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The conductivity tensor of a layered conductor with the Dirac-type energy spectrum of charge
carriers placed in a quantizing magnetic field under the condition of normal skin-effect is
investigated using the method of quantum Kinetic equation. It is shown that under the cyclotron
resonance conditions there appear high-temperature quantum oscillations of conductivity, which
are weakly sensitive to thermal broadening of the Fermi level. We present the expressions for the
classical and high-temperature contributions to the conductivity tensor which determine the
conductivity in the range of not too low temperatures where the Shubnikov—de Haas oscillations
are vanishing. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4884523]

1. Introduction

Increased interest in graphene,’ which is fully justified
by the unusual physical properties of this material, has
resulted in the emergence of new experimental and theoreti-
cal studies of physically similar materials, in particular. such
as multi-layered graphene and well-known graphite.”* This
makes the studies of high-frequency characteristics of these
materials highly relevant. Thus. in Ref. 4, the Lifshitz transi-
tion in graphite has been experimentally observed using
cyclotron resonance and theoretically described. In Ref. 5
the results of measurements of the cyclotron resonance in
pyrolytic graphite in the geometry similar to the discussed in
this paper have been published.

Linear energy spectrum of charge carriers is character-
ized by a substantially uneven spacing under magnetic quan-
tization. If the cyclotron frequency depends strongly on the
number of the Landau cylinder and weakly on the momen-
tum projection on the magnetic field direction. high-
temperature quantum oscillations (HTQO) of the kinetic
coefficients become possible, which are rather insensitive to
thermal broadening of the Fermi step. The appearance of the
HTQO of the kinetic coefficients under the cyclotron reso-
nance conditions was first predicted in Ref. 6 in normal met-
als. However. rather stringent conditions required for the
emergence of HTQO make them unlikely to appear in con-
ventional conductors. At the same time the HTQO might
naturally appear in graphite and related materials for the typ-
ical values of parameters characterizing the electron energy
spectrum.

2. Formulation of the problem

Let us consider a layered conductor with the energy
spectrum of charge carriers in the form

ap- ,
e(p) = 1’0(04\12\‘ + aypy) — tcos (#) (1)
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where 7 is the Planck constant, « is the distance between the
layers, v, is the speed of conduction electrons within the
layer, ¢ is the overlap integral for the wave functions of elec-
trons belonging to adjacent layers, o; is the Pauli matrix.
This model has been proposed in Ref. 7 and takes into
account such essential features of graphite as the linear
dependence of energy on momentum in the plane of the
layers in a certain spectral region and strong anisotropy of its
electronic properties. An important advantage of the model
(1) is its simple form, convenient for analytical description
of the conductor properties. Equation (1) differs significantly
from the dependence of the energy of conduction electrons
in graphite proposed in the model by Slonczewski, Weiss,
and McClure.*” In particular, the model does not account
for small in-plane anisotropy within the layers, which results
in additional harmonics appearing in the cyclotron reso-
nance.”” The effects associated with the anisotropy within
the layers are not the considered in this paper.

Let us assume that the quantizing magnetic field By
= (0.0.By) is oriented along the normal to the surface of the
conductor, which is parallel to the layers. Let us consider the
current response of the conductor to the field of a circularly
polarized electromagnetic wave E~ = E, * iE, with the fre-
quency @ under the conditions of normal skin effect. We
assume that the following inequality holds

wt> 1, txe > ho. (2)
We limit ourselves to the case of not too low temperatures,
at which the following inequalities hold

ZeB 2B
Qg‘ = l()e Qh = 0 (3)

T=hQ, s, = q s
e et + &) ot —er)

Here, Q,, is the cyclotron frequency at the extreme cross
sections of the electron and hole regions of the Fermi sur-
face, respectively. In this temperature range, the usual
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Shubnikov-de Haas (SdH) oscillations are strongly sup-
pressed, and the electric conductivity, Eq. (1), is determined
by the classical contribution and the HTQO of conductance
arising under the conditions of quantum cyclotron reso-
nance.® The oscillations of this type are possible in samples
with high Qt. which may be justified due to rather high val-
ues of the cyclotron frequency in graphite.

To calculate the current response, the quantum kinetic
equation in the t-approximation is commonly applied. There
are a number of quantum oscillation effects which are very
sensitive to the dissipation mechanism. Thus, the scattering
by impurities can determine the amplitude of the quantum
oscillations of kinetic coefficients'® and also makes the
HTQO possible in the SdH effect in layered conductors, as
has been described in Refs. 11-13. These oscillations disap-
pear in the collisionless limit. However, the HTQO consid-

ered in this paper, which arise under the conditions of

quantum cyclotron resonance, exhibit the maximum magni-
tude in the collisionless limit, and the nature of the scattering
does not affect the mechanism of the oscillation.

3. Conductivity tensor
Let us write the quantum kinetic equation in the form

0 0
pp o l’l‘

v i

) i 1
—im + E(S" &)+ ]pw, = — eEvy,,  (4)

where e is the electron charge, E is the electric field, v, are
the matrix elements of the charge-carriers velocity in
the proper representation of the energy operator (1), and
p" = p"(&,) is the Fermi-Dirac function. After substituting
the values of p,',u in the equation for the current

J = e Sp[#;p'] ®)
we apply the well-known identity

F(Z) = [F(x)é(.\' — Z)dx,

similar to Ref. 10 (see Eqgs. (8) and (9) in Ref. 10). After cle-
mentary transtormations, the expression for the conductivity
tensor can be written in the form, which is not coupled to the
proper representation of the energy operator (1)

- dof
o) = — _q) ) 6
aij(w) = e (()) (6)

where
NE + hw) — p™E
®y(w) = 2ne’h [dE(p (B+ o) — o )>
Ticy
% Sp[#'0(E — € + he)i'S(E — )]. (7

Here

: b [at N

SE -2 =5-|6"(B) -G (B)]
and
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G (E)=(E—¢e+io)"

is the one-electron Green's function. The function ®@;(w)
determines the correlation function in the absence of scatter-
ing." The one-electron Green's function for the energy
spectrum of the charge carriers in the form of Eq. (1) can be
conveniently written as

E + tcos(ap. /h) + voR
[E + tcos(ap-/h) =id]* - v%léz‘
R =Gp, + Gyp,. ®)

G (E) =

It can be shown that the contribution v(,[é, which contains the
Pauli matrices and is off-diagonal in quasi spin indices. can
be neglected when the conductivity tensor is calculated for
the groups of charge carriers characterized by the high-n
Landau cylinders. As follows h om thc commutation relations
for the Pauli matrices, R — p> + p i (eBh/c)a.. Ttis well-
know that the cigenvalue problcm for the operator of kine-
matic momentum squared $ n(/if } ]33) in a magnetic field
leads to the quantization rule: s, — 2m(eBh/c)(n -+ 1/2),
where n is the Landau cylinder number, p =P — €A, and the
vector potential A describes the quantizing magnetic field By,
The Pauli matrix . in the denominator of Eq. (8) naturally
leads to an additional shift of the quantum oscillations of ki-
netic coefficients due to the linear nature of the energy spec-
trum (the Berry phase).

After the trace over the pseudospin indices in Eqgs. (6)
and (7) is calculated, the expression for the circular compo-
nents of the conductivity tensor ¢ = ¢, | i@y, can be writ-

ten as
bp €08 8eB l I [ p*E + ho) p”(E)]
o () =L prEm Z dp. | dE =
x |G} (E-+10) - G; (E+ 10)|[G(E) - G (B)],
)

where the arrow pointing upward | corresponds to the projec-
tion of pseudospin “up” with the eigenvalue of the matrix a.
equal 1, and, respectively, —1 for a spin “down”. Summation
over the conventional spin is accounted by the factor of 2 in
the equation.

4. Electrical conductivity of a conductor in the presence of
strong thermal broadening of the Fermi level

At low temperatures, the quantum oscillations of conduc-
tivity can be determined by the contributions of the charge-
carrier groups near the extreme cross sections. However,
under the conditions where the temperature exceeds the
energy difference between the adjacent Landau levels, the
thermal broadening of the Fermi level does not necessarily
results in the complete disappearance of the quantum oscilla-
tions, which can be determined by a high-temperature
contribution.

Let us present the expressions describing the conductivity
of a conductor at high temperatures, as per Eq. (3). In the
presence of strong thermal broadening of the Fermi level. the
conductivity tensor is determined by the classical and
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high-temperature quantum contributions. The non-oscillating
dependence of these contributions on the Fermi energy (but
not on the magnetic field for the high-temperature contribu-
tion) leads to a substantial simplification of Eq. (9). Thus, it
can be shown that these contributions arise only in the term of
Eq. (9) which contains the product G| (E +hw)G| (E).
Evaluation of the integral (6) for the classical part of the elec-
trical conductivity and HTQO is reduced to the residue ' —
@ — i/t = 0 only. Thus, the expression for the conductivity
tensor which describes the classical part and HTQO (but not
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the high-frequency analogue of the SdH oscillations) can be
written as

217 2eB
o) A Z[dp:G{'(SF + ho)G7 (). (10)

T e(2nh)’ 5

After the Poisson formula is applied and the integrals in Eq.
(10) are evaluated, the following expression for the classical
part of the conductivity tensor can be obtained:

) [arccos(er/t) — arccos(—e&x /1)]

(11)

N 2ie*\/(t +er)(t — & e 2
ot (o) = ( ’F)( F) i 1
amh”w* 2amh”m* 2hem*ep
i A2 4
: ie (") ( €1 )
4nla  \hor VIt +er)(t — er) (0 — Qo) (0* + Q)

where

®(x) = artanh\/x + artanh/1/x, ©" = +i/t,

€1 = vo\/2eBh/c (12)

is the energy difference between the zeroth and first Landau
levels. Fig. 1 shows the dependence of the classical part of
o on the ratio m/Q, for several values of Q,t.

The jump in the real part of the conductivity at @ = Q,
is due to the fact that the range of cyclotron frequencies on
the electron part of the Fermi surface is limited by the in-
equality Q > Q,. Since the cyclotron frequency does not
depend on the momentum component p.. the resonance
region of momentum space for which the following inequal-
ity holds:

lo—Q| <1/, (13)

is cylindrical, and the divergence which arises near o = Q,
(Fig. 1) in the collisionless limit is associated with the reso-
nance region touching the Fermi surface at its extreme cross
section.

4
— 0,2=1000 ()
3t — Q=200 (2)
2 — 01=100 (3)
5 Q=30 (9
J“ 1
+— 0 HOSS
O i, 143N -= Qr=1000(1)
S | I S5’ -= Q=200 (2)
ImeYo. \ -~ Qa=100 (3)
-2 o “-": . L ==, Q1=30 (#)
08 09 10 11 12 13 14 15
@/Q

e

FIG. 1. Dependence of the conductivity tensor component ¢ (normalized
by the constant g, = e /( 87%oh) on the ratio /Q, for several values of the
relaxation time, in the case of 1/7Q, = 50 and &p/t = 0.25.

1 ®[(1 = F.F)z(w" + Q)

(f + 8;:)2((,()" — QB)

The geometrical shape of the region of momentum space
where the resonance condition (13) holds for charge carriers
and that of the Landau cylinders coincide. Thus. the shape of
the spectrum (1) is extremely favorable for the emergence of
quantum conductance oscillations under the cyclotron reso-
nance conditions. Geometric similarity of the resonance region
and the contour of the quantum magnetic levels leads to the
appearance of the high-temperature quantum oscillations of ki-
netic coefficients. Indeed, the de Haas—van Alphen (dHvA) or
SdH oscillations experience strong temperature suppression of
their main harmonics since their maxima are defined by the
instances at which the intersection of the Fermi surface in the
vicinity of the extreme sections and the Landau cylinders (tak-
ing into account the phase shift associated with the curvature
of the Fermi surface near the cross sections) occurs. Therefore,
thermal broadening of the Fermi level results in a broadening
of the oscillation peaks. At the same time, the resonant absorp-
tion of the electromagnetic field is determined by the effective
charge carriers in the region of thermal broadening of the
Fermi level which simultaneously satisfy the resonance condi-
tion (13). Thus, the broadening of the effective region is lim-
ited by the resonance condition, and, for

s —1
= 1(2)
7 \ 8/,

only results in widening this region in the direction p., while
not affecting the sharpness of the oscillation peaks.

On the other hand, a significant non-equidistance of the
spectrum as well as sufficiently high cyclotron frequency in
graphite and related materials lead to the fact that the thick-
ness of the cylinder “wall”, which limits the resonance
region, may be less than the distance between the adjacent
Landau cylinders for the physically reasonable parameters of
the problem.

In the case when the region of the momentum space
which satisfies the resonance condition is far enough from
the features of the Fermi surface, i.e. the following inequal-
ities hold
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hQ? B
et Ly, (14
3 &F hic

equation (10) leads to the following asymptotic expression
that defines the high-temperature oscillations of the conduc-
tivity tensor:

@
de

| — Q.| > hQ,

etQy? 1

ahta(o +if7)’ D e
w+ijt ¢

o : Q
X (— 1) exp | —2mik ——— |, (15)
2 "[ T ,./T)z}

o (w) =

where

Q/ % 2-Qth .

ct Q. +9Q,
It is easy to see that the high-temperature oscillations
described by Eq. (15) are sensitive to the relaxation time t
and only possible in sufficiently pure samples. Their ampli-
tude will not be vanishingly small if

2
Sl (16)
(‘(ﬁw)2

wt=

i.c., when Qrt is at least comparable with the number of
Landau levels below the resonance region, which is not too
high in semimetals and, in particular. graphite. On the other
hand, the condition (16) can be satisfied in a conductors with
high cyclotron resonance frequency at the resonance condi-
tion » ~ Q. Graphite and multilayer graphene are character-
ized by a fairly high cyclotron frequency corresponding to
the cyclotron masses m ~ 0.05 M, on extreme sections,
where M., is the electron mass. In Ref. 13 the observation of
cyclotron resonance with the cyclotron frequencies of the
order of 0.1-0.25 eV for the groups of carriers with the
Landau cylinder indices of about 10 has been reported al-
ready at magnetic fields of 0.1 T. Under such conditions, the
inequality (16) will be valid already at i/t < 0.01 eV.

The HTQO are weakly sensitive to thermal broadening
of the Fermi step. However, at relatively high temperatures
they will be suppressed due to scattering by phonons, which
is particularly important for the case of the high cyclotron
frequencies, as the latter implies the competition of the
HTQO and low-temperature contributions at a higher tem-
peratures. Analysis of the effect of phonon scattering is not
the subject of the present work, however, following the esti-
mates given in Ref. 6 (see the first equation in Sec. 5), the
abnormally high Debye temperature of graphite should
reduce the influence of phonon scattering.

Fig. 2 shows the quantum oscillations of the real part of
conductivity which are associated with the resonant absorp-
tion of electromagnetic waves. Disappearance of the oscilla-
tory dependence at high frequencies corresponds to the
frequency of the electromagnetic wave matching the maxi-
mum value of the cyclotron frequency which corresponds to
the transition between the zeroth and first Landau levels.
Thus, the high-temperature oscillations of the conductivity
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FIG. 2. High-temperature quantum oscillations of the conductivity tensor
component ¢, normalized by the constant g, = e /{8n%ah), for several val-
ues of the relaxation time in the case of 1/hQ; = 50 and &g/ = 0.25.

tensor component ¢ are limited to the frequency range of
electromagnetic waves

2eB
Q <w< 1’0\/‘—. (17)
he

The oscillation peaks appear when A matches the
energy difference between the adjacent Landau cylinders,
i.e., when 1Q,/(fiw?) = (n+1/2),n=0,1,2,3...

5. Conclusions

Drawing on the example of the model energy spectrum,
it is shown that in layered conductors with a linear energy
spectrum within the plane of the layers, quantum high-
temperature conductance oscillations may appear under the
conditions of cyclotron resonance. This type of conductors
includes multi-layer graphene and graphite. The effect is not
limited to this type of conductors, however its observation in
conventional conductors is considerably more difficult, as it
requires fulfilment of the criteria

0Q
as

g
=
eBlit

Pi

oQ

| = I.’BAQ
a])B

£ — (18)
g T

where vy is the projection of the velocity vector on the direc-
tion of magnetic field. The cyclotron frequency Q is consid-
ered as a function of the projection of momentum on the
direction of the quantizing magnetic field pg. and § is the
cross-sectional area in momentum space. The quantity AQ is
equal to the difference of the cyclotron frequencies of the ad-
jacent magnetic quantum levels at a fixed value of pg. The
independence of (S. pg) on pg in the model (1) results in the
fact that the HTQO are insensitive to the thermal broadening
of the Fermi level. However, in real conductors, the condi-
tions for the emergence of HTQO will not be as favorable,
and the violation of the first inequality in Eq. (18) will lead
to the appearance of an exponentially strong damping of the
oscillations. Inequality (16) for the model (1) and the second
inequality in Eq. (18) limit the observation of HTQO to the
samples of high purity.

In the materials of graphite family, the HTQO can be
described in terms of the model (1) if the resonance condi-
tion | — Q| < 1/ is fulfilled for a group of charge carriers
near the self-intersection points of the Fermi surface, where
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the electron energy spectrum is close to linear. Estimates for
graphite show that this condition corresponds to the cross
sections of the Fermi surface, the area of which is less than
Sg ~ 10" em™2 Good agreement of the oscillation pattern
with the results of the present work is expected in the
frequency range o > wy = B, where o = eBuo/ (c\/fiS;)
~ 10" Hz/T, i.e., at characteristic frequencies which are at
the border of submillimeter and infrared ranges.

In the case of a linear energy spectrum, the cyclotron
mass exhibits a square-root dependence on the Landau cylin-
der number n: m. = (h/vy)\/2n(eBhi/c). Its value in the vi-
cinity of the Dirac point is significantly lower than that on
the extreme cross sections. Thus, the discrete nature of the
energy spectrum can manifest itself near the Dirac points in
the magnetic fields \/nf times lower than those in the cases
of SdH and dHvA oscillations. Here, n is the cylinder num-
ber corresponding to the groups of charge carriers at the
extreme sections of the Fermi surface.

The stringent conditions required for the appearance of
the HTQO and described by Eq. (18), make it difficult to
observe the HTQO in traditional conductors. At the same
time, these conditions can be met in graphite and related
materials due to their quasi-2D nature and non-equidistant
energy spectrum of the charge carriers. Relatively small
value of the cyclotron masses in these conductors makes
also possible the conditions (16) and (18), which are neces-
sary for the emergence of these oscillations.
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