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The cyclotron resonance in a tilted magnetic field in quasi-two-dimensional organic metals is stud-
ied under conditions of strong spatial dispersion. It is shown that, as opposed to ordinary metals in
quasi-two-dimensional conductors, a periodic dependence of the impedance on the reciprocal of the
magnetic field shows up in the first approximation with respect to the small parameter equal to the
ratio of the depth of the skin layer to the electron Larmor radius. Under resonance conditions in the
collisionless limit the conductivity has a square-root singularity, while the amplitude of the
oscillations in the impedance increases as the anisotropy parameter of the Fermi surface decreases.
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In 1957. A. A. Galkin and P. A. Bezuglyi discovered the
Azbel-Kaner cyclotron resonance’ in tin and lead.”* Small
resonance peaks were observed against the background of a
smooth dependence of the absorption of electromagnetic
waves on a sufficiently high magnetic field H parallel to the
sample surface. These papers' ™ stimulated intense study of
the resonance absorption of microwaves in metals in many
countries. Experimental studies of resonance high-frequency
phenomena turned out to be a reliable spectroscopic tech-
nique for determining the characteristics of the electron
energy spectrum of metals. According to the Azbel-Kaner
theory' the resonance field H,. yields important information
on the extreme effective mass m* of charge carriers with the
Fermi energy ¢r. Under the conditions of the anomalous skin
effect, when the depth § of the skin layer is considerably
smaller than either the mean free path of the conduction
electrons or the diameter of their electron orbit 27, a mag-
netic field parallel to the sample surface will repeatedly
return the charge carriers to the skin layer. In this case the
conduction electrons interact resonantly with a high fre-
quency electromagnetic field when the frequency @ of
the field is a multiple of the cyclotron orbital frequency
wy = lelH/(m"¢) (e is the electronic charge and ¢ is the
speed of light) of the electrons. In a magnetic field that is
tilted by a small angle relative to the sample surface, the res-
onance frequencies undergo Doppler splitting owing to drift
of the charge carriers in the depth of the metal. When the tilt
of the field is large. the resonance vanishes in the first
approximation with respect to the small parameter d/ry, i.e.,
the oscillatory dependence of the impedance on H~' shows
up only in higher order terms with respect to 6/rg."

In low-dimensionality conducting structures, such as or-
ganic wires based on tetrathiafulvalene. dichalcogenides of
the transition metals, graphite, etc., resonance phenomena
during absorption of electromagnetic waves with lengths
comparable to the charge carrier mean free path show up
more distinctly, since almost all the electrons on the Fermi
surface (FS) are involved in their formation and not a
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isolated group, as in ordinary metals. Among materials of
this type, organic wires occupy an important place, with
their complicated chemical composition and a distinct
quasi-one- or -two-dimensional anisotropy in their kinetic
coefficients owing to their crystal structure. The best
known examples of these materials are the salts of tetra-
thiafulvalene (TTF), bis(ethylenedithio) tetrathiafulvalene
(BEDT-TTF). and tetraselenatetracene (TST). Interest in
low-dimensional wires of organic origin arises from sev-
eral of their distinctive properties, such as low dimension-
ality, a large variety of phase states, the existence of a
superconducting phase, and the possibility of varying the
ground state by means of comparatively weak external
interactions. In a number of organic compounds (e.g., the
BEDT-TTF salts) ion radials of the organic molecules
form conducting layers alternating with layers of counter
ions. Experimental observations of high frequency
resonances’ " and the Shubnikov-de Haas and de Haas-
van Alphen effects'’ " in layered organic structures indi-
cates that their electrical conductivity is caused by a group
of fermions analogous to the conduction electrons in ordi-
nary metals. The FS of these conductors is open with
slight corrugation along the normal to the layers; it can be
in the form of multiple sheets and consist of topologically
different elements, such as cylinders and planes. Studies
of galvanomagnetic effects'>'” show that the Fermi surfa-
ces of the salts (BEDT-TTF),IBr, and (BEDT-TTF),l;
consist of just a single slightly corrugated cylinder. The
anisotropy of the FS is characterized by a small parameter
n that is on the order of the ratio of the characteristic
velocities of the electrons along the normal to the layers
and in the plane of the layers.

High frequency absorption in organic wires in high mag-
netic fields differs in several ways because of the strong ani-
sotropy of the FS. Collisionless absorption is caused by
electrons whose velocity v satisfies the equation

w — nowy —kvp =0, (1)
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where k is the wave vector, v = (v) is the drift velocity,
the bracket {...) denotes averaging over the period T =
2n/wy of the electron motion in the magnetic field. Drift
of the electrons leads to a Doppler shift in the resonance
frequencies for a varying electromagnetic field and to
Landau damping. If kvp < wy, then Landau damping can
be neglected and the resonance absorption is independent
of the direction of the magnetic field. Although vy is on
the order of the characteristic velocity in the direction of
the lowest conductivity, the displacement of an electron
over the period T can exceed the skin depth d ox A !. In
that case kv is on the order of wy and the electron drift
has a significant influence on resonance absorption of a
high frequency field. In particular, the position of the
Landau absorption regions depends on the orientation of
Hy, since vp is an oscillating function of the angle ¢
between the magnetic field and the direction of the minimal
conductivity. As a result, the conditions for strong spatial
dispersion now include angular oscillations of the high fre-
quency conductivity in the plane of the layers and of the
surface impedance owing to the angular dependence of the
electron drift velocity.'® In this paper we study the reso-
nance absorption of high-frequency electromagnetic fields
in organic metals with different values of the FS anisotropy
parameter 1 under conditions such that Landau damping is
significant. A periodic dependence shows up in the first
approximation with respect to the small parameter o/r.
Under resonance conditions in the collisionless limit, the
conductivity has a square root singularity and the amplitude
of the oscillations in the impedance increases as i is
reduced.

We choose a coordinate system XYZ such that the z axis
is parallel to the direction of the minimal conductivity and the
x axis is perpendicular to Hy = (0, Hysin ), Hycos¥)) and
the wave vector k — (0, ksin ¢, kcos ¢p). We also use another
coordinate system x&( in which the ¢ axis is parallel to k.

The electric field inside the wire is determined by the
Maxwell equation

PE(E)  dmior . .
# ' Cgmji(‘;)~ 2)
S

and by the condition that current does not flow through the
boundary of the sample

Jje(&) =0,

which follows from the equation divj = 0. Equation (2)
must be supplemented by a kinetic equation for the distribu-
tion function of the conduction electrons and the material
equations which relate the current density to the electric
field.

We continue the electric field E(E,f) = E(&)e ' and
current density j(&,¢) = j(&)e ™ evenly into the region
£ <0 outside the conductor. The equations for the Fourier
components are

4mio
I2E; (k) + 2E(0) = :;” k).
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0
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Here we use the fact that the derivative of the electric field at
the surface of the conductor undergoes a jump from E/(0) to
—E/(0).

In a tilted magnetic field the resonance part of the cur-
rent density is produced by electrons that do not collide
with the boundary of the sample. Even for purely mirror
reflection the projection py of the momentum is not con-
served and after colliding with the surface an electron goes
into another orbit. If 5ry ~ 4, then there are no electrons
which can periodically be reflected from the conductor sur-
face as they move (the so-called “jump” trajectories) and
thereby generate a resonance in the high-frequency conduc-
tivity. For this reason we neglect the contribution to the
conductivity tensor a;; of the electrons that collide with the
surface and write the Fourier component of the current den-
sity in the form

Jilk) = ay(k)&;(k), “4)
where
2le*H
O',;,'(k) = _|_|_‘0‘
(27h) ¢
2?!/“)” =
L LT, v !
x|dpy |1 —exp|i—a —i dikv(r')
A Wy i
0
2wy 2wy
X [ dtvi(1) dtyvi(t — ty)
0 0
i’
xexp| it —i [dt' kv(?) |. (5

-4

Here @ = @+ i/t and 7 is the mean free time of the elec-
trons. Under resonance conditions @ = nwy, wyt > 1, and
in a magnetic field parallel to the conductor surface the cur-
rent density (4) exceeds the current density owing to electron
collisions with the surface by a factor of B wyrt: that is, in
this case Eq. (4) will be asymptotically accurate.

On eliminating the Fourier component of the longitudi-
nal current, £;(k), from Eq. (3), we obtain

DyE)(K) = {klé,-j i (o,;,(/q . 62”&)“) }
x &;(k) = 2E;}(0), (©6)

where {i.j} = {x,{} and J; is the Kronecker symbol.

The main quantity characterizing the kinetic properties
of metals in a high frequency electromagnetic field is the
surface impedance tensor

8i b
Zij(w) = fi”j dk D (e, k),

2
0

which relates the total current in the metal to the tangential
components of the electric field at the sample surface, where
the tensor D;; is defined in Eq. (6) and Di; ! is the inverse of
D,','.
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In order to obtain simple analytic expressions for the
conductivity and surface impedance, we use a model for
the electron energy spectrum that corresponds to the
approximations of weak coupling in the plane of the layers
and strong coupling for electrons belonging to adjacent
layers

Y gycos—. (7)

Here gy = nvpepo < &p is the overlap integral for the electron
wave functions, vi = 2&p/m, m, and m is the effective mass.

When 5 tg # < 1, in the first approximation with respect
to 1] the cyclotron frequency

wn = (|le|Ho/mc) cos ¥,

is independent of the projection py; of the momentum in the

magnetic field direction and the components of the electron
velocity v\, 1! are the trigonometric functions

V_E,O’(!) = —vpsin (wpyt), v_ip)(l) - vecos (apyt) -

The velocity perpendicular to the layers is given by

W)
v;(£) = nvg sin (,;IL e )tgﬂ)

0 cos 1) Po

If ¥ is close to 7/2, then the closed intersections of the FS
with the plane py = const are highly elongated and an elec-
tron cannot make a full turn in its orbit in momentum space
over the mean free time. Thus. in the following we assume
that ntgd < 1.

When the skin effect is strong, i.e., kv sin ¢ > wy, o,
the integrals with respect to ¢ and ¢; in Eq. (5) can be calcu-
lated by the stationary phase method.'” The stationary points
are determined from the equations

Wiy =v()sing =0, v(t—n) =0,

since kv. =~ nkvg < kvg. The largest component of the ten-
sor ag; is . which is proportional to (kl'o)", where
ro = ve/wy. The expansion in powers of the components
@y, i = X, y,z begins with terms of a higher order in (krg) .
|7y |2 is small compared to |6.0,|. The components
(i = x,y) are proportional to #, and ¢.. x n°. Therefore,
in the case examined here the asymptote of the conductivity
tensor a;; becomes diagonal.

In the first order approximation with respect to the small
parameters (kr())_' and 1. the largest component of the con-
ductivity tensor is given by

i os = (@ — (kv)) —sinR
L, cos ={w — —
(T.\:\'(k ) = 3 ~ [ d/j w‘? T -
Al wpkyro | sin 2 (@ — (kv))
il

where w, = \/4mnge? /m is the plasma frequency, ng is the
electron density

. ()

m/2
Ry = ;! [ dokv (@) = 2kyvp /wy = kdp,

= rz,/?
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¢ = oyt, dy = 2rgsin ¢ is the displacement of an electron
along the & axis over a half period 7/wy, v = v — (v), and
f = pu/(pocosd)). The average (kv) in the first approxima-
tion with respect to 7 is given by

(kv) = nkvpJo(a)(sin ¢ tg d + cos ¢) sin fi, 9)

where o = (mvg/po)tg ) and Jo(2) is the Bessel function.
In the collisionless limit 7! — 0, Eq. (8) can be written
as

»? 1 — (—1)" sin(kdp)
wedoy | \/ [nkyvedo(2)*(—w — nay)?

Oyx =

I sgn(w — n"op)[1 — (—1)" sin(kdo)]
' \/(w = n”wH)2 - |’]k1\’[:j()(&)l2

(10)

The sum in Eq. (10) is taken over n' and n" such that the
inequalities

(0—noy) —kv)> <0 and (o —n"wy)’ — (kv)> >0,

respectively, are satisfied and k; = k(sin ¢ptg ) + cos ¢).
Terms with the same absolute magnitude and opposite sign
in 7" are assumed to be combined in a single term for abso-
lute convergence of the series. The conductivity has sharp
maxima when the resonance absorption condition (1) is sat-
isfied. For the corresponding values of @ and k the
impedance
oG
8iom [ dk

2 ) k2 — dmicre20,,(k)
0

Ly = — =R —iX, (11)

takes a minimum value. The real and imaginary parts of the
impedance Z,, are plotted as a function of @w/my in Fig. 1
for wt=20 and different values of the anisotropy
parameter 1.

The model electron energy spectrum (7) can be used for
a graphical representation of the resonance dependence of the
surface impedance on the external magnetic field. For an ar-
bitrary FS in the form of a slightly corrugated cylinder the
shape of the resonance curves changes slightly. but the previ-
ous qualitative resonance behavior of the impedance is
retained.

The characteristic feature of high frequency resonan-
ces in layered conductors is a small difference in the
periods of the electron motion in different intersections
of the FS with a plane py — const. Unlike ordinary met-
als. for which kvp > @y, in quasi-two-dimensional wires
in a tilted magnetic field the oscillatory dependence of
the impedance on H;' shows up in the first approxima-
tion with respect to the parameter d/ro. When
kvp =~ nkvg ~ @y, for resonance conditions the conduc-
tivity has a square root singularity, while the amplitude
of the oscillations in the impedance increases as the ani-
sotropy parameter of the FS becomes smaller. This latter
circumstance is related to a reduction in the Landau
dampine. In conductors with small anisotropv parameters



Low Temp. Phys. 40 (7), July 2014

V. G. Peschansky and D. |. Stepanenko 665

n=0.03

1.0} n=0.005
0.9t
& 0.8
=2
0.7t
0.6}
0'5 il 1 1 1 1
1 2 3 B 5
/0y

1 1

1 2 3 4 5
/oy

-

FIG. 1. R/Zy and X/Z, as functions of @/, where Zy = 8(_.')/(‘:k,) and ky= (2(-‘)}32(0/ \'Ff:)” 3 for ot =20, kovple =50, ¢ =n/6, ¢ = nf4, mve/po =2, and various
I

values of 7.

nkvp < oy, for those directions of Hg such that vj is
close to zero, there is no Landau absorption and even
under conditions of a strong skin effect the cyclotron
resonance has the same intensity as in a magnetic field
parallel to the sample surface.

In this paper we have primarily studied organic metals
in the family of tetrathiafulvalene salts. The conductivity
in the plane of the layers, ). for these materials is smaller
than but comparable to the conductivity of ordinary met-
als, while the ratio of g to the interlayer conductivity o
is usually on the order of 10°-10'. A simple estimate
shows that the condition vpT ~ nveT > 0 for Landau
damping to have a significant effect on the high-frequency
absorption can easily be realized. Our results may also be
valid for other layered structures with quasi-two-dimen-
sional electron energy spectra, such as the dichalcogenides
of the transition metals, cuprates, etc., which have a
charge carrier density high enough to produce an anoma-
lous skin effect at frequencies on the order of 100 GHz at
low temperatures.
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