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Abstract. The conductance of a system containing two tunnel point-contacts and a single
subsurface scatterer in the presence of a magnetic field is investigated theoretically. A general
formula for the dependence of the conductance on the distance between contacts, the defect
position, and the magnetic field is obtained. It is shown that in the presence of a magnetic
field the conductance undergoes Aharonov-Bohm type oscillations. We find a simple relation
between the period of the oscillations and the depth of the subsurface impurity. On the basis of
this fact a new and easy method of determination the depth of the buried impurity is proposed.

Subsurface defects, as well as adatoms and steps on the metal surface, result in the appearance
of Friedel-like oscillations in the STM differential conductance G = dI/dV - a nonmonotonic
dependence of G with the distance between the STM tip and the defect r0. The study of
this dependence can be used for the detection of buried defects and for investigation of their
characteristics. Methods for determining defect positions below a metal surface using a single
tip STM have been proposed before: this can be achieved using the period of oscillation of the
conductance as a function of bias or by exploiting the interference pattern of conductance as a
function of position, G (r0), which is very pronounced for open directions of Fermi surface (for
a review see [1]).

With the further development of scanning tunneling microscopy (STM) it has become
clear that a single STM-probe is often not enough for obtaining information on the detailed
characteristics of the surface under investigation. A logical development of the one-tip approach
is a dual-tip experimental setup, which can provide us with richer information than conventional
single-probe STM. Despite the apparent technical complexity of the dual-tip STM (DT STM) in
comparison with standard STM several groups have demonstrated successful solutions for such
refinement of the STM-technology [2, 3, 4, 5].

The idea of using multiple tunneling contacts for determining the depth and location of
impurities under a metal or semiconductor surface has been expressed earlier in Ref. [6]. The
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Figure 1.

paper by Niu et al., Ref. [6], proposes a method for determining the desired depth by measuring
the trans-conductance between two tips of the DT STM.

In the present paper we consider another scheme of DT STM experiment [7], in which the bias
is applied between the two tips and the sample, i.e. the current flows from two contacts into the
sample. We propose to determine a depth of the defect below conductor surface by measuring
the oscillatory dependence of the DT STM conductance on the strength of a magnetic field H
applied parallel to the conductor surface. These oscillations result from the quantization of the
magnetic flux Φ = HS through the area formed by the electron trajectories from the contacts to
the defect and the line connecting the contacts (Fig.1). If r0 ¿ rH = ~ckF/eH (kF is the Fermi
wave vector), the electron trajectories and the line connecting the contacts form a triangle, and
from its area S the defect depth can be found easily.

As a model of DT STM we consider two metal half-spaces separated by infinitely thin
nonconducting interface at z = 0, which incorporates two small orifices (contacts) allowing
for electron tunneling (see Fig.1). The origin of coordinates r = 0 is chosen in the center of
the first contact. The x axis is directed along the line connecting the contacts. To describe the
potential barrier in the plane z = 0 we use the function [8]

U (r) = U0f (ρ) δ (z) . (1)

where δ (z) is the Dirac delta function, ρ is a two-dimensional vector in the plane of the interface.
The function f (ρ) provides a path for electron tunelling only through two small areas with
characteristic radii a1 and a2, as shown in Fig.1. In the vicinity of the contacts a single defect
is placed, described by a short-range potential D(r).

The electron wave function ψ (r) in the presence of a magnetic field satisfies the Schrödinger
equation [

~2

2m∗
(
k̂− e

c~
A (r)

)2
+ U (r) +D (r)

]
ψ (r) = εψ (r) , (2)

and boundary conditions of continuity and of the jump of its derivative at z = 0. Here
k̂ = −i∇, A (r) is the vector potential of the magnetic field, m∗ is the electron effective mass,
and ε is the electron energy.

If the Larmor radius of the electron trajectory rH is much larger then the distances between
the contacts and the defect we can neglect the effects of Landau quantization and bending of
the trajectory, which has been analyzed in Ref.[9]. The wave function ψ (r) for the system

26th International Conference on Low Temperature Physics (LT26) IOP Publishing
Journal of Physics: Conference Series 400 (2012) 042031 doi:10.1088/1742-6596/400/4/042031

2



considered here at H = 0 was obtained previously, in first approximation in the small parameter
1/U0, in Ref.[10]

ψ (r) = ψ0 (r) +
2m∗

~2
T (k)G+

0 (r, r0)ψ0 (r0) , (3)

where G+ (r, r0) is the retarded Green’s function of a free electron in the half-space z > 0, r0 is
the position of the center of the scattering potential D (r), and T (k) is the scattering matrix,
which for this short-range scatterer can be expressed by means of an s-wave scattering phase
shift δ0 [11]

T (k) =
−π~2

(
e2iδ0 − 1

)

m∗ik
(
1 + 1

4ikz0
(e2iδ0 − 1) e2ikz0

) . (4)

In the limit ka1,2 ¿ 1 (i.e. for tunnel point-contacts) the wave function of the system without
scatterer is given by [10]

ψ0 (r) =
~2kz
2m∗U0

[
(ka1)

2 z

r
h
(1)
1 (kr) + (ka2)

2 z

r′
h
(1)
1 (kr′)eiκd

]
, (5)

where k = (κ,kz) is the electron wave vector, k = |k| , h(1)1 (kr) is the spherical Bessel function
of the third kind, r′ = |r− d|, the vector d connects the two contacts, and r, r′ À a.

The electron wave function under the influence of a vector potential A (r) acquires an
additional phase

ψ (r) −→ ψ (r) exp


 ie

c~

r∫

0

A
(
r′
)
dr′


 . (6)

For the calculation of the conductance G we use the following approach: The probability density
flow is found by using the wave function ψ (r) (6) of electrons that tunnel through the potential
barrier in the plane of the orifices. The total electric current I through the system is calculated
by integration over electron momenta and over a surface overlapping the contacts. Here we will
consider the case of zero temperature and a small applied voltage V (Ohm’s low approximation).
Under these assumptions the conductance G can be written as

G =
e2~
m∗ ν (εF)

∫

SF,νz>0

dΩp

∫

S

dΩr2Im

[
ψ∗ (r)

∂ψ (r)

∂r

]
. (7)

In Eq.(7) ν (εF) is the electron density of states at the Fermi surface ε = εF, dΩ and dΩp are
solid angles in the real and momentum spaces, respectively. As the surface for space integration
we choose a half-sphere of radius r larger than the distance between the contacts d, centered at
the first contact, r = 0, and covering the contacts in the half-space z > 0. The integration over
directions of the momentum on the Fermi surface SF is carried out for electrons tunneling with
a positive projection vz of the electron velocity on the contact axis z. As consequence of current
conservation the integral over dΩ does not depend on the choice of radius r.

Substituting the wave function (6) into Eq. (7) we can find the conductance of the system.
The general formula for the conductance can be simplified for large distance between the contacts
and the defect (r0 À 1/kF,d) and a weak scattering potential, δ0 ¿ 1. Under these assumptions
to first order in δ0 the oscillatory part of the conductance is proportional to,

4Gosc (r0, d,H) ∼ δ0z
2
0

k2F (r0r′0)
2× (8)

[
cos (kFr0) sin

(
kFr

′
0 −

πΦ

Φ0

)
+ cos

(
kFr

′
0

)
sin

(
kFr0 − πΦ

Φ0

)]
,
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where Φ0 = πc~/e is the flux quantum, kF is the Fermi wave vector, and z0 is the depth of the
defect. This formula shows that the conductance oscillates with a period that depends on the
flux Φ through the triangle formed by the two tips and the defect (see the shaded area in Fig.1).

When the period of the oscillations is known, the depth z0 can be determined using the
following procedure: In the most convenient geometry of the experiment the contacts should
be placed such that the vectors r0, r

′
0 and the normal to the sample surface are situated in the

same plane, i.e. the vectors H and S are parallel. For our illustration in Fig.1 this means that
the coordinate ρ0 of the defect in the plane xy is found on the line connecting the tips. In this
case the relation between the period of oscillations ∆H and the depth z0 is very simple

z0 =
4Φ0

d4H
(9)

Note that observation of the conductance oscillations (8) requires a sufficiently strong
magnetic field. Currently in low-temperature STM magnetic fields up to 15T are reachable [12].
For example, in order to observe a quarter period4H for z0 = d = 20 nm it is necessary to apply
a field of H = 5T . For typical metals, for which λF ∼ 0.5 nm, at a distance between the contacts
and the defect as large as r0 & 10 nm the amplitude of the conductance oscillations becomes
very small Gosc ∼ G0(λF/r0)

2 ∼ (10−3 ÷ 10−4)G0, with G0 the conductance of the system
of two tunnel point-contacts without the impurity nearby. Therefore more suitable systems
for the application of the proposed method of determination of the defect position below the
surface are semiconductors, or semimetals (Bi, Sb and their ordered alloys) where the Fermi
wave length λF ∼ 10 nm. Also, a large amplitude Gosc ∼ (10−2 ÷ 10−3)G0 could be expected in
the metals of the first group, the Fermi surface of which has small pockets with effective mass
m∗ ' 10−2 ÷ 10−3m0 (m0 is the mass of a free electron). In all cases a low-temperature STM
should be used to avoid electron-phonon scattering on the electron trajectory.

Thus, in this paper we have investigated theoretically the conductance of a system consisting
of two closely separated tunnel point contacts in the vicinity of which a point defect is situated,
to which a magnetic field is H applied. For the case of a magnetic field parallel to the surface
of the sample the depth of the subsurface impurity can be easily found from the period of
Aharonov-Bohm type oscillations of conductance, which arise in this case.
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