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1. Inroduction

The proved possibility really to observe quantum-interference phenomena in metals of various purity, in conditions when
the scattering occurs mainly at static defects and the electron mean free path, lel , is much less than the size L of the inves-
tigated sample, convinces that the phase ϕ of electron wave functions does not break down at elastic (without changing
electron energy) scattering. Even in very pure metals with lel ≈ 0.1 mm, at T ≤ 4 K, collisions of electrons with phonons
occur much less frequently than those with static defects occur, so that the role of the former in electron kinetics becomes
minor. In other words, the inequality Lϕ > lel is usually satisfied in a metal at sufficiently low temperatures, where Lϕ

is the phase-breaking length. This condition, however, is not sufficient to observe coherent phenomena. For example, the
phenomena of interference nature such as the oscillations in conductance in a magnetic flux φ in normal - metal systems
(Sharvin & Sharvin; 1981) or coherent effects in hybrid systems "normal metal/superconductor" (NS) (Lambert & Rai-
mondi; 1998), can become apparent given certain additional relations are fulfilled between the parameters, which define
the level of the effects: lel ≤ L ≤ ξT ≤ Lϕ. Here, ξT is the thermal coherence length. Otherwise, at reverse inequalities,
a fraction of the coherent phenomena in total current is expected to be exponentially small. It follows from the general
expression for the phase-sensitive current: J(φ) ∼ F(φ)(lel/L) exp(−L/ξT) exp(−Lϕ/ξT) (F(φ) is a periodic function).
The majority of coherent effects, as is known, is realized in experiments on mesoscopic systems with typical parameters
L ∼ 1 µm À lel ∼ 0.01 µm, i. e., under conditions where the level of the effects is exponentially small, but still supposed
to be detected (Lambert & Raimondi; 1998; Washburn & Webb; 1986). Really, the maximum possible (in the absence of
scattering) spatial coherence length, ξ0, according to the indeterminacy principle, is of the order of ξ0 = (h̄vF/kBT) ∼ 1 µm
in value, for a pair of single-particle excitations in a normal metal (for example, for e− h hybrids resulting from the Andreev
reflection (Andreev; 1964)). That value is the same as a typical size of mesoscopic systems. As a consequence, from the
ratio ξT ∼

√
(1/3)ξ0lel it follows that in these systems, coherent effects are always realized under conditions L À ξT À lel

and are exponentially small on the L scale.
From the above typical relations between the basic microscopic parameters in mesoscopic systems one can see that such
systems cannot give an idea about a true scale of the most important parameter - the phase-breaking length Lϕ for electron
wave functions. It is only possible to say that its value is greater than L ∼ 1 µm. In mesoscopic systems, a value of
the thermal coherence length ξT remains not quite clear as well, since, under strong inequality ξT À lel , the scale of this
parameter should be additionally restricted: At high frequency of elastic scattering processes on impurity centers (at short
lel), the portion of inelastic scattering on the same impurities, which breaks down a phase of wave functions, should be
also significant.
It is clear that due to spatial restrictions, mesoscopic systems are also of little use for experimental investigation of non-local
coherent effects; a keen interest in those effects has recently increased in connection with the revival of general interest in
non-local quantum phenomena (Hofstetter et al.; 2009).
Our approach to the investigation of phase-breaking and coherence lengths in metals is based on an alternative, macro-
scopical, statement of the experiment. We presume that in order to assess the real spatial scale of the parameters Lϕ, ξT ,
and ξ0 in metals, the preference should be given to studying coherent effects, first, in pure systems, where the contribution
from inelastic scattering processes is minimized due to the lowered concentration of impurities, and, second, at such sizes
of systems, which would certainly surpass physically reasonable limiting scales of the specified spatial parameters. The
listed requirements mean holding the following chain of inequalities: L > Lϕ > lel À ξ0 (lel/ξ0 ≥ 10). They can be
satisfied by increasing the electron mean free path lel and the system size L by several orders of magnitude in comparison
with the same quantities for mesoscopic systems.
At first glance, such changing in the above parameters should be accompanied by the same, by several orders, reduction in
the value of registered effects. Fortunately, this concerns only normal-metal systems, where coherent effects have a weak-
localization origin (Altshuler et al.; 1981). The remarkable circumstance is that the value of coherent effects in normal (N)
and NS systems can differ by many orders of magnitude in favor of the latter. Thus, oscillation amplitude of the conduc-
tance in a magnetic field in a normal-metal ring (the Aharonov - Bohm effect in a weak - localization approach (Altshuler
et al.; 1981; Washburn & Webb; 1986)) can be m times less than that in a ring of similar geometry with a superconducting
segment (NS - ring) due to possible resonant degeneration of transverse modes in the Andreev spectrum arising in the SNS



system (Kadigrobov et al.; 1995). For example, for mesoscopic rings m ∼ 104 ÷ 105. As it will be shown below, coherent
effects in macroscopical formulation of experiments remain, nevertheless, rather small in value, and for their observing, the
resolution of a voltage level down to 10−11 V is required. Unlike mesoscopic statement of the experiment, it makes special
non-standard requirements for measuring technique of such low signals. To satisfy the requirements, we have developed
the special superconducting commutator with picovolt sensitivity (Chiang; 1985).
Here, we describe the results of our research of quantum coherent phenomena in NS systems consisting of normal metals
with macroscopical electron mean free path and having macroscopical sizes, which fact allows us to regard our statement
of the experiment as macroscopical. The phenomena are considered, observed in such systems of different connectivity:
for both simply connected and doubly connected geometry.
In Section 2, phase-sensitive quantum effects in the "Andreev conductance" of open and closed macroscopic SNS systems
are briefly considered. The open SNS systems contain segments, up to 350 µm in length, made of high-pure (lel ∼ 100 µm)
single-crystal normal metals Cu and Al which are in contact with In, Sn, and Pb in the superconducting or intermediate
state. The phase-sensitive magnetoresistive oscillations are described, with a period equal to the flux quantum hc/2e, which
were found in hybrid quasi-ballistic doubly connected SNS structures with single-crystal normal segments of macroscopic
sizes (L = 100÷ 500 µm) and elastic electron mean free path on the same scale. The description of resistive oscillations of
a resonance shape for the structure In(S) - Al(N) - In(S) of the similar size is provided. The oscillations undergo a phase
inversion (a shift by π) with respect to the phase of the nonresonance oscillations.
In Section 3, the results of studying coherent and spin-dependent effects in the conductance of macroscopic heterosystems
"magnetic (Fe, Ni) - superconductor (In)" are presented. The first proof of the possibility of observing, with adequate
resolution, the characteristic coherent effect in the conductivity of sufficiently pure ferromagnets was given on the example
of nickel. The effect consists in an interference decrease in the conductivity on the scale of the very short coherence length of
Andreev e− h hybrids. It was shown that this length did not exceed the coherence length estimated using the semiclassical
theory for ferromagnetic metals with high exchange energy. Additional proof was obtained for spin accumulation on
F/S interfaces. This accumulation comes from the special features of the Andreev reflection under the conditions of spin
polarization of the current in a ferromagnet.
The first observation of the hc/2e-oscillations (solid-state analogue of the Aharonov-Bohm effect (Aharonov & Bohm; 1959))
is described in the conductance of a ferromagnet, Ni, as a part of the macroscopical S(In) - F(Ni) - S(In) interferometer
(LNi ∼ 500 µm). A physical explanation is offered for the parameters of the oscillations observed. We have found that the
oscillation amplitude corresponds to the value of the positive resistive contribution to the resistance from a ferromagnetic
layer, several nanometers thick, adjacent to the F/S interface. We have demonstrated that the scale of the proximity effect
cannot exceed that thickness. The oscillations observed in a disordered conductor of an SFS system, about 1 mm in length,
indicate that the diffusion phase-breaking length is macroscopical in sufficiently pure metals, including ferromagnetic
ones, even at not too low helium temperatures. The analysis of the non-local nature of the effect is offered.
Section 4 is the Conclusion.

Figure 1. Positive jump of resistance of bimetallic system Bi/In at converting indium into the superconducting state. Inset:
Superconducting transition of In.

2. Macroscopical NS systems with a non-magnetic normal-metal segment

While trying to detect possible manifestations of quantum coherent phenomena in conductivity of normal metals, the main
results were obtained in experiments on the samples of mesoscopic size under diffusion transport conditions, L ≥ ξT À lel .
In such case, the contribution from the coherent electrons is exponentially small relative to the averaged contribution from
all electrons in all distributions. The portion of coherent electrons can be increased due to weak-localization effect. For
example, in a doubly connected sample, so-called self-intersecting coherent trajectory of interfering electrons is artificially
organized (Washburn & Webb; 1986). If the length of the loop, L, covering the cavity of the doubly connected system does



not exceed the phase-breaking length, Lϕ, then introducing a magnetic field into the cavity may lead to a synchronous shift
of the phase of wave functions of all electrons. As a result, the conductance of the system, determined by a superposition
of these functions, will oscillate periodically in the magnetic field. The amplitude of the oscillations will be defined by the
weak-localization contribution from interfering reversible self-intersecting transport trajectories (Aharonov & Bohm; 1959;
Sharvin & Sharvin; 1981), and the period will be twice as small as that for the conventional Aharonov-Bohm effect in a
normal-metal ring, where the reversibility of the trajectories in the splitted electron beam is not provided.

2.1 Singly connected NS systems
2.1.1 Artificial NS boundary

Figure 2. Positive jump of resistance of bimetallic system Cu/Sn measured on the probes LN1; LN2 at converting tin into
the superconducting state (curve 1) and calculated portion of the boundary resistance (curve 2). Inset: Schematic view of
the sample.

As it has been noted in Introduction, in comparison with weak-localization situation, the role of coherent interference
repeatedly increases in the normal metal, which is affected by Andreev reflection - the mechanism naturally generating
coherent quasiparticles. In a hybrid "normal metal/type I superconductor" system (NS system), the contribution from the

Figure 3. Resistance of the region of the Cu/In system incorporating the NS boundary, below Tc of the superconductor
(In): 1) experimental points; 2) contribution of the boundary resistance (z 6= 0 ); 3) contribution of the proximity effect.

coherent excitations into normal conductivity dominates over the distance scale of the order of a ballistic path from the NS
boundary (∼ 1µm), irrespective of the system size, its connectivity, and, generally, the electron mean free path; due to An-
dreev reflection, the spectrum of coherent excitations is always resolved on this scale. From the discussion in Introduction
it clearly follows that in macroscopical statement of experiments, maximum level of the coherent effects should be reached
in conditions, where the electron mean free path, lel , the greatest possible coherence length, ξ0, and the sample length, L
(the separation between potential probes), are of the same order of magnitude. In these conditions, when studying even



singly connected NS systems in 1988, we first revealed an unusual behavior of the normal conductivity of the heterosystem
Bi(N)/In(S) (Chiang & Shevchenko; 1988): The resistance of the area containing the boundary between the two metals un-
expectedly decreased rather than increased at the transition of one of the metals (In) from the superconducting into normal
state (Fig. 1).
Further theoretical (Herath & Rainer; 1989; Kadigrobov; 1993; Kadigrobov et al.; 1995) and our experimental research have
shown that the effect is not casual but fundamental. It accompanies diffusive transport of electrons through non-ballistic
NS contacts. Figure 2 presents some experimental data revealing the specific features of coherent excitation scattering in
the vicinity of the NS boundaries (see more data in (Chiang & Shevchenko; 1998)) for Cu(N)/Sn(S) system (schematic
view of the sample is shown in the Inset). The basis of the bimetallic NS system under investigation was a copper single
crystal with a "macroscopically" large elastic mean free path lN

el ' 10 − 20 µm. The single crystal was in contact with
a type I superconductor (tin) (lS

el ' 100 µm). The transverse size of contact areas under probes was 20-30 µm so that
tunnel properties were not manifested in view of the large area of the junction. Separation of the N-probes from the
boundary LN1, LN2, and LS were 13, 45, and 31 µm, respectively. The curve 1 shows a general regularity in the behavior
of the resistance of normal regions adjoining the common boundary of two contacting metals - occurrence of the positive
contribution to the resistance closely related to the temperature dependence of the superconducting gap at transition of
one of the metals into the superconducting state. This effect is most pronounced just in the macroscopical statement of
experiment in the formulated above optimum conditions lN

el ∼ ξ0(N) ∼ LN .
The considered effect was predicted in (Herath & Rainer; 1989) and (Kadigrobov; 1993). It has been shown that there exists a
correction to the normal resistance (hereafter, δRAndr

N ) leading to an increase in the metal resistance within ballistic distances
from the NS boundary upon cooling. The correction may occur due to increased cross section of electron scattering by
impurities during multiple interaction of phase-coherent electron and Andreev excitations with impurities and with the
NS boundary. According to (Kadigrobov et al.; 1995), the relative increase in the resistance of a layer, LN in thickness,

Figure 4. Temperature hc/2e oscillations of the resistance of the Pb plate (see the outline above) in the intermediate state.



measured from the NS boundary and having a resistance RN prior to the formation of this boundary, should be equal to

δRAndr
N

RN
= (lN

el /LN){Tp}, (1)

where {Tp} is the effective probability of electron scattering by a layer of thickness of the order of "coherence length" ξT
taking into account Andreev reflection and the conditions lN

el ∼ ξ∗N ∼ LN . The quantity {Tp} can be obtained by integrating
Tp = h̄vF/εlN

el , viz., the probability that the particle is scattered by an impurity and reflects as an Andreev particle with
energy ε (measured from the Fermi level), thus contributing to the resistance over the length lN

el ; the integration is over the
entire energy range between the minimum energy εmin = h̄vF/lN

el and the maximum energy of the order of the gap energy
∆(T):

{Tp} =
∫ ∆(T)

εmin

(− ∂ f0
∂ε

)Tpdε. (2)

Integration to a second approximation gives the following analytical result for the correction to the resistance of the layer
LN under investigation as a function of temperature:

δRAndr
N

RN
=

ξT
LN

F(T), (3)

where F(T) is of order of unity with ξT ∼ lN
el . For a pair of probes (LN1; LN2) (see Fig. 2) with LN1,2 > lN

el it provides

δRAndr
LN1;LN2

RLN1;LN2

=
ξT

LN1 − LN2
ln(LN1/LN2)F(T). (4)

Using Eq. (4) we have estimated the data received for different samples, including those presented in Fig. 2. The analysis
reveals not only qualitative but also quantitative agreement between the experiment and the concept of increasing the
dissipative scattering contribution due to Andreev reflection (dotted curve 3 in Fig. 2). It is thus important to emphasize
once again that optimum conditions for observing this effect are realized by setting measuring probes at a distance of
several ballistic coherence lengths ξ0 from the NS boundary, i. e., in the macroscopical statement of experiment. The curve

Figure 5. Temperature hc/2e oscillations of the resistance of the intermediate-state Sn constriction (see the outline above)
in a self-current magnetic field of the measuring current I = 1 A as the critical magnetic field (50G - intervals are specified).



2 provides guidance on shares of the boundary resistance due to dissipative quasiparticle current in N - areas close NS
borders, where order parameter ∆ = ∆(x) < ∆(∞) = 1. Because the experiment was satisfied condition eV ¿ kBT the
curve is calculated using theory CESST-HC (Clarke et al.; 1979; Hsiang & Clarke; 1980). In accordance with this boundary
resistance, RNS

b , caused potential tightening VNS
b in the boundary region of superconductor where ∆(x) < 1, should be of

the order
RNS

b = VNS
b /I = Y(z, T)RCu; RCu = λQ · ρCu/A, (5)

where λQ is the distance from the boundary on the side of the superconductor, which attenuates the potential arising
due to imbalance of charge between charges of the pair current and the current of independent quasiparticles, ρCu =
3/2e2N(0)lCu

el vF. Here N(0) is density of states per spin at the Fermi level, e is electron charge, vF is the Fermi velocity, and

Y(z, T) = (1 + z2)
kBT
∆

√
2π∆
kBT

exp(−∆/kBT). (6)

Measurements of the probes, covering the NS boundary (LN1; LS), with LN1 > lCu
el and estimate of the boundary resis-

tance of Eq. (5) and (6) indicate a manifestation of such a coherent transport mechanism, which leads to an increase in
conductivity in these non-ballistic conditions (Fig. 3).
According to the concept of Landauer (Landauer; 1970) complete thermalization of the electron is the result not of momen-
tum relaxation but of relaxation of the phase of the wave function due to inelastic scattering in regions with an equilibrium
distribution (regions that are sinks and sources of charges), called "reservoirs". The simulation a continuous random walk
of an elastically scattered particle in a three-dimensional normal layer of the metal showed the need to consider the trajec-
tories of multiple Andreev reflections. As shown in (Van Wees et al.; 1992) the mean diffusional path length 〈L〉 depends
linearly on the width d of the normal layer, where d is the distance between the boundary and the region of equilibrium
distribution (reservoir), which is of the order of magnitude of the inelastic mean free path linel , i. e. d ∼ linel . Since
the probability τr for excitations to pass from the boundary to the reservoir is inversely proportional to the layer width
(τr ∼ (lel/d)), it follows from the linear relation between 〈L〉 and d that 〈L〉 ∼ τ−1

r ∝ linel .
It is also necessary to take into account the probability of realizing a diffusional trajectory by equating its length to the
elastic mean free path, or, equivalently, equating the length 〈L〉 ∼ √

h̄D/kBT(D is the diffusion coefficient) to the real
length L of the trajectory. On the other hand, 〈L〉 =

√
Dt with t = L/vF. Therefore, 〈L〉/L = lel/〈L〉. In addition, we

shall assume that the only temperature-dependent cause of inelastic scattering is inelastic electron-phonon collisions, with
a corresponding mean free path linel ∼ le−ph

inel ∼ T3.
As a result, the effective probability for coherent excitations to pass through the phase coherence region in elastic scattering
can be written in the form

τr =
lel

linel
· lel
〈L〉 = βT3.5,

β = l3/2
el (h̄vF)−1/2(l∗inel T

∗3)−1
(7)

In accordance with the Landauer concept, we find the relative contribution to the conductance G in the phase coherence
region by calculating the proportion F(m) of coherent trajectories (those that return to the reservoir after m reflections
from the boundary, starting with the trajectory with m = 1) and their contribution to the current and summing over all
trajectories:

δG
G0

=
∞

∑
m=1

F(m)I(m), (8)

where δG = G− G0, G0 ≡ GT=0; F(m) = τ2
r (1− τr)m−1(m 6= 0).

The probabilistic contribution to the current from a charge on trajectory with reflections is (Blonder et al.; 1982; Van Wees
et al.; 1992)

I(m) = 1 + |reh(m)|2|ree(m)|2, |reh(m)|2 + |ree(m)|2 = 1,

where |ree(m)|2 and |reh(m)|2 are the probabilities for an electron incident on the NS boundary, to leave the boundary
after m reflections in the form of an electron wave or hole (Andreev) wave, respectively. The expression for I(m) shows
that for a large enough number of reflections, which increases the probability of Andreev reflection to such a degree that
|reh(m)|2 → 1, the contribution of the corresponding trajectory to the current increases by a factor of 2. If all of those
trajectories reached the reservoir, the dissipation would be increased by the same factor. Formally this is a consequence
of the same fundamental conclusion of the theory which was mentioned above: that in coherent Andreev reflection the
efficiency of the elastic scattering of the electron momentum increases as a result of the interference of the and excitations.
Actually, the fraction of the coherent trajectories that returns to the reservoir decreases rapidly with increasing distance to
the reservoir from the boundary and with increasing number of reflections, which determines the length of the trajectory;
thus we have the directly opposite result. In fact, assuming that for low electron energies (eV/(h̄vF/lel) ¿ 1) and a
large contact area the main contribution to the change in conductivity is from coherent trajectories with large numbers of
reflections, so that I(m) ż 2, and converting the sum in expression (8) to an integral, we find to a second approximation:

δG
G0

≈ 2
∫ m∗

1
F(m)dm ≈ −τ2

r (m∗2τr−2m∗ ). (9)



The upper limit of integration m∗ is the number of reflections corresponding to a certain critical length for a coherent
trajectory L that reaches the reservoir. The upper limit of integration can be introduced as m∗ = γτ−1

r with a certain
coefficient γ that is to be determined experimentally. Substituting m∗ into (9), we finally obtain

δG
G0

≈ −(γ2 − 2γ)τr = −AT3.5,

A = β(γ2 − 2γ).
(10)

The effect nature consists in the fact that the number of trajectories leaving from the number of attainable reservoirs in-
creases in the long-range phase coherence region, i.e., an ever greater number of trajectories appear on which the phase of
the coherent wave functions does not relax; this decreases the dissipation. Thus, in accordance with (9), one expects that
the temperature dependence of the relative effective resistance measured at the probes located within the phase coherence
region will be in the form of a function that decreases with decreasing temperature (below Tc)as curve 1 in Fig. 3:

R/RN = (R0/RN)(1 + AT3.5). (11)

2.1.2 Natural NS boundary
The discovery of an unusual increase in the resistance of normal conductors upon the appearance of an NS boundary (Figs.
1, 2) pointed to the need to deeper understand the properties of the systems with such boundaries. Since then study of the
unconventional behavior of the electron transport in such systems has been taken on a broader scope.
As it was noted in Introduction, the early experiments detecting the phase-coherent contribution of quasiparticles to the
kinetic properties of normal metals were carried out on samples that did not contain NS boundaries. In such a case this con-
tribution, due solely to the mechanism of weak localization of electrons, appears as a small quantum interference correction
to the diffusional contribution. Nevertheless, the existence of coherent transport under those conditions was proved exper-
imentally. Study of the NS structures containing singly connected type I superconductors in the intermediate state, with

Figure 6. R - oscillations for the doubly connected Cu-In system as a function of temperature (upper curve) and of the
critical magnetic field (lower curve) at temperatures below TIn

c in the self-magnetic field (∼ 5 G) of the measuring direct
current.

large electron elastic mean free path, lel , revealed resistance quantum oscillations of a type similar to the Aharonov-Bohm
effect (Tsyan; 2000). The temperature - dependent resistances of Pb and In plates and Sn constriction were studied. The
intermediate state was maintained by applying a weak external transverse magnetic field Bext to the plates and by a self-
current field BI in the constriction. Thickness of Pb plates were 20 µm, with a separation Lm ≈ 250 µm between the mea-
suring probes in the middle part of the samples. A rolled In slab with dimensions L×W × t = 1.5 mm× 0.5 mm× 50 µm
was soldered at its ends to one of the faces of a copper single crystal and was separated from this face by an insulating
spacer. Measurements of the system with In were carried out at a direct current 0.7 A, which self-current magnetic field
at a surface of the slab with the specified sizes made 5 G. The tin constriction was t ≈ 20 µm in diameter and L ≈ 50 µm
in length, with Lm ≈ 100 µm. At the constriction surface, BI amounted to ≈ 100 G at I = 1 A. The bulk elastic mean free
path in the workpieces from which the samples were fabricated was lel ∼ 100 µm. Such macroscopical value of elastic
mean free path in macroscopical statement of experiment makes it necessary to measure samples of (0.1÷ 1) l3

el in volume,
which resistance may make down to 10−8 ÷ 10−9 Ohm.
Figures 4, 5, and 6 show the oscillatory parts of the current-normalized potential difference δR (hereinafter referred to as
R - oscillations), obtained by subtracting the corresponding mean monotonic part for each of the samples. It follows from
these graphs that the resistances of the samples oscillate in temperature in the fields maintaining the intermediate state. As
is seen, the oscillation amplitude (δR)max weakly depends on the temperature and the external magnetic field (although



the monotonic resistance components vary over no less than two orders of magnitude). The character of oscillations in
the Pb plate at various Bext values (Fig. 4) indicates that the oscillation phase φ depends on the strength and sign of the
external magnetic field: φ(480 G) is shifted from φ(550 G) by approximately π, while φ(520 G) and φ(550 G) coincide.
Constructing the critical-field scale for the oscillation region according to the equation Bc(T) ' Bc(0)[1− (T/Tc(0))2] (Tc
is the superconducting transition temperature), one finds that the oscillation period ∆B in a magnetic field is constant
for any pair of points one period apart and is equal to the difference in the absolute values of the critical field (see Figs.
4 and 5) for each of the samples. Here, we used BPb

c (0) = 803 G and BSn
c (0) = 305 G ((Handbook; 1974-1975)). This

suggests that the ∆B(Bc) period is a function of the direct rather than inverse field. The temperature T∗ corresponding to
the onset of R-oscillations in the Sn constriction is equal to the temperature for which BSn

c (T∗) = BI(≈ 100 G), viz., the
temperature of the appearance of the intermediate state. The conditions for the confident resolution of the oscillations were
fully satisfied for this sample up to 3.5 K. With the values of Bext used for the Pb plate, T∗ should lie outside the range of
helium temperatures.
It is known that in the intermediate state of a type-I superconductor in a magnetic field, a laminar domain structure arises,
with alternating normal and superconducting regions. The observed dependence of the magnitude of the effect on the
critical field in the intermediate state, first, provides direct evidence for the presence of a laminar domain NS structure
and, second, indicates that the mechanism responsible for the R-oscillations occurs in the normal areas of domains, where,
as is known, the magnetic field is equal to the superconductor critical field Bc(T) (De Gennes; 1966). The use of the
phenomenological theory of superconductivity (De Gennes; 1966; Lifshitz & Sharvin; 1951) for estimating the number
of domains between the measuring probes brought about the values of approximately 12 at 3 K and 16 at 1.5 K for the
Pb plate, 1 or 2 for the Sn constriction, and the value of 15-22 mm for the distance dn between the NS boundaries in the
oscillation region of interest. These data suggest the lack of any correlation between the indicated numbers and the number
of observed oscillation periods.

Figure 7. The criterion of coherent interaction of an electron e and an Andreev hole h with the same elastic scattering center
(see Eq. (12) in the text) establishes a distribution of areas A of quantization of the flux of the magnetic vector potential.
The maximum admissible area Amax

edge, bounded by the ballistic trajectories passing through the impurities m of maximum

cross section ∼ q2
max at the positions [xmax

edge, y, z] for θmax
edge = π/2 is separated.

As is known, the direct dependence of the oscillation phase on the field strength arises when the quantization is associated
with a real-space "geometric" factor, i. e., with the interference of coherent excitations on the geometrically specified closed
dissipative trajectories in a magnetic vector-potential field (Aharonov & Bohm; 1959; Altshuler et al.; 1981). At distances
of the order of the thermal length ξT ∼ ξ0 ≈ h̄vF/kBT from the NS boundary, where lel À ξ0, the main type of dissipative
trajectories are those coherent trajectories on which the elastic-scattering center (impurity) interacts simultaneously with
the coherent e (usual) and h (Andreev) excitations (Herath & Rainer; 1989; Kadigrobov; 1993). It was demonstrated in
(Herath & Rainer; 1989) that, owing to the doubled probability for the h excitations to be scattered by the impurity, the
interference on these trajectories generated the R-oscillations. In the presence of an electric field alone, neither the impurity
nor the relevant coherent - trajectory size are set off, so that the oscillations do not arise (Kadigrobov et al.; 1995; Van Wees
et al.; 1992).
Since the e and h trajectories spatially diverge in a magnetic field, the distance r from the impurity to the outermost bound-
ary point, from which the particle can return to the same impurity after being Andreev-reflected, is bounded, according to
the simple classical geometric considerations, by the value

r =
√

2qRL[Bc(T)]. (12)

In Eq. (12), RL is the Larmor radius and q is the parameter (of the order of a screening radius) characterizing the impurity
size. For instance, in fields of several hundred Gauss, RL ≈ 1.5 · 10−2 cm and r does not exceed (1-2) µm at q ≈ (2− 5) · 10−8

cm; i. e., ξ0 ≤ r ≤ ξT ∼ 10−2lel (lel À dn, ξT ; ξT ≈ 3 µm). Therefore, for every impurity with coordinate z, the



magnetic field separates in the z = const plane a finite region of possible coherent trajectories passing through the impurity
and closing two arbitrary reflection points on the NS boundary between the two most distant points which positions are
determined by Eq. (12) (see Fig. 7).
After averaging over all impurities, only a single trajectory (or a group of identical trajectories) specified by the edge of in-
tegration over the quantization area A makes an uncompensated contribution to the wave-function phase. The integration
edge Aedge = (1/2)r2

max corresponds to the area bounded by the trajectory passing through the most efficient (with∼ q2
max)

impurity situated at a maximum distance from the boundary, as allowed by criterion (12). One can easily verify that in our
samples with lel ≤ 0.1 mm, every layer of impurity-size thickness parallel to the NS boundary comprises no less than 103

impurities; i. e., the coherent trajectories corresponding to the integration edge continuously resume upon shifting or the
formation of new NS boundaries, so that Aedge is a continuously defined constant accurate to ∼ qmax/rqmax ∼ 10−4. Ac-
cording to (Aronov & Sharvin; 1987; Chiang & Shevchenko; 1999), the wave-function phase of the excitations with energy
E = eU in the field B should change along a coherent trajectory of length Λ as follows

φ = φe + φh = 2π[(1/π)(E/h̄vF)Λ + BA/(Φ0/2)], (13)

where Φ0 = hc/e = 4.14 · 10−7 G·cm2. The first term in Eq. (13) can be ignored because, in our samples, it does not exceed
10−5 at U ≤ 10−8 V. One can thus expect that the interference contribution coming from the elastic-scattering centers to
the conductivity oscillates as δR ∝ δRmax cos φ (Chiang & Shevchenko; 2001), where δRmax is the amplitude depending on
the concentration of the most efficient scattering centers and, hence, proportional to the total concentration c.

Figure 8. Oscillations of the generalized resistance of the interferometer s1 (In-Cu-Sn) vs magnetic field at T = 3.25 K.
The oscillation period is ∆H = (hc/2e)/Amax, whereAmax is the area of the abcd contour in the (xy) cross section of the
interferometer (see upper panel).

The maximum number of oscillation periods ∆Bext;I that can be observed in a magnetic field upon changing the temper-
ature clearly depends on the Bc variation scale. It varies from the value Bc(TO) = Bext;I at the temperature TO at which



the SNS structure with the intermediate state arises, to the value Bc(T) at a given temperature. Therefore, the phase of the
oscillations at a given temperature should depend on the values of Bext;I in a following way:

φ = 2π
[Bc(T)− Bext;I ]Amax

Φ0/2
. (14)

To estimate the interval of Bc values within which the change in Aedge with varying Bc may be neglected, we used Eq. (14)
and the differential of the parameter r from Eq. (12). This yields ∆Bc ≈ 3∆Bext;I .
From the condition ∆B · Aedge = Φ0/2 and ∆B ≈ (45; 50) G, we obtain r ≈ 1 µm, in accordance with the above-mentioned
independent estimation. The ratio of the oscillation amplitudes also conforms to its expected value: [(δRosc)Sn/(δRosc)Pb] ∼
(cSn/cPb) ∼ (lPb

el /lSn
el ) ∼ 10. One can expect that a change in the number of domains in the plate from 12 to 16 alters the

oscillation amplitude by no more than 40%; i. e., it only modifies the oscillations but does not disturb the overall periodicity
pattern (Fig. 3). It also follows from Eq. (14) that the number of periods between the temperature of oscillation onset, TO,
and an arbitrary temperature depends on the value of Bc(TO) = Bext. This makes understandable the relation between the
phases of oscillations observed for the Pb plate in different fields: (φ550G − φ480G) ≈ 3π and (φ520G − φ480G + π) ≈ 3π (it
is taken into account that B[520 G] = -B[480 G]). Such a relation is a result of the different number of periods, ∆B, measured
from Bext;I .
The significant distortions of the shape of the oscillation curves in the Pb sample is most likely due to variations in the
value of qmax when the number of domains varies in the investigated temperature interval, thereby changing the position
of the NS boundaries.
In the sample containing In, the values of TO and Tc(B = 0) are extremely close to each other because of the small BI ≈ 5
G. As a result, in the same temperature interval as for Sn and Pb one can observe more than three oscillation periods (Figs.
5 and 6). In such case, the change in Amax and, hence, in the oscillation period is hardly noticeable (see the estimation
above).
It is appropriate here to compare (although qualitatively) the order of magnitude of the interference contributions to
the conductance in the absence of an NS boundary, in the approximation of a weak-localization mechanism, and in the
presence of an NS boundary. According to the theory of weak localization (Altshuler et al.; 1980), the probability of an
occurrence of self-intersecting trajectories is of the order of (λB/lel)2 ∼ 10−7 (λB(∼ q) is the de Broglie wavelength;
lel ≈ 100 µm), while as the probability that coherent trajectories will arise in the case of an NS boundary in a layer with a
characteristic size of the order of the mean free path is larger by a factor of (r/λB)2 ∼ 108 than the probability of formation
of self-crossing trajectories. The existence of coherent trajectories in the NS system is determined by the area of the base of
the cone formed by accessible coherent trajectories arising as a result of Andreev reflection, the base of the cone resting on
the superconductor and the vertex at an impurity (see Fig. 7). Hence, the expected relative interference contribution to the
resistance of an NS system is as follows

(δR/R) ∼ (r/λB)2(λB/lel)2 À 1, (15)

and agrees completely with the amplitude of the oscillations we observed in a Pb slab.

Figure 9. Oscillations of "Andreev resistance" δR = R(Hext)− R(Hext = 0) in interferometer s3 (Pb/Cu/Pb) as a function
of magnetic field at T = 4.125 K. The oscillation period is ∆H = (hc/2e)/Amin, whereAmin is the area of xy projection
of the stretched opening of the interferometer onto the direction of magnetic field upon the deviation from the z axis;
R(Hext = 0) = 2.6245× 10−8 Ohm.



2.2 Doubly connected SNS structures
Below we present the results from the study of the conductance of doubly connected NS systems. Similarly to singly
connected ones considered above, they meet the same "macroscopic" conditions, namely, L, lel À ξT = ξ0 (L/ξT ≈ 100).
This means that a spatial scale of the possible proximity effect is much less than the size of a normal segment of the
system, this effect can be therefore neglected completely when considering phenomena of the interferential nature in such
"macroscopical" systems.
Macroscopical hybrid samples s1 [In(S)/Cu(N)/Sn(S)], s2 [Sn(S)/Cu(N)/Sn(S)], s3 [Pb(S)/Cu(N)/Pb(S)], and [In(S)/Al(N)/In(S)]
were prepared using a geometry of a doubly connected SNS Andreev interferometer with a calibrated opening. Figures 7
and 9 (upper panels) show schematically (not to scale) the typical construction of the samples, together with a wire turn as
a source of an external magnetic field Hext for controlling the macroscopic phase difference in the interferometer formed
by a part of a normal single crystal (Cu, Al) and a superconductor connected to it. Interferometers varied in size, type of a
superconductor, and area of the NS interfaces. The field Hext was varied within a few Oersteds in increments of 10−5 Oe.
An error of field measurement amounted to no more than 10 %. To compensate external fields, including the Earth field,
the container with the sample and the turn was placed into a closed superconducting shield.
Conductance of all the systems studied oscillated while changing the external magnetic field which was inclined to the
plane of the opening. It has thus appeared that the areas of extreme projections, Sextr, onto the plane normal to the vector
of the external magnetic field are related to the periods of observed oscillations, ∆H, by the expression Sextr∆H = Φ0,
where Φ0 is the magnetic flux quantum hc/2e. The values of Smin and Smax differed from each other by more than an order
of magnitude for each of the interferometers, allowing the corresponding oscillation periods to be resolved (see Figs. 8 -
10).
The sensitivity of dissipative conduction to the macroscopic phase difference in a closed SNS contour is a direct evidence
for the realization of coherent transport in the system and the role played by both NS interfaces in it. In turn, at L À ξT ,
the coherent transport can be caused by only those normal-metal excitations which energies, ε ¿ T < ∆, fill the Andreev
spectrum that arises due to the restrictions on the quasiparticle motion because of the Andreev reflections (Zhou et al.;
1995). It follows from the quasiclassical dimensional quantization (Andreev; 1964; Kulik; 1969) that the spacing between
the levels of the Andreev spectrum should be εA ≈ h̄vF/Lx ≈ 20 mK for the distance between NS interfaces Lx ' 0.5 mm. It
corresponds to the upper limit for energies of the e− h excitations on the dissipative (passing through the elastic scattering
centers) coherent trajectories in the normal region. To zero order in the parameter λB/l, only these trajectories can make
a nonaveraged phase-interference contribution to conductance, often called the "Andreev" conductance GA (Lambert &
Raimondi; 1998). Accordingly, it was supposed that the modulation depth for the normal conductance GN (or resistance
RN) in our interferometers in the temperature range measured would take the form

1− GA
GN

≡ δRA
RN

≈ εA
T
' 10−2. (16)

In the approximation of noninteracting trajectories, the macroscopic phase, φi, which coherent excitations with phases φei
and φhi is gaining while moving along an i-th trajectory closed by a superconductor, depends in an external vector-potential
field A on the magnetic flux as follows

φi = φei + φhi = φ0i + 2π
Φi
Φ0

, (17)

where φ0i is the microscopic phase related to the length of a trajectory between the interfaces by the Andreev-reflection
phase shifts; Φi = Hext · Si is the magnetic flux through the projection Si onto the plane perpendicular to Hext; Hext =
∇×A is the magnetic field vector; Si = nSi · Si; nSi is the unit normal vector; Si is the area under the trajectory; and Φ0 is
the flux quantum hc/2e.
The evaluation of the overall interference correction, 2Re( fe f ∗h ), in the expression for the total transmission probability
| fe + fh|2 ( fe,h are the scattering amplitudes) along all coherent trajectories can be reduced to the evaluation of the Fresnel-
type integral over the parameter Si (Tsyan; 2000). This results in the separation of the S-nonaveraged phase contributions
at the integration limits. As a result, the oscillating portion of the interference addition to the total resistance of the normal
region in the SNS interferometer, in particular, for Hext||z, takes the form

δRA
RN

∼ εA
T

sin[2π(φ0 +
HextSextr

Φ0
)], (18)

where Sextr is the minimal or maximal area of the projection of doubly connected SNS contours of the system onto the
plane perpendicular to H, and φ0 ∼ (1/π)(L/lel) ∼ 1 (Van Wees et al.; 1992). Our experimental data are in good agreement
with this phase dependence of the generalized interferometer resistance and the magnitude of the effect. Since all doubly
connected SNS contours include e− h coherent trajectories in the normal region with a length of no less than ∼ L ≈ 102ξT ,
one can assert that the observed oscillations are due to the long-range quantum coherence of quasiparticle excitations
under conditions of suppressed proximity effect for the major portion of electrons.



Figure 10. Non-resonance oscillations of the phase-sensitive dissipative component of the resistance of the indium narrow-
ing (curve 1) at T = 3.2 K and the resonance oscillations of this component in the aluminum part (curve 2) at T = 2 K for
the interferometer with Ra ¿ Rb, as functions of the external magnetic field.

3. Macroscopical NS systems with a magnetic N - segment

The peculiarities of electron transport arising due to the influence of a superconductor contacted to a normal metal and,
particularly, to a ferromagnet (F) have been never deprived of attention. Recently, a special interest in the effects of that
kind has been shown, in connection with the revived interest to the problem of nonlocal coherence (Hofstetter et al.; 2009).
Below we demonstrate that studying the coherent phenomena associated with the Andreev reflection, in the macroscopical
statement of experiments, may be directly related to this problem. As is known, even in mesoscopic NS systems, the
coherent effects has been noted in a normal-metal (magnetic) segment at a distance of x À ξexch from a superconductor
(ξexch is the coherence length in the exchange field of a magnetic) (Giroud et al.; 2003; Gueron et al.; 1996; Petrashov et
al.; 1999). That fact gave rise to the intriguing suggestion that magnetics could exhibit a long-range proximity effect,
which presumed the existence of a nonzero order parameter ∆(x) at the specified distance. Such a suggestion, however,
contradicts the theory of FS junctions, since ξexch ¿ ξT ∼ vF/T, and vF/T is the ordinary scale of the proximity effect
in the semiclassical theory of superconductivity (De Gennes; 1966). This assumption, apparently, is beneath criticism,
because of the specific geometry of the contacts in mesoscopic samples. As a rule, these contacts are made by a deposition
technology. Consequently, they are planar and have the resistance comparable in value with the resistance of a metal
located under the interface. A shunting effect arises, and the estimation of the value and even sign of the investigated
transport effects becomes ambiguous (Belzig et al.; 2000; Jin & Ketterson; 1989; De Jong & Beenakker; 1995).
Influence of the shunting effect is well illustrated by our previous results (Chiang & Shevchenko; 1999); one of them is
shown in Fig. 11. The conductance measured outside the NS interface (see curve 1 and Inset 1) behaves in accordance with
the fundamental ideas of the semiclassical theory (see Sec. 2. 1): Because of "retroscattering", the cross section for elastic
scattering by impurities in a metal increases at the coherence length of e − h hybrids formed in the process of Andreev
reflection, i. e., the conductivity of the metal decreases rather than increases. Additional scattering of Andreev hole on the
impurity is completely ignored in case of a point-like ballistic junction (Blonder et al.; 1982). At the same time, the behavior
of the resistance of the circuit which includes a planar interface (see Inset 2) may not even reflect that of the metal itself
(curve 2; see also (Petrashov et al.; 1999)), but it is precisely this type of behavior that can be taken as a manifestation of the
long-range proximity effect.

3.1 Singly connected FS systems
Here, we present the results of experimental investigation of the transport properties of non-film single - crystal ferro-
magnets Fe and Ni in the presence of F/ In interfaces of various sizes (Chiang et al.; 2007). We selected the metals with
comparable densities of states in the spin subbands; conducting and geometric parameters of the interfaces, as well as the
thickness of a metal under the interface were chosen to be large in comparison with the thickness of the layer of a super-
conductor. In making such a choice, we intended to minimize the effects of increasing the conductivity of the system that
could be misinterpreted as a manifestation of the proximity effect.
The geometry of the samples is shown (not to scale) in Fig. 12. The test region of the samples with F/S interfaces a and b
is marked by a dashed line. After setting the indium jumper, the region abdc acquired the geometry of a closed "Andreev



Figure 11. Temperature dependences of the resistance of the system normal metal/superconductor in two measurement
configurations: outside the interface (curve 1, Inset 1) and including the interface (curve 2, Inset 2).

interferometer", which made it possible to study simultaneously the phase-sensitive effects. Both point (p) and wide (w)
interfaces were investigated. We classify the interface as "point" or "wide" depending on the ratio of its characteristic area
to the width of the adjacent conductor (of the order of 0.1 or 1, respectively).

3.1.1 Doubling the cross section of scattering by impurities.
Figure 13 shows in relative units δR/R = [R(T)− R(T = TIn

c )]/R(T = TIn
c ) the resistance of the ferromagnetic segments

with point (Fe, curve 1 and Ni, curve 2) and wide (Ni, curve 3) F/S interfaces measured with current flow parallel to
the interfaces [for geometry, see Insets (a) and (b)]. In this configuration, with indium in the superconducting state, the
interfaces, as parts of the potential probes, play a passive role of "superconducting mirrors". It can be seen that for T ≤ TIn

c
(after Andreev reflection is actuated), the resistance of Ni increases abruptly by 0.04% (δRp ≈ 1× 10−8 Ohm) in the case
of two point interfaces and by 3% (δRw ≈ 7× 10−7 Ohm) in the case of two wide ones. In Fe with point interfaces, a
negligible effect of opposite sign is observed, its magnitude being comparable to that in Ni, δRNi

p .
Just as in the case of a nonmagnetic metal (Fig. 11), the observed decrease in the conductivity of nickel when the potential
probes pass into the "superconducting mirrors" state, corresponds to an increase in the efficiency of the elastic scattering by
impurities in the metal adjoining the superconductor when Andreev reflection appears. (We recall that the shunting effect
is small). In accordance with Eq. (3), the interference contribution from the scattering of a singlet pair of e− h excitations
by impurities in the layer, of the order of the coherence length ξ in thickness, if measured at a distance L from the N/S
interface, is proportional to ξ/L. From this expression one can conclude that the ratio of the magnitude of the effect, δR, to
the resistance measured at an arbitrary distance from the boundary is simply the ratio of the corresponding spatial scales.
It is thereby assumed that the conductivity σ is a common parameter for the entire length, L, of the conductor, including
the scale ξ. Actually, we find from Eq. (3) that the magnitude of the positive change in the resistance, δR, of the layer ξ in
whole is

Figure 12. Schematic view of the F/S samples. The dashed line encloses the workspace. F/In interfaces are located at the
positions a and b. The regimes of current flow, parallel or perpendicular to the interfaces, were realized by passing the feed
current through the branches 1 and 2 with disconnected indium jumper a − b or through 5 and 6 when the jumper was
closed (shown in the figure).

δR ξ = (ξ/σξ Aif)r̄ ≡
Nimp

∑
i=1

δR ξ
i . (19)



Here, σξ is the conductivity in the layer ξ; Aif is the area of the interface; Nimp is the number of Andreev channels (impu-

rities) participating in the scattering; δRξ
i is the resistance resulting from the e− h scattering by a single impurity, and r̄ is

the effective probability for elastic scattering of excitations with the Andreev component in the layer ξ as a whole. Con-
trol measurements of the voltages in the configurations included and not included interfaces showed that in our systems,
the voltages themselves across the interfaces were negligibly small, so that we can assume r̄ ≈ 1. It is evident that the
Eq. (19) describes the resistance of the ξ-part of the conductor provided that σξ = σL i. e., for ξ > lel . For ferromagnets,
ξ ¿ lel and lL

el 6= lel . In this case, to compare the values of δR measured on the length L with the theory, one should
renormalize the value of RN from the Eq. (3).
In the semiclassical representation, the coherence of an Andreev pair of excitations in a metal is destroyed when the dis-
placement of their trajectories relative to each other reaches a value of the order of the trajectory thickness, i. e., the de
Broglie wavelength λB. The maximum possible distance ξm (collisionless coherence length) at which this could occur in a
ferromagnet with nearly rectilinear e and h trajectories (Fig. 14a) is

ξm ∼ λB
εexch/εF

=
πh̄vF
εexch

; εexch = µBHexch ∼ Texch (20)

(µB is the Bohr magneton, Hexch is the exchange field, and Texch is the Curie temperature). However, taking into account the
Larmor curvature of the e and h trajectories in the field Hexch, together with the requirement that both types of excitations
interact with the same impurity (see Fig. 14b), we find that the coherence length decreases to the value (De Gennes; 1966)
ξ∗ =

√
2qr =

√
2qξm (compare with Eq. (12)). Here, r is the Larmor radius in the field Hexch and q is the screening

radius of the impurity ∼ λB. Fig. 14 gives a qualitative idea of the scales on which the dissipative contribution of Andreev
hybrids can appear, as a result of scattering by impurities (Nimp À 1), with the characteristic dimensions of the interfaces
y, z À lel .

Figure 13. Temperature dependences of the resistance of Fe and Ni samples in the presence of F/In interfaces acting as
"superconducting mirrors" at T < TIn

c . Curves 1 and 2: Fe and Ni with point interfaces, respectively; curve 3: Ni with wide
interfaces. Insets: geometry of point (a) and wide (b) interfaces.

For Fe with Texch ≈ 103 K and Ni with Texch ≈ 600 K, we have ξ∗ ≈ 0.001 µm. It follows that in our experiment with
lel ≈ 0.01 µm (Fe) and lel ≈ 1 µm (Ni), the limiting case lel À ξ∗ and lL

el 6= lξ
el is realized. From Fig. 13b it can be seen

that for y, z À lel À ξ∗ in the normal state of the interface, the length lξ
el within the layer ξ∗ corresponds to the shortest

distance between the impurity and the interface, i. e., lξ
el ≡ ξ∗ (σL 6= σξ∗ ). Note that for an equally probable distribution

of the impurities, the probability of finding an impurity at any distance from the interface in a finite volume, with at least
one dimension greater than lel , is equal to unity. Renormalizing Eq. (3), with ξT replaced by ξ∗, we obtain the expression
for estimating the coherence correction to the resistance measured on the length L in the ferromagnets:

δRξ∗

RL
=

ξ∗

L
· lel

lξ∗
el

r̄ ≈ lel
L

r̄; δRξ∗ =
ξ∗

σξ∗Ai f

r̄ ≡
Nimp

∑
i=1

δR ξ∗
i (21)

Here, σξ∗ is the conductivity in the layer ξ∗; δR ξ∗
i is the result of e− h scattering by a single impurity. Equation (14) can

serve as an observability criterion for the coherence effect in ferromagnets of different purity. It explains why no positive
jump of the resistance is seen on curve 1, Fig. 13, in case of a point Fe/In interface: with lFe

el ≈ 0.01 µm, the interference
increase in the resistance of the Fe segment with the length studied should be ≈ 10−9 Ohm and could not be observed at
the current Iacdb ≤ 0.1 A, at which the measurement was performed, against the background due to the shunting effect.



Comparing the effects in Ni for the interfaces of different areas also shows that the observed jumps pertain precisely to the
coherent effect of the type studied. Since the number of Andreev channels is proportional to the area of an N/S interface,
the following relation should be met between the values of resistance measured for the samples that differ only in the area
of the interface: δRξ∗

w /δRξ∗
p = Nw

imp/Np
imp ∼ Aw/Ap (the indices p and w refer to point and wide interfaces, respectively).

Comparing the jumps on the curves 2 and 3 in Fig. 13 we obtain: δRw/δRp = 70, which corresponds reasonably well to
the estimated ratio Aw/Ap = 25− 100.
In summary, the magnitude and special features of the effects observed in the resistance of magnetics Fe and Ni are un-
doubtedly directly related with the above-discussed coherent effect, thereby proving that, in principle, it can manifest
itself in ferromagnets and be observed provided an appropriate instrumental resolution. Although this effect for magnet-
ics is somewhat surprising, it remains, as proved above, within the bounds of our ideas about the scale of the coherence
length of Andreev excitations in metals, which determines the dissipation; therefore, this effect cannot be regarded as a
manifestation of the proximity effect in ferromagnets.

Figure 14. Scattering of Andreev e− h hybrids and their coherence length ξ∗ in a normal ferromagnetic metal with charac-
teristic F/S interfacial dimensions greater than lel . Panels a, b : ξ∗ ¿ lel ; panel c : ξ∗ À lel ; ξD ∼ √

lelξ
∗.

3.1.2 Spin accumulation effect.
The macroscopic thickness of ferromagnets under F/S interfaces made it possible to investigate the resistive contribution
from the interfaces, Ri f , in the conditions of current flowing perpendicular to them, through an indium jumper with current
fed through the contacts 5 and 6 (see Fig. 12 and Inset in Fig. 15).
Figure 15 presents in relative units the temperature behavior of Rp

i f for point Fe/In interfaces (curve 1) and Rw
i f for wide

Ni/In interfaces (curve 2) as δRi f /Ri f = [Ri f (T)Ri f (T In
c )]/Ri f (T In

c ). The shape of the curves shows that with the transition
of the interfaces from the F/N state to the F/S state the resistance of the interfaces abruptly increases but compared with
the increase due to the previously examined coherent effect it increases by an incomparably larger amount. It is also
evident that irrespective of the interfacial geometry the behavior of the function Ri f (T) is qualitatively similar in both
systems. The value of Ri f (T In

c ) is the lowest resistance of the interface that is attained when the current is displaced to
the edge of the interface due to Meissner effect. The magnitudes of the positive jumps with respect to this resistance,
δRi f /Ri f (T In

c ) ≡ δRF/S/RF/N , are about 20% for Fe (curve 1) and about 40% for Ni (curve 2). The values obtained are

Figure 15. Spin accumulation effect. Relative temperature dependences of the resistive contribution of spin-polarized
regions of Fe and Ni near the interfaces with small (Fe/In) and large (Ni/In) area.

more than an order of magnitude greater than the contribution to the increase in the resistance of ferromagnets which



is related with the coherent interaction of the Andreev excitations with impurities (as is shown below, because of the
incomparableness of the spatial scales on which they are manifested). This makes it possible to consider the indicated
results as being a direct manifestation of the mismatch of the spin states in the ferromagnet and superconductor, resulting
in the accumulation of spin on the F/S interfaces, which decreases the conductivity of the system as a whole. We suppose
that such a decrease is equivalent to a decrease in the conductivity of a certain region of the ferromagnet under the interface,
if the exchange spin splitting in the ferromagnetic sample extends over a scale not too small compared to the size of this
region. In other words, the manifestation of the effect in itself already indicates that the dimensions of the region of
the ferromagnet which make the effect observable are comparable to the spin relaxation length. Therefore, the effect
which we observed should reflect a resistive contribution from the regions of ferromagnets on precisely the same scale.
The presence of such nonequilibrium regions and the possibility of observing their resistive contributions using a four-
contact measurement scheme are due to the "non-point-like nature" of the potential probes (finiteness of their transverse
dimensions). In addition, the data show that the dimensions of such regions near Fe/S and Ni/S interfaces are comparable
in our experiments. Indeed, the value of δRNi/S/RNi/N corresponding according to the configuration to the contribution
from only the nonequilibrium regions and the value of δRFe/S/RFe/N obtained from a configuration which includes a
ferromagnetic conductor of length obviously greater than the spin-relaxation length, are actually of the same order of
magnitude. In addition, according to the spin-accumulation theory (Hofstetter et al.; 2009; Lifshitz & Sharvin; 1951; Van
Wees et al.; 1992), the expected magnitude of the change in the resistance of the F/S interface in this case is of the order of

δRF/S =
λs

σA
· P2

1− P2 ; P = (σ↑ − σ↓)/σ; σ = σ↑ + σ↓. (22)

Here, λs is the spin relaxation length; P is the coefficient of spin polarization of the conductivity; σ, σ↑, σ↓, and A are
the total and spin-dependent conductivities and the cross section of the ferromagnetic conductor, respectively. Using
this expression, substituting the data for the geometric parameters of the samples, and assuming PFe ∼ PNi, we obtain
λs(Fe/S)/λ∗s (Ni/S) ≈ 2. This is an additional confirmation of the comparability of the scales of the spin-flip lengths λs
for Fe/S and λ∗s for Ni/S, indicating that the size of the nonequilibrium region determining the magnitude of the observed
effects for those interfaces is no greater than (and in Fe equal to) the spin relaxation length in each metal. In this case,
according to Eq. (22), the length of the conductors, with normal resistance of which the values of δRF/S must be compared,
should be set equal to precisely the value of λs for Fe/S and λ∗s for Ni/S. This implies the following estimate of the
coefficients of spin polarization of the conductivity for each metal:

P =
√

(δRF/S/RF/N)/[1 + (δRF/S/RF/N)]. (23)

Using our data we obtain PFe ≈ 45% for Fe and PNi ≈ 50% for Ni, which is essentially the same as the values obtained
from other sources (Soulen et al.; 1998). If in Eq. (22) we assume that the area of the conductor, A, is of the order of the area
of the current entrance into the jumper (which is, in turn, the product of the length of the contour of the interface by the
width of the Meissner layer), then a rough estimate of the spin relaxation lengths in the metals investigated, in accordance
with the assumption of single-domain magnetization of the samples, will give the values λFe

s ∼ 90 nm and λNi
s > 50 nm.

Comparing these values with the value of coherence length in ferromagnets ξ∗ ≈ 1 nm we see that although the coherent
effect leads to an almost 100% increase in the resistance, this effect is localized within a layer which thickness is two orders
of magnitude less than that of the layer responsible for the appearance of the spin accumulation effect, therefore it does not
mask the latter.

3.2 Doubly connected SFS systems
The observation of the coherent effect in the singly connected FS systems raised the following question: Can effects sensi-
tive to the phase of the order parameter in an superconductor be manifested in the conductance of ferromagnetic conduc-
tors of macroscopic size? To answer this question we carried out direct measurements of the conductance of Ni conductors
in a doubly connected SFS configuration (in the Andreev interferometer (AI) geometry shown in Fig. 16).
Figures 17 and 18 show the magnetic-field oscillations of the resistance of two samples in a doubly connected S/Ni/S
configuration with different aperture areas, measured for the arrangement of the current and potential leads illustrated in
Fig. 16. The oscillations in Fig. 17 are presented on both an absolute scale (δRosc = RH − R0, left axis) and a relative scale
(δRosc/R0, right axis). R0 is the value of the resistance in zero field of the ferromagnetic segment connecting the interfaces
in the area of a dashed line in Fig. 16. Such oscillations in SFS systems in which the total length of the ferromagnetic
segment reaches the values of the order of 1 mm (along the dashed line in Fig. 16), were observed for the first time. Figures
17 and 18 were taken from two samples during two independent measurements, for opposite directions of the field, with
different steps in H and are typical of several measurements, which fact confirms the reproducibility of the oscillation
period and its dependence on the aperture area of the interferometer.
The period of the resistive oscillations shown in Fig. 16 is ∆B ≈ (5− 7) × 10−4 G and is observed in the sample with
the geometrical parameters shown in Fig. 16. It follows from this figure that the interferometer aperture area, enclosed
by the midline of the segments and the bridge, amounts to A ≈ 3× 10−4cm2. In the sample with twice the length of the
sides of the interferometer and, hence, approximately twice the aperture area, the period of the oscillations turned out to
be approximately half as large (solid line in Fig. 18). From the values of the periods of the observed oscillations it follows



Figure 16. Schematic diagram of the F/S system in the geometry of a doubly connected "Andreev interferometer". The ends
of the single-crystal ferromagnetic (Ni) segment (dashed line) are closed by a superconducting In bridge. The dimensions
are indicated for the sample with the resistance oscillations shown in Fig.16.

Figure 17. The hc/2e magnetic-field oscillations of the resistance of a ferromagnetic (Ni) conductor in an AI system with
the dimensions given in Fig. 16, in absolute (left-hand scale) and relative (right-hand scale) units. R0 = 4.12938× 10−5

Ohm. T = 3.1 K.

that, to an accuracy of 20%, the periods are proportional to a quantum of magnetic flux Φ0 = hc/2e passing through the
corresponding area A : ∆B ≈ Φ0/A.
Obviously, the oscillatory behavior of the conductance is possible if the phases of the electron wave functions are sensitive
to the phase difference of the order parameter in the superconductor at the interfaces. Consequently, this parameter should
be related to the diffusion trajectories of the electrons on which the "phase memory" is preserved within the whole length
L of the ferromagnetic segment. This means that the oscillations are observed in the regimes L ≤ Lϕ =

√
Dτϕ À ξT (D

is the diffusion coefficient, ξT is the coherence length of the metal, over which the proximity effect vanishes, and τϕ is
the dephasing time). It is well known that the possibility for the Aharonov-Bohm effect to be manifested under these
conditions was proved by Spivak and Khmelnitskii (Spivak & Khmelnitskii; 1982), although the large value of Lϕ coming
out of our experiments is somewhat unexpected.

3.2.1 The entanglement of Andreev gybrids
The estimated value of Lϕ raises a legitimate question of the nature of the observed effect and the origin of the dephasing
length scale evaluated. Since, as discussed in the Introduction, Lϕ is determined by the scale of the inelastic mean free path,
the main candidates for the mechanism of inelastic scattering of electrons in terms of their elastic scattering on impurities
remain electron-electron (e− e) and electron-phonon (e− ph) interactions.
Direct measurement of the temperature-dependent resistance of the ferromagnetic (Ni) segment in the region below TIn

c
found that (δRe−ph/Rel) ∼ (lel/le−ph) ≈ 10−3 − 10−4. It follows that for our Ni segment with lel > 10−3 cm and D ∼ 105

cm2/s, the electron-phonon relaxation time should be τe−ph ∼ (10−7 − 10−8) s, which value coincides, incidentally, with



Figure 18. The hc/2e magnetic-field oscillations of the resistance of a ferromagnetic (Ni) conductor in an AI system with
an aperture area twice that of the system illustrated in Fig. 16 (solid curve, right-hand scale). R0 = 3.09986× 10−6 Ohm.
T = 3.2 K. The dashed curve shows the oscillations presented in Fig. 16.

the semiclassical estimate τe−ph ∼ (h̄/T)(TD/T)4 (TD is the Debye temperature). On the other part, τe−e ∼ h̄µe/T2 (µe is
the chemical potential) at 3 K has the same order of magnitude. Thereby, the dephasing length in the studied systems can
have a macroscopical scale of the order of Lϕ =

√
Dτϕ ∼ 1 mm, which corresponds to the length of F segments of our

interferometers.
Under these conditions the nature of the observed oscillations can be assumed as follows. According to the arguments
offered by Spivak and Khmelnitskii (Spivak & Khmelnitskii; 1982), in a metal, regardless of the sample geometry (the pa-
rameters Lx,y,z), there always exists a finite probability for the existence of constructively interfering transport trajectories,
the oscillatory contribution of which does not average out. Such trajectories coexist with destructively interfering ones,
the contributions from which average to zero. An example would be the Sharvin’s experiment (Sharvin & Sharvin; 1981).
In the doubly connected geometry, the probability for the appearance of trajectories capable of interfering constructively
increases.
Consider the model shown in Fig. 19. Cooper pairs injected into the magnetic segment are split due to the magnetization
and lose their spatial coherence over a distance ξ∗ =

√
2λBrexch from the interface (see Sec. 3. 1. 1). rexch is the Larmor

radius in the exchange field Hexch ≈ kBTC; rexch ∼ 1 µm. (Recall that ξ∗ is the distance at which simultaneous interaction
of e and h quasiparticles with the same impurity is still admissible.)
The phase shifts acquired by (for example ) an electron 3 and hole 2 on the trajectories connecting the interfaces are equal,
respectively, to

φe = (kF + εT/h̄vrmF)Le + 2πΦ/Φ0 = φ0e + 2πΦ/Φ0,

φh = −(kF − εT/h̄vrmF)Lh + 2πΦ/Φ0 = φ0h + 2πΦ/Φ0.
(24)

Here εT and kF are the energy, measured from the Fermi level and the modulus of the Fermi wave vector, respectively.
Since the trajectories of an e− h pair are spatially incoherent, their oscillatory contributions, proportional to the squares of
the probability amplitudes, should combine additively:

| fh(2)|2 + | fe(3)|2 ∼ cosφe + cosφh ∼ cos(φ0 + 2πΦ/Φ0), (25)

where Φ0 is the relative phase shift of the independent oscillations, equal to

Φ0 = (1/2)(φ0e + Φ0h) ≈ (εT/εL)(Le + Lh)/2L, (26)

where εL = h̄vF/L; εT = kBT = h̄D/ξ2
T . Hence it follows that any spatially separated e and h diffusion trajectories with

φ0 = 2πN, where N is an integer, can be phase coherent. Clearly this requirement can be satisfied only by those trajectories
whose midlines along the length coincide with the shortest distance L connecting the interfaces. In this case, (Le + Lh)/2L
is an integer, since Li(e,h), L ∝ lel and (Li(e,h)/L) = m(1 + α), where α ¿ 1. Furthermore, (εT/εL)/2π is also an integer
n to an accuracy of n(1 + γ), where γ ≈ (d/L) ¿ 1 (d is the transverse size of the interface). In sum, considering all the
foregoing we obtain

cos(φ0 + 2πΦ/Φ0) ∼ cos(2πΦ/Φ0). (27)

This means that the contributions oscillatory in magnetic field from all the trajectories should have the same period. Taking
into consideration the quasiclassical thickness of a trajectory, we find that the number of constructively interfering trajec-
tories with different projections on the quantization area, those that must be taken into account, is of the order of (lel/λB).
However, over the greater part of their length, except for the region ξ∗, all (lel/λB) trajectories are spatially incoherent.
They lie with equal probability along the perimeter of the cross section of a tube of radius lel and axis L, and therefore



Figure 19. Geometry of the model.

outside the region ξ∗ they average out. Constructive interference of particles on these trajectories can be manifested only
over the thickness of the segment ξ∗, reckoned from the interface, where the particles of the e − h pairs are both phase-
and spatially coherent. In this region the interaction of pairs with an impurity, as mentioned in the Introduction, leads to a
resistive contribution. When the total length of the trajectories is taken into account, the value of this contribution for one
pair should be of the order of ξ∗/L. Accordingly, one can expect that the amplitude of the constructive oscillations will
have a relative value of the order of

δRξ∗/RL ≈ (ξ∗/L)(lel/lξ∗
el ) ∼ lL

el/L, (28)

(lξ∗
el ∼ λB [see sec. 2.1.1]), i. e., the same as the value of the effect measured with the superconducting bridge open.

Our experiment confirms this completely: For the samples with the oscillations shown in Figs. 17 and 18, δRξ∗/RL ≈
0.03% and 0.01%, respectively. This is much larger than the total contribution from the destructive trajectories, which in
the weak-localization approximation is of the order of (λB/lel)2 and which can lead to an increase in the conductance
(Altshuler et al.; 1981)]. One should also note that the property of the oscillations under discussion described by Eq. (27)
presupposes that the resistance for H = 0 will decrease as the field is first introduced, and this, as can be seen in Figs. 17
and 18, agrees with the experiment.

4. Conclusion

Here, we presented the results of the study of Andreev reflection in a macroscopic formulation of experiments, consist-
ing in increasing simultaneously the diffusion coefficient in normal segments of NS hybrid systems and the size of these
segments by a factor of 103 − 104 as compared with those characteristics of mesoscopic systems. Our data prove that at
temperatures below 4 K, the relaxation of the electron momentum, at least at sufficiently rare collisions of electrons with
static defects, are not accompanied by a break of the phase of electron wave functions. Hence, the electron trajectories
in the classical approximation may be reversible on a macroscopic length scale of the order of several millimeters, both
in a nonmagnetic and in a sufficiently pure ferromagnetic metal. In this situation, there appears a possibility to observe
conductance oscillations in doubly connected NS systems in Andreev-reflection regime, with a period hc/2e in a magnetic
field, which indicates that the interference occurs between singlet bound quasiparticles rather than between triplet bound
electrons, as in the Aharonov-Bohm ring. With the current flowing perpendicular to the NS interfaces in singly connected
samples, a nonequilibrium resistive contribution of the interfaces was found. We associate this with the spin polariza-
tion of a certain region of a ferromagnet under the interface. The observed increase in the resistance corresponds to the
theoretically predicted magnitude of the change occurring in the resistance of a single-domain region with spin-polarized
electrons as a result of spin accumulation at the F/S interface under the conditions of limiting Andreev reflections.
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