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� A tunneling of Bloch waves through a contact of small diameter is studied.
� We use an inhomogeneous tunnel barrier of low transparency to describe the contact.
� The electron tunneling from the bulk-mode states into the surface states is studied.
� An asymptotically exact expression is derived for the conductance of the system.
� Prospects for the application of the results to the theory of STM are discussed.
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a b s t r a c t

For the first time the tunneling of Bloch waves through a contact of small diameter is studied in the
framework of a model of an inhomogeneous tunnel δ-barrier of low transparency. The electron tunneling
from bulk-mode states into the surface states localized near the contact interface is considered. An
asymptotically exact expression (in the inverse height of the barrier) is derived for the conductance of
the system. Prospects for the application of the obtained results to the theory of scanning tunneling
microscopy are discussed.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Currently the scanning tunneling microscope (STM) [1] is one of
the most effective tools for characterization of conducting surfaces
[2,3]. The theory of STM is addressed in a vast number of papers (for
instance, see reviews [4,5]) that may be split into two groups: the
works of the first group deal with the first principles calculations.
They take into account the real crystal structure of the conductors
and the particular shape of the STM-tip, ultimately providing the
most detailed description of the experiment (see review [6] and cited
literature). The main disadvantage of the above approach is the
necessity of performing rather cumbersome numerical calculations
for every given tip – sample pair.

The theories of the second group are based on somewhat
simplified models of the tunnel barrier and on certain general

assumptions about the electron wave functions. Like the theories
of the first group they are frequently used for interpretation of the
experimental results. In this case the standard tunnel effect theory
approach yields the analytical representation for the current–
voltage characteristics of the contact that provides their explicit
functional dependences on physical parameters. The latter makes
such an approach advantageous in terms of applicability to a wider
range of problems.

One of the earliest and perhaps still the most popular theories
of STM is the one by Tersoff and Hamann (TH) [7]. Their theoretical
analysis of the tunnel current is based on Bardeen0s approximation
[8] where a tunneling matrix element is calculated using the wave
functions within the barrier region for stand-alone individual
electrodes. The authors [7] found that the STM conductance G is
proportional to the electronic local density of states (LDOS) ρðr; εÞ
at point r0 which represents the center of curvature of the contact
(see. Fig. 1(a) following Bardeen0s approximation [8] Chen had
shown [9] that for more complex (non s-wave) symmetry of the
wave function of the STM-tip the conductance G depends on
derivatives of ρ r; εð Þ with respect to the coordinates at the point r0.
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Experimental results demonstrate good qualitative agreement
between the STM-images and the theoretical LDOS [7,9]. This
provides an experimental justification for applying the formulas
for the conductance G derived in the framework of the TH model
and its modifications leaving existing discrepancies at the back-
ground. Nevertheless, this question cannot be neglected because
in Bardeen0s approximation [8] the wave function, which corre-
sponds to tunneling from one electrode, does not satisfy the
boundary conditions at the surface of the second conductor. As a
result, the STM conductance becomes dependent on the LDOS,
defined by the unperturbed wave function of the surface states at
the point r0, which belongs to the STM-tip region (see Fig. 1a)
where the solution of the Schrödinger equation which satisfies the
boundary conditions at the tip – barrier region interface has a
completely different form. The next question that arises in this
context is about the dependence of the STM conductance on the
contact size. It is obvious that at quite large radius R of the tip
certain image “blurring” occurs (formally, in the limit of infinite
contact radius, the conductance depends on the surface density of
states averaged over the entire contact plane) which is absent in
the ТН theory [7]. Progress towards answering the above ques-
tions may result in alternative approaches to the problem.

In order to describe the STM experiments the model of an
inhomogeneous infinitely thin tunnel barrier (Fig. 1b) was pro-
posed [10], that later was considered in several theoretical papers
[11–13]. A significant simplification of this model, as compared
with the TH model, is in replacement of the three-dimensional
inhomogeneous tunnel barrier by a two-dimensional one. Accord-
ingly, in the two-dimensional model of the barrier there are no
parameters characterizing the contact0s shape that is mostly
unknown. The obvious advantage of this model is in possibility
of getting a consistent solution of the problem and finding the
asymptotically exact wave function for transmitted electrons,
which satisfies all the necessary boundary conditions.

In several papers (see a review [14]) the model of an inhomo-
geneous δ-barrier was used to describe the effect of single subsur-
face defect on the conductance measured by STM.

The conductance of the contact was analyzed theoretically [15]
within the approximation of free electrons with quadratic aniso-
tropic dispersion law.

In the present paper we consider for the first time the problem
of a Bloch electron tunneling through an inhomogeneous δ-barrier
from bulk-like states, which do not decay with distance from a
boundary, into surface Shockley-like states [16]. An asymptotically
exact (in the inverse amplitude of the barrier) formula for the
conductance of the system is derived. Prospects for the application
of the obtained results to the theory of scanning tunneling
microscopy are discussed. It is found that the reason of the STM-

image blurring is not only in the finite size of the tunneling area,
but also in the diffraction of the electron waves in the contact area.
The conditions under which the local density of states may be
directly found from the STM conductance are formulated. It is
shown that if the tunneling occurs into/from the bulk-like states,
the proportionality of the conductance to the LDOS does not hold.

2. Model and the problem formulation

The model used for the solution of the problem is presented in
Fig. 1b. We describe the inhomogeneous infinitely thin tunnel
barrier by the potential [11]:

UðrÞ ¼ U0f ðρ�ρ0ÞδðzÞ; ð2:1Þ
where f ðρÞ is an arbitrary function of two-dimensional vector
ρ¼ ðx; yÞ, and it satisfies the following condition [11]:

f ðρÞ ¼
� 1; ρta;

-1; ρca:

(
ð2:2Þ

The parameter a plays the role of an effective contact radius in the
plane z¼ 0 with the center at the point ρ¼ ρ0. We will assume
further that this value is less than the electron Fermi wavelength
λF ðarλF Þ, and is much less than the length of localization of
surface states.

The Schrödinger equation for the “surface states” is written in
the following form [17]:

� ℏ2

2m
∇2þW ð7 Þðρ; zÞþVsðzÞΘðzÞ

 !
ψ ð7 ÞðrÞ ¼ εψ ð7 ÞðrÞ; ð2:3Þ

where ε and m are the electron mass and the energy respectively,
W ð7 Þðρ; zÞ is a periodic function in ρ with the period of the two-
dimensional “surface” lattice in the half-spaces z40 and zo0,
VsðzÞ is the potential that defines the appearance of bound (sur-
face) state at z40 near the interface. Here and below the upper
index (7) signifies that an appropriate function belongs to half-
space zZ0 or zr0. The wave function ψ ð7 ÞðrÞ satisfies the
boundary conditions

ψ ðþ Þðρ; þ0Þ ¼ ψ ð� Þðρ; �0Þ; ð2:4Þ

ψ ðþ Þ0
z ðρ; þ0Þ�ψ ð� Þ0

z ðρ; �0Þ ¼ 2m
ℏ2 U0f ðρ�ρ0Þψ ð7 Þðρ;0Þ: ð2:5Þ

The particular form of the boundary conditions at 71 depends
on the formulation of the problem of electron tunneling.

For clarity let us consider an electron wave ψ inc which is
incident on the tunnel barrier (2.1) from the region zo0. This
wave ψ inc is almost entirely reflected by the interface z¼ 0 except a

Fig. 1. (а) The model used by Tersoff and Hamman [7] to describe spatially inhomogeneous tunnel barrier in STM experiments. (b) Our model for the system containing an
STM-tip and a sample, which exhibit Shockley-like surface states. The classical trajectories for transmitted and reflected electrons are shown by dashed arrows.
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small region of radius a near the point r¼ 0. The tunneling
through this region causes the existence of a transmitted wave
ψ tr in the potential well at z40. In this case at large distances
from the contact jrjca, zo0 the wave function ψ inc has to be a
Bloch wave for half- space ψ ð� Þ

0 ðρ; zÞ [18,19].

ψ ð� Þðρ; zÞ-ψ ð� Þ
0 ðρ; zÞ; r-�1; ð2:6Þ

where

ψ ð� Þ
0 ðρ; zÞ ¼

ffiffiffiffi
1
Ω

r
∑
G
FGðκ; kz; zÞexp½iðκþGÞρ�; zr0; ð2:7Þ

κ and kz are tangential and perpendicular to the boundary
components of the electron wave vector [17], k, G are two-
dimensional reciprocal lattice vectors lying in the planes parallel
to the contact plane; n represents band index, Ω¼ LxLyðLz=2Þ is the
volume of the region zo0 of our system, linear sizes of which
Lx;y;z-1 we assume to be much larger than any length parameter
of the problem. We will use the extended zone scheme. For
simplification of formulas we do not write the spin indexes. The
function (2.7) is a standing Bloch wave and it satisfies the zero
boundary condition at z¼ 0,

ψ ð� Þ
0 ðρ; z¼ 0Þ ¼ 0; ð2:8Þ

and the normalization conditionZ
Ω
drΘð�zÞjψ ð� Þ

0 ðrÞj2 ¼ 1 ð2:9Þ

The dependence on z coordinate of the coefficients FGðκ; kz; zÞ in
the expansion (2.6) reflects the existence of the periodic lattice
potential in z-direction in the half-space zo0. The equation for
functions FGðκ; kz; zÞ can be obtained easily by substitution of the
expression (2.6) for the wave function in the primary Schrödinger
equation [18]

� ℏ2

2m
∂2FG
∂z2

þ ℏ2

2m
ðκþGÞ2FGþ∑

g
wðG�g; zÞFg ¼ εð� ÞFG; ð2:10Þ

where wðg; zÞ is the Fourier transform of the function Wðρ; zÞ. The
function FGðκ; kz; zÞ satisfies the boundary condition

FGðκ; kz;0Þ ¼ 0; ð2:11Þ
and it corresponds to the zero total charge flow through any plane
z¼ const parallel to the interface

J ¼ jejℏ
m

Z
S
dρImðψ ð� Þn

0 ðρ; zÞψ ð� Þ0
0z ðρ; zÞÞ

¼ jejℏ
m

Im∑
G
Fn

Gðκ; kz; zÞF 0Gzðκ; kz; zÞ ¼ 0: ð2:12Þ

where S¼ LxLy, and Lx;y-1.
The amplitude of the transmitted wave ψ tr vanishes far from

the contact as a result of the effect of flow spreading at ρ-1 and
the exponential damping of the wave function at classically
inaccessible region at z-1

ψ ðþ Þ
tr ðρ; zÞ-0; r-1: ð2:13Þ
Knowing the wave functions of transmitted electrons, one can

calculate the charge current flow through the interface z¼ 0
parallel to the z axis

JzðkÞ ¼
jejℏ
mU2

0

Imðψ ðþ Þn
1 ðρ;0Þψ ðþ Þ0

1z ðρ; þ0ÞÞ: ð2:14Þ

At zero temperature for the calculation of the total tunnel
current it is enough to know the density of charge flow in one
direction only. The sign of the applied voltage V corresponds to the
possibility of electron tunneling from occupied states of the half-
space zr0 into free states in the half-space zZ0 (Fig. 2).

In the case of low transparency of the barrier, the latter causes
the main drop of the electrical potential Vðρ; zÞ [14]. We assume
that Vðρ; zo0Þ ¼ V ¼ const, and Vðρ; z40Þ ¼ 0. The conductance
will be calculated in the linear in V approximation (Ohm0s law
approximation). It is true if jeV j{εF (the Fermi energy is the same
in both half-spaces). Accordingly it is enough to know the wave
function at V ¼ 0.

We also neglect possible scattering processes in the region of
electrical current spreading (the size of this region is of the order
of the contact radius a) and presume an infinite electron mean free
path. Under these assumptions, the formula for the tunnel current
can be derived by integration of the flux (2.14) with respect to the
incident momentum direction for the electrons with the Fermi
energy, and by integration over ρ in the plane z¼ 0[10]:

I¼ 2eV
Ω

ð2πÞ3
Z

dk
Z
S
dρΘðvzÞJzðkÞδðεF�εð� ÞðkÞÞ; ð2:15Þ

where ε¼ εð� Þðκ; kzÞ is the energy eigenvalue corresponding to the
solution (2.7) of the Eq. (2.3), vz ¼ ∂εð� Þ=ℏ∂kz is the electron
velocity in the direction that is perpendicular to the interface
The wave vector k belongs to the electron in the half-space zo0.

3. Asymptotic solution of Schrödinger equation for low
transparency of tunnel barrier

Let us examine the solution of Eq. (2.3) by expanding in the
small-parameter 1=U0 and taking into account only the lowest
order corrections, which are proportional to 1=U0. The wave
function ψ tr of electrons transmitted through the barrier from
the half-space zo0 into the half-space z40 can be written in the
form

ψ ðþ Þ
tr ðρ; zÞ ¼ 1

U0
ψ ðþ Þ
1 ðρ; zÞ; zZ0; ð3:1Þ

which is non-zero only in the first approximation in 1=U0. The trial
wave function ψ ð� Þðρ; zÞ in the half-space zo0 we use is [15]:

ψ ð� Þðρ; zÞ ¼ ψ ð� Þ
0 ðρ; zÞþ 1

U0
ψ ð� Þ
1 ðρ; zÞ; ð3:2Þ

where the second summand describes the perturbation of the
standing wave (2.7) caused by the finite probability of tunneling
through the contact. As a result of the boundary condition (2.6) the
second summand in Eq. (3.2) vanishes at r-�1.

Substituting the expansions (3.1) and (3.2) in boundary condi-
tions (2.4) and (2.5) and equating the terms of the same order in
1=U0 we get

ψ ð� Þ
1 ðρ; �0Þ ¼ ψ ðþ Þ

1 ðρ; þ0Þ ð3:3Þ

Fig. 2. Illustration of the tunneling process. The bias eV, applied to the tip, makes
possible the electron transport from the bulk-type states to the surface Shockley-
type ones.
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�ψ ð� Þ0
0z ðρ; �0Þ ¼ 2m

ℏ2 f ðρ�ρ0Þψ ð7 Þ
1 ðρ;0Þ: ð3:4Þ

In the simplified boundary condition (3.4), which is obtained in
zero approximation in 1=U0 the derivative of the wave function
transmitted into the region z40 ψ ðþ Þ

tr ðρ; zÞ ¼ 1
U0
ψ ðþ Þ
1 ðρ; zÞ is omitted,

being negligible in comparison with the remaining terms. The
derivative ψ ð� Þ0

0z ðρ; �0Þ can be easily found from Eq. (2.6).
The formula for the wave function of transmitted electron takes
the form

ψ ðþ Þ
1 ðρ;0Þ ¼ � ℏ2

2mf ðρ�ρ0Þ
ψ ð� Þ0
0z ðρ;0Þ; ð3:5Þ

where

ψ ð� Þ0
0z ðρ;0Þ ¼

ffiffiffiffi
1
Ω

r
∑
G
F 0Gzðκ; kz;0Þexp½iðκþGÞρ�; kz40: ð3:6Þ

In order to find the wave function of the electrons that are
transmitted into surface states we make the following additional
assumption. We neglect any changes in the lattice potential in the
direction normal to the interface at the characteristic length λs of
the surface state damping and approximately take W ðþ Þðρ; zÞ
�W ðþ Þðρ;0Þ.

Eq. (3.5) reduces the problem of finding the wave function
ψ ðþ Þ
1 ðρ; zÞ of the transmitted electrons to a solution of the simpli-

fied Schrödinger equation

� ℏ2

2m
∇2þW ðþ Þðρ;0ÞþVsðzÞ

 !
ψ ðþ Þ
1 ðρ; zÞ ¼ εψ ðþ Þ

1 ðρ; zÞ; zZ0; ð3:7Þ

with the given value ψ ðþ Þ
1 ðρ;0Þ at the interface z¼ 0 (3.5). Note that

in spite of the substantial simplification made the variables in
Eq. (3.7) cannot be separated because of the dependence of the
wave function values on coordinate ρ at the interface z¼ 0. We
expand the function ψ ðþ Þ

1 ðρ; zÞ as an integral

ψ ðþ Þ
1 ðρ; z;κ; kzÞ ¼

S

ð2πÞ2
Z

dκ0Ψ 1ðκ0; z;κ; kzÞψ ðþ Þ
s ðρ;κ0Þ: ð3:8Þ

In (3.8) the two-dimensional Bloch wave functions are used as a
basis. Vector κ0 runs through all vectors in 2D first Brillouin zone

ψ ðþ Þ
s ðρ;κÞ ¼ 1ffiffiffi

S
p ∑

G
f GðκÞexp½iðκþGÞρ�: ð3:9Þ

The functions (3.9) are orthonormal. Coefficients f GðκÞ of the
expansion satisfy the equation

ℏ2

2m
ðκþGÞ2f GðκÞþ∑

g
~wðG�gÞf gðκÞ ¼ εðþ Þ

J f GðκÞ; ð3:10Þ

where ~wðgÞ is the Fourier transform of the function Wðρ;0Þ, and
εðþ Þ
J ðκÞ is the energy of motion in the plane parallel to the

interface.
Substituting the expansion (3.8) to the Schrödinger Eq. (3.7),

we find the equation for the coefficients Ψ1ðκ0; z;κ; kzÞ

� ℏ2

2m
∂2Ψ1

∂z2
þVsðzÞΨ1 ¼ ε?Ψ 1; ð3:11Þ

where ε? ¼ ε�εðþ Þ
J ðκ0Þ. The inverse transform of Eq. (3.8) and the

boundary condition (3.5) at z¼ 0 give a “boundary condition” for
the function Ψ 1ðκ0; z;κ; kzÞ,

Ψ1ðκ0;0;κ; kzÞ ¼ � ℏ2

2m

Z
S

dρ0

f ðρ0 �ρ0Þ
ψ ð� Þ0
0z ðρ0;0;κ; kzÞψ ðþ Þn

s ðρ0;κ0Þ:

ð3:12Þ
In accordance with the boundary condition (2.13) at z-1 the
function Ψ1ðκ0; z;κ; kzÞ must satisfy the following condition

Ψ1ðκ0; z-1;κ; kzÞ-0: ð3:13Þ

The particular form of a solution of the Eq. (3.11), which
satisfies the boundary conditions (3.12) and (3.13) depends on
the potential VsðzÞ, which for realistic models has a complex form
(see, for example, [20]). In what follows we are not going to define
in detail the functional form of VsðzÞ in Eq. (3.11). We limit
ourselves to a more general assumption such that there is only
one discrete energy level ε? ¼ ε0 in the potential well at U0-1 in
the energy range of interest, εrεF , where εF is the Fermi energy
(Fig. 2).

Thus let us write the solution of Eq. (3.11) as

Ψ1ðκ0; z;κ; kzÞ ¼ Cðκ0;κ; kzÞχðz; ε�εðþ Þ
J ðκ0ÞÞ; ð3:14Þ

where the function χðz; ε? Þ vanishes at z-1. The wave function of
the bounded (surface) state in the one-dimensional potential well
formed by the potential VsðzÞ and the infinite wall at zr0 satisfy
the boundary condition

χð0; ε0Þ ¼ 0; χðz-1; ε0Þ-0; ð3:15Þ
and also the normalization conditionZ 1

0
dzχ2ðz; ε0Þ ¼ 1: ð3:16Þ

Substituting the Eq. (3.14) in the boundary condition (3.12), we
obtain the equation for the coefficient Cðκ0;κ; kzÞ

Cðκ0;κ; kzÞχð0; ε�εðþ Þ
J ðκ0ÞÞ ¼ � ℏ2

2m

Z
S

dρ0

f ðρ0 �ρ0Þ
ψ ð� Þ0
0z ðρ0;0;κ; kzÞψ ðþ Þn

s ðρ0;κ0Þ:

ð3:17Þ
This equation is valid for all κ0 with the exception of a single point,
at which ε�εðþ Þ

J ðκ0Þ ¼ ε0, and the solution χðz; ε0Þ ¼ 0 in accordance
with the condition (3.15). In order to avoid the divergence that
appears as a result of division by χð0; ε�εðþ Þ

J ðκ0ÞÞ which in fact has
no physical meaning we employ a standard approach of the
mathematical physics (see for example [21]). We introduce an
infinitesimal damping of energy levels by means of substitution
ε-ε� iγ. Then the wave function which is the inverse transform
(3.8) of the solution Ψ1 (3.14) can be presented as the limit

ψ ðþ Þ
1 ðρ; z;κ; kzÞ ¼ � ℏ2

2mlimγ-0

R
S

dρ0
f ðρ0 �ρ0Þψ

ð� Þ0
0z ðρ0;0;κ; kzÞ�

Z
dκ0ψ ðþ Þn

s ðρ0;κ0Þψ ðþ Þ
s ðρ;κ0Þχðz; ε�εðþ Þ

J ðκ0Þ� iγÞ
χð0; ε�εðþ Þ

J ðκ0Þ� iγÞ
; ð3:18Þ

It is easily to note that as the result of orthogonality of the
functions ψ ðþ Þ

s ðρ;κ0Þ at z¼ 0 formula (3.18) transforms itself into
(3.5).

4. Conductance of the system

Substituting the function ψ1ðρ; zÞ (3.18) and its derivative at
z¼ þ0 in (2.15), one obtains the following formula for the
conductance of the system G¼ I=V

Gðρ0Þ ¼
e2ℏ5

2m3U2
0

Im
Z
S

dρ
f ðρ�ρ0Þ

Z
S

dρ0

f ðρ0 �ρ0Þ
Dð� ÞðεF ; ρ;ρ0ÞDðþ ÞðεF ; ρ;ρ0Þ; ð4:1Þ

where

Dð� ÞðεF ; ρ;ρ0Þ ¼
Ω

ð2πÞ3
Z

dkΘðvzÞψ ð� Þ0n
0z ðρ;0;kÞψ ð� Þ0

0z ðρ0;0;kÞδðεð� ÞðkÞ�εF Þ;

ð4:2Þ

Dðþ ÞðεF ; ρ;ρ0Þ ¼ lim
γ-0

S

ð2πÞ2
Z

dκ0ψ ðþ Þn
s ðρ0;κ0Þψ ðþ Þ

s ðρ;κ0Þχðz; ε�εðþ Þ
J ðκ0Þ� iγÞ

χð0; ε�εðþ Þ
J ðκ0Þ� iγÞ

:

ð4:3Þ
Note, that interchanging the integration variables ρ⇄ρ0 for-

mally corresponds to the complex conjugation of functions ψ ðþ Þ
s

and ψ ð� Þ0
0z in the Eqs. (4.2) and (4.3). Therefore the imaginary part
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of the integrand in Eq. (4.3) is defined by the existence of a pole
ε J ¼ εF�ε0þ iγ of the integrand at χð0; ε0Þ ¼ 0 which matches the
discrete energy level ε? ¼ ε0 in the potential well VsðzÞ with an
infinite potential wall at z¼ 0.

To perform the integration in Eq. (4.3) it is necessary to know
the explicit form of the wave functions. However in order to
determine its imaginary part it is possible to exploit more general
considerations. If an analytical function χðεÞ has a simple zero
ε¼ ε0 only, it can always be presented in the form χðεÞ ¼ ðε�ε0ÞΧðεÞ
and ΧðεÞa0, were Χðε0Þ ¼ χ0εðε0Þ [22]. Applying the well-known
symbolic relation [23]

lim
γ-0

1
ε� iγ

¼ V :p:
1
ε
þ iπδðεÞ ð4:4Þ

we obtain

Im Dðþ ÞðεF ; ρ;ρ0Þ ¼ πS
ð2πÞ2

χ0zð0;ε0Þ
χ0εð0;ε0Þ

R
dκ0�

ψ ðþ Þn
s ðρ0;κ0Þψ ðþ Þ

s ðρ;κ0Þδðεðþ Þðκ0Þþε0�εF Þ:
ð4:5Þ

By using the properties of the Wronskian of one-dimensional
Schrödinger equation (see, for example, [24]), the boundary and
normalization conditions (3.15) and (3.16), one can find the
relation

χ0zð0; ε0Þχ 0εð0; ε0Þ ¼
2m
ℏ2 ; ð4:6Þ

connecting the derivatives in energy and in coordinate at the
interface. Substituting Eqs. (4.5) and (4.6) in the Eq. (4.1) we finally
get

Gðρ0Þ ¼ πe2ℏ5

m2U2
0
ðχ 0zð0; ε0ÞÞ2

R
S

dρ
f ðρ�ρ0Þ

R
S

dρ0
f ðρ0 �ρ0Þ

ρðþ Þ
s ðεF�ε0; ρ; ρ0Þ ~ρð� Þ

v ðεF ; ρ;ρ0Þ; ð4:7Þ
where

~ρð� Þ
v ðεF ;ρ;ρ0Þ ¼ Ω

2πð Þ3
ℏ2

m2

R
dkΘðvzÞ�

ψ ð� Þ0n
0z ðρ;0;kÞψ ð� Þ0

0z ðρ0;0;kÞδðεð� Þ kð Þ�εF Þ; ð4:8Þ

ρðþ Þ
s ðεF�ε0; ρ; ρ0Þ ¼ S

ð2πÞ2
R
dκ0�

ψ ðþ Þn
s ρ0;κ0ð Þψ ðþ Þ

s ρ;κ0ð Þδðεðþ Þðκ0Þþε0�εF Þ: ð4:9Þ
If κρokFa{1 then we can neglect the coordinate dependence

of the functions ψ sðρ;κÞ by taking their values at the center of the
contact ρ¼ ρ0 ¼ ρ0, and as a result the equation for the conduc-
tance takes the form:

Gðρ0Þ ¼
πe2ℏ5S2ef f
2m2U2

0

ðχ0zð0; ε0ÞÞ2ρðþ Þ
2D ðεF�ε0; ρ0Þ ~ρð� Þ

3D ðεF ; ρ0Þ ð4:10Þ

where

Sef f ¼
Z
S

dρ
f ðρÞCπa2; ð4:11Þ

is the effective cross sectional area of the contact, and

ρðþ Þ
2D ðε; ρ0Þ ¼ ρðþ Þ

s ðε; ρ0;ρ0Þ ¼
S

ð2πÞ2
Z

dκ0 ψ ðþ Þ
s ðρ0;κ0Þj2δðεðþ Þðκ0Þþε0�εF Þ

��
ð4:12Þ

is the local density of 2D surface states.
The function ~ρð� Þ

3D ðεF ; ρ0Þ differs from the local density of 3D
surface states by presence of the derivative of the ψ ð� Þ

0 ðρ0; z;kÞ
function with respect to z

~ρð� Þ
3D ðεF ;ρ0Þ ¼ ρðþ Þ

s ðεF�ε0; ρ0; ρ0Þ

¼ Ω

ð2πÞ3
ℏ2

m2

Z
dkΘðvzÞjψ ð� Þ0

0z ðρ0;0;kÞj2δðεð� ÞðkÞ�εF Þ: ð4:13Þ

Note that a similar result had been obtained in paper [9] for the pz
surface state at the tip. By using the boundary condition (2.8) it is
easy to derive that

~ρð� Þ
3D ðεF ; ρ0Þ ¼

ℏ2

m2

∂2

∂z2
ρð� Þ
3D ðεF ; ρ0; zÞ

� �
z ¼ 0

; ð4:14Þ

where

ρ �ð Þ
3D εF ; ρ0; z
� �¼ Ω

2πð Þ3
Z

dkΘ vzð Þ ψ �ð Þ
0 ρ0; z;k
� ���� ���2δ ε �ð Þ kð Þ�εF

� �
;

ð4:15Þ
is the local density of 3D surface states. An order-of-magnitude
estimate of the function ~ρð� Þ

3D is ~ρð� Þ
3D ðεF ; ρ0Þ � v2zFρ3DðεF Þ, where vzF is

the maximum value of the electron group velocity along the z axis
on the Fermi surface, and ρ3DðεF Þ is the bulk density of states.

5. Conclusion

Thus, in the framework of the model of an inhomogeneous
barrier of arbitrary shape and large amplitude U0 we obtained an
asymptotically exact solution at 1=U0-0 for the tunnel conduc-
tance of the system. The result (4.10) does not depend on the
direction of the current in the Ohm0s law approximation. In the
case of electron tunneling from the surface states into the states
corresponding to waves propagating from the boundary into the
sample, we, naturally, get the formula (4.10).

From our results several physical conclusions can be made,
which may be used for the interpretation of STM images.

(i). The blurring of the STM-image (i.e. dependence of the STM
conductance on the lateral coordinates) is defined not only by
the finite size of the area Sef f (4.11), through which the
tunneling occurs. It is also defined by electron wave diffrac-
tion on the inhomogeneous barrier. As a result of this the
wave function of transmitted through the barrier electrons
ψ ðþ Þ
1 ðρ; zÞ (3.18) and the density of charge flow (2.14) have a

nonlocal relationship with the wave function in the half-
space, from which the tunneling takes place.

(ii). A local relation between the STM conductance and LDOS
exists only in the case when the characteristic radius a of the
region Sef f is much less than the Fermi wave length of the
electron ƛF ¼ 1=kF . Such limitation seems to be physical by
nature, because ƛF is a scale of changing of the amplitude of
the electron wave function.

(iii). In the case of tunneling from/into bulk states the STM
conductance is not proportional to the density of states of
the investigated sample. This result is rather obvious, and it is
similar to the one obtained for a planar tunnel junction [25].
This result is a consequence of the fact that the electrical
current depends on the electron velocity in the direction
perpendicular to the sample surface, which is not included in
the density of states. Certainly, the function (4.2) reflects the
main features of the electron density of states. However, in
the case of strongly anisotropic dispersion law its difference
from LDOS can be quite substantial.

The above conclusions are not just formal consequences of the
proposed model but reflect really existing physical factors that
influence the conductivity of small-size tunnel junctions.
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