the following 
set of parameters = 0B∆ , , = 0.08g D′k k . We have deter-
mined the chemical potential ( )Tµ  keeping the fixed 
charge concentration tot = 2n . 

We solved the differential equations (6)–(8) along with 
the flow equations (A.2), (A.5) for the parametrized cur-
rent operator (A.1). We have covered the Brillouin zone by 
a mesh of 500×500 equidistant points and solved the cou-
pled differential equations using the Runge–Kutta algo-
rithm. The flow parameter l l l→ +δ  has been changed 
with the flexible increment lδ  adjusted in order to control 
the ongoing renormalizations. In the initial stage of trans-
formation we used 2= 0.0001l D−δ , and later on we in-
creased its value as discussed by us in Refs. 37, 42. 

To avoid summations of the sharp delta functions we 
have imposed a small imaginary part in the analytical con-
tinuation 1

, ,( , ) ( , )i i −
α β α βΠ ν →Π ω+ τq q . Roughly speak-

ing τ can be regarded as some phenomenological scatter-
ing time, which we assume to be constant for the discussed 

Fig. 4. (Color online) Gradual accumulation of the preformed 
pairs at low momenta, leading to appearance of the Drude peak in 
ac conductivity. 
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temperature regime. In the normal state the dynamic con-
ductivity is characterized by the Drude model behavior

2 2( ) = / (1 )Nσ ω σ +ω τ  with the dc conductivity 
2= / F

N ne mσ τ . It obeys the important f-sum rule 

 2( ) = / Fd ne m
∞

−∞

ωσ ω π∫ .  

Figure 5 shows the ac conductivity obtained for the 
dirty limit 

,
1( ) ( , )x xN

σ ω ≡ σ ω∑
q

q  . 

Upon lowering temperature we observe that: (i) depletion 
of the single-particle (fermion) states near the Fermi level 
induces [through the terms (11)] the optical gap over ener-
gy regime 2 ;2pg pgω∈〈− ∆ ∆ 〉, (ii) accumulation of the 
low-momentum preformed pairs (bosons) contributes [via 
the terms (12)] more and more spectral weight to the 
Drude peak. Transfer of this spectral weight goes hand in 
hand with a gradual emergence of the diamagnetism 
(Fig. 3) in very much the same way as it does in the sym-
metry-broken superconducting state [29]. 

The ongoing transfer of the optical weight has the indi-
rect consequence on temperature variation of the dc con-
ductivity (0)σ . We observe that dc conductivity is substan-
tially enhanced with decreasing temperature in the 
pseudogap regime. This “fluctuation enhanced conductivi-
ty” is well known experimentally. As an example we show 
in Fig. 6 the temperature-dependent resistivity = 1/ (0)ρ σ  
of the bismuth cuprate superconductors. Subtracting the 
normal state value nρ  we can notice that the reduced resis-
tivity (enhanced conductivity) starts well above the transi-
tion temperature, already at * 2.2 cT T . As concerns the 
optical gap the ac conductivity this effect has been reported 
for various families of the cuprate superconductors [16] in 

the temperature and doping regime corresponding to the 
residual Meissner effect [17]. Similar fluctuation effects 
have been observed also in the strongly disordered thin 
classical superconductors [18]. 

6. Summary 

We have studied influence of the preformed local pairs 
on the diamagnetic response and the conductivity in the 
pseudogap region above cT . For specific considerations we 
have used the boson-fermion model, describing the itiner-
ant electrons interacting via the Andreev-type scattering 
with the preformed local pairs. We have shown that a gradu-
al suppression of the single particle states near the Fermi 
energy is accompanied by an increasing mobility of the 
preformed pairs (Fig. 2). The latter effect leads in turn to 
some fragile diamagnetic response of the system (Fig. 3). 
We have further supported this result by analysis of the 
preformed pairs contribution to the current-current re-
sponse function, that has been determined within the flow 
equation procedure beyond the perturbative scheme. 

We have also investigated the dynamic conductivity 
and found that the suppressed fermionic spectrum induces 
the optical gap in the infrared regime | | 2 pgω ≤ ∆  while the 
accumulation of the low-momentum preformed pairs gives 
rise to the Drude-like peak. Upon lowering the temperature 
there is more and more spectral weight transferred to the 
Drude peak at expense of deepening the optical gap. This 
processes driven by the low-momentum preformed pairs 
does amplify (via f-sum rule) the dc conductivity. Finally, 
we have confronted such fluctuation conductivity with the 
experimental data obtained for the Bi2223 cuprate super-
conductors. 

Fig. 5. (Color online) The dynamic conductivity ( )σ ω  revealing 
the Drude peak caused by the low-momentum preformed pairs 
and the optical gap | | pgω ≤ ∆  due to the depleted single particle 
states (i.e., pseudogap). Energy ω  is expressed in units of 
the pseudogap pg∆  at low temperature = 0.02T D . 

Fig. 6. (Color online) Temperature dependence of the dc resistivi-
ty of Bi2223 cuprate superconductors. Notice that the fluctuation 
conductivity occurs below * 2.2 cT T≈ . 
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Appendix A: Transformation of the current operator 

We briefly outline here the continuous transformation 
for the current operator (9). We individually study both 
spin contributions 

†
,,

2

ˆ ˆ ˆ= c cσ
+ σσ+

∑q q k qkk k
j v

 
because their evolution with respect to l  is slightly differ-
ent. From the initial ( = 0l ) derivative  

ˆ ˆˆ( ) = [ ( ), ( )]d l l l
dl

σ σηq qj j  

we conclude the following (l-dependent) parametrization 

 †
, ,,

2

ˆ ˆ ˆ( ) = ( )l l c c↑
+ ↑↑+


+


∑q q k q k qkkk

j v    

 † † †
, , ,, ( ), , ,

ˆˆ ˆ ˆ ˆ( ) ( )l c c l b c c+− ↓ − + ↓ ↑ − ↓
+ + +∑k q k p q k pk k q k p q

p
    

 †
, , , ,

ˆ ˆ ˆ( ) .F l b c c+ ↓ + ↑


+



∑ k p q k p p k q
p

 (A.1) 

The other spin contribution ˆ ( )l↓
qj  has the coefficient 

, , ( )lk p q  interchanged with , , ( )l− k p q  and vice versa. The 
new parameters are subject to the boundary conditions 

, (0) = 1k q  and , , , , ,(0) (0) = (0) = 0=k q k p q k p q   . Let 
us remark here, that restricting only to the BE condensed 
pairs (†) (†)

,
ˆ ˆ=b b −+ δp kk p 0  the constraint (A.1) exactly repro-

duces the standard BCS solution [28]. For arbitrary case 
we can derive from the operator equation 
ˆ ˆˆ( ) / = [ ( ), ( )]d l dl l lσ σηq qj j  the following set of flow equa-

tions 

 ( ),
, , , ,

( )
= ( ) ( ) Fd l

l l n n
dl + − − σ +

α + +∑k q
k q p q k p q p q k p

p


   

 ( ), , , ,( ) ( ) Fl l n nσ +
+ α + k p k p q p k p

 , (A.2) 

 ( ),
, , , ,

( )
= ( ) ( ) Fd l

l l n n
dl − − σ +

− α + +∑k q
k p p k q p k p

p


   

 ( ), , , ,( ) ( ) Fl l n n+ − − − − σ +
+α + k q p q p k q p q k p

 , (A.3) 

, ,
, , , ,

( )
= ( ) ( ) ( ) ( ),

d l
l l l l

dl + − −−α +αk p q
k q p q k q k p p q


   (A.4) 

, ,
, , , ,

( )
= ( ) ( ) ( ) ( ).

d l
l l l l

dl + − −−α +αk p q
k p k q k q p q p q


   (A.5) 

These complex equations can be either solved numeri-
cally or (with some compromise) analytically. The lowest 
order estimation of the coefficients −   is feasible 
for instance if we neglect renormalizations of the fermion 
and boson energies on the right hand side of the 
Eqs. (A.2)–(A.5). Substituting the exponential scaling  

2( )
, ,( ) e

E l
g l g

− ξ +ξ − +k p k p
k p k p   

these flow equations (A.2)–(A.5) can be solved iteratively, 
starting from the initial (boundary) conditions. Thus esti-
mated coefficients (A.4), (A.5) are given by [28] 

 
( ) 2

,
, 2

| |11
2 ( )

F Bn n g

E

+

+

 +
− + ξ + ξ −

∑
p k p k p

k q
p k p k p

    

 
( ) 2

,
2

| |

( )

F Bn n g

E

− + + −

+ − +

+
+ ξ + ξ − 

p q k p k q p q

k q p q k p
, (A.6) 

 ,
, , ,
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where ,X E +≡ ξ + ξ −k p k p k p . 
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