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Quantum interference effects in a system of two tunnel point-contacts in the presence
of a single scatterer: simulation of a double-tip STM experiment
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The conductance of systems containing two tunnel point-contacts and a single subsurface scat-
terer is investigated theoretically. The problem is solved in the approximation of s-wave scatter-
ing giving analytical expressions for the wave functions and for the conductance of the system.
Conductance oscillations resulting from the interference of electron waves passing through differ-
ent contacts and their interference with the waves scattered by the defect are analyzed. The pos-
sibility of determining the depth of an impurity below the metal surface by using the dependence
of the conductance on the distance between the contacts is discussed. It is shown that the appli-
cation of an external magnetic field results in Aharonov-Bohm oscillations in the conductance,
the period of which can be used to determine the depth of the defect in a double-tip STM
experiment. © 2011 American Institute of Physics. �doi:10.1063/1.3551531�
With the development of scanning tunnelling micros-
copy �STM� it has become clear that a single STM probe is
often not enough to obtain information on the detailed char-
acteristics of the surface under investigation. A logical devel-
opment of the one-tip approach is a dual-tip experimental
setup, which can provide us with richer information than
conventional single-probe STM. Despite the apparent techni-
cal complexity of the dual-tip STM �DSTM� in comparison
with standard STM, several groups have successfully im-
proved the STM technology in this way.1–4

DSTM can be realized in different ways. For example, it
can be a spatially extended STM tip with two protrusions,
each ending in a cluster or a single atom.5 A second approach
is a coaxial beetle-type double-tip STM design that seems
advantageous in retaining the standard STM stability.6 The
most versatile DSTM employs two individual tips, which can
be driven independently. In this case the distance between
the tips is limited in principle only by a parameter such as
the characteristic tip radius.2 Another original example of
DSTM is a proposal7 in which one contact can be created
directly on the surface, while the other is the STM tip itself.

For DSTM experiments with two independent probes
there are different possibilities for applying voltages to the
tunnelling contacts. There are two basic circuit designs: in
the first, electrons are emitted from the first contact and then
gathered at the second, i.e., the current flows from one con-
tact to the other through the surface being probed.8,9 This
method can be used to obtain a trans-conductance map, and,
in addition, permits implementation of three-terminal ballis-
tic electron emission spectroscopy �BEES� without the intro-
duction of macroscopically bounded contacts.3 In the second
basic scheme5 a bias is applied between the two tips and the
sample, i.e., the current flows from two contacts into the
sample.
1063-777X/2011/37�1�/6/$32.00 53
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Subsurface defects, adatoms, and steps on a metal sur-
face lead to the appearance of Friedel-like oscillations in the
STM conductance G=dI /dV, i.e., a nonmonotonic variation
in G with the distance between the STM tip and the defect r0.
�For a review see Ref. 10.� Studies of this variation can be
used to detect buried defects and to investigate their charac-
teristics. Methods for determining the positions of defects
below a metal surface using a single tip STM have been
proposed before: this can be achieved using the period of
oscillations in the conductance as a function of bias11,12 or by
exploiting the interference pattern of the conductance as a
function of position, G�r0�, which is very pronounced in the
open directions of the Fermi surface.13–15 These approaches
are very suitable for the surfaces of simple metals, such as
the noble metals, but their application to conductors with
more complicated Fermi surface geometries will be difficult
and has not yet been explored.

Here we examine the simultaneous injection of electrons
into the surface by the first and second contacts. We consider
this realization of a double-tip experiment as a natural refine-
ment of the single-tip STM problem for the study of single
defects buried under a metal surface.11,12,15

The idea of using multiple tunnelling contacts for deter-
mining the depth and location of impurities under a metal or
semiconductor surface has been discussed before.8 The paper
by Niu et al.,8 proposes a method for determining the desired
depth by measuring the transconductance between the two
tips of a dual-tip scanning tunneling microscope. Here we
propose a different approach: measuring the phase change
�� in the conductance oscillations as a function of the dis-
tance d between two STM tips. These phase changes can be
measured experimentally with great precision. We show that
�� can be expressed in terms of the distance d �in units of
the Fermi wave vector kF�, the position �0 of the defect in a
plane parallel to the surface, which is easily defined experi-
© 2011 American Institute of Physics
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mentally, and the unknown depth of the defect, z0. Thus, by
measuring ���d� it is possible to determine the depth of a
buried impurity. The procedure for determining z0 is further
simplified when a magnetic field H is applied to the system.
Then the STM conductance G undergoes Aharonov–Bohm
oscillations. These oscillations result from the quantization
of the magnetic flux through the area formed by the electron
trajectories from the contacts to the defect and the line con-
necting the contacts �Fig. 1�. For a weak magnetic field the
electron trajectories and the line connecting the contacts
form a triangle, and the defect depth can be found easily
from the area of the triangle, S.

As a model for the double-tip STM geometry we con-
sider two metal half-spaces separated by an infinitely thin
nonconducting interface at z=0, which contains two small
regions �contacts� that allow electron tunnelling �see Fig. 1�.
The origin r=0 of the coordinate system is chosen to be in
the center of the first contact. The x-axis is directed along the
line connecting the contacts. For the potential barrier in the
plane z=0 we use the function17

U�r� = U0f�����z� . �1�

In our case f��� describes two «windows» for electron tun-
neling and is reciprocal f−1��� can be written as a sum of two
terms

f−1��� = ���/a1� + ���d − ��/a2� ,

2��
0

�

dxx��x� = 1, �2�

where ��x��1 for x	1, and ��x�
1 for x�1, a1,2 are the
characteristic radii of the contacts, � is the component of the
vector r parallel to the plane z=0, and d is a two-
dimensional radius vector from the center of the first contact
to the center of the second. The absolute value d is the dis-
tance between contacts, assuming that this is smaller than the
shortest relaxation length.

V

d

a2d

x

S
r0

�0
z

z0
V z( ) = 0

V z V( ) = ( )

a1

H

r0́

FIG. 1. Schematic arrangement of a system of two tunnel contacts, mod-
elled as two orifices in an infinitely thin interface between conducting half-
spaces. The inset shows the equivalent circuit with two STM tips, which
provide electron tunnelling paths through small areas with characteristic
radii a1 and a2.
Downloaded 21 Mar 2013 to 129.78.32.24. Redistribution subject to AIP lic
A single defect described a short range potential D�r� is
positioned in the vicinity of the contacts, with

D�r� = gD0��r − r0�� , �3�

where g is the interaction constant for the interaction of the
electrons with the defect and D0��r−r0�� is a spherically sym-
metric function localized within a region of characteristic
radius rD centered at the point r=r0, which satisfies the nor-
malization condition

4��
0

�

dr�r�2D0�r�� = 1. �4�

To calculate the conductance G we proceed as before.
The probability density current is found by using the wave
function ��r� for the electrons tunnelling through the poten-
tial barrier in the plane of the orifices. The total electric
current I in the system is calculated by integrating over the
electron momenta and over a surface that overlaps the con-
tacts. We take the temperature to be zero, and assume a small
applied voltage V consistent with the linear regime of Ohm’s
law, I=GV. Under these assumptions the conductance G can
be written as

G =
e2

m* ���F��
SF,vz�0

d�p�
S

d�r2 Im��*�r� � ��r�� .

�5�

In Eq. �5� m* is the effective electron mass, ���F� is the
electron density of states at the Fermi level, and d� and d�p
are the elements of solid angle in geometric and momentum
space, respectively. As the surface for spatial integration we
choose a half-sphere of radius r greater than the distance
between the contacts d and centered at the center of first
contact, r=0, and covering the contacts in the lower half-
space, z�0. The integration with respect to the directions of
the momentum over the Fermi surface SF is carried out for
electrons which tunnel and have a positive projection vz of
the electron velocity along the contact axis z. As a conse-
quence of the conservation of the total current, the integral
over d� is independent of the length chosen for the radius r.

The electron wave function ��r� satisfies the
Schrödinger equation

	�2 +
2m*

2 �� − D�r��
��r� = 0, �6�

subject to the boundary conditions of continuity and of the
jump of its derivative at z=0. In Ref. 17 a solution of Eq. �6�
has been found for an arbitrary function f��� in the limit of
weak tunnelling, 1 /U0→0, and for a purely ballistic contact
�no defects present�,

�0��,z� = −
ikz

2

�2��2m*U0
�

−�

�

d��ei���eikz�z�
−�

�

d��
ei��−�����

f����
,

�7�

where ks�=��2+kz
2−��2, and � and kz are the components of

the vector k parallel and perpendicular to the interface, re-
spectively. As a special case the authors of Ref. 17 consid-
ered a system of several orifices with different radii.
ense or copyright; see http://ltp.aip.org/about/rights_and_permissions
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The characteristic radius of the region through which the
electrons tunnel from the STM tip into the sample has sub-
atomic size �a�0.1 Å�, while the Fermi wave vector is kF

�1 Å−1. By using the condition kFa1,2
1 we find, after in-
tegrating over �� in Eq. �7�,

�0�r� =
it�kz�

2
	�ka1�2z

r
h1

�1��kr� + �ka2�2 z

r�
h1

�1��kr��ei�d

�8�

where h1
�1��kr� is the spherical Bessel function of the first

order, r�= �r−d�, and

t�kz� =
2kz

im*U0
�9�

is the transmission amplitude of the electron wave function
passing through a homogeneous barrier. Note that in the limit
kFa1,2→0 the result of Eq. �8� does not depend on the par-
ticular form of the function ��� /a� in Eq. �2�, and the wave
function Eq. �8�, as well as the conductance of the system,
are expressed in terms of the effective areas of the contacts,
�a1,2

2 .
The effect of electron scattering by the short-range po-

tential can be taken into account by the method proposed in
Ref. 18. If the radius of action rD of the potential D�r� is of
the order of the Fermi wave length �F, then in the region of
the defect �r−r0�	rD the wave function ��r� can be taken as
a constant ��r0�. In this approximation, Eq. �6� becomes an
inhomogeneous equation with its right-hand side equal to
�2m* /2�D��r0�. In the limit 1 /U0→0 a solution of this
equation can be expressed in terms of the solution of the
homogeneous equation �see Eqs. �7� and �8�� and the re-
tarded electron Green function of Eq. �6� for the semiinfinite
half-space

��r� = �0�r� +
2m*

2 T�k��G0
�+���r − r0�� − G0

�+���r

− r̃0����0�r0� , �10�

where r̃0= ��0 ,−z0�, T�k� is the scattering matrix, which for a
short-range scatterer can be expressed in terms of the s-wave
scattering phase shift �0 as20

T�k� =
− �2�e2i�0 − 1�

m*ik�1 +
1

4ikz0
�e2i�0 − 1�e2ikz0 . �11�

The Green function

G0
�+��x� = −

exp�ikx�
4�x

�12�

is the retarded Green function for a free electron. The phase
shift �0 is given in terms of the scattering strength g by

ei�0 sin �0 = −
m*kg

2�2�1 −
8�m*g

2 �
0

�

drG0
�+��r�D�r�−1

.

�13�

Figure 2 illustrates the spatial variation of the wave
function �10� for the case when the contacts and the scatterer
all lie in the y=0 plane. The interference of electron waves
Downloaded 21 Mar 2013 to 129.78.32.24. Redistribution subject to AIP lic
passing through different contacts and their interference with
the waves scattered by the defect are clearly visible. In order
to make the effects more visible, in Fig. 2 we have used a
large value for the scattering phase, �0=1.5, which is accept-
able only for Kondo resonance scattering by a magnetic im-
purity �see, for example,19�. The grey circle round the point
r=r0 in Fig. 2 is the region in which the Eq. �10� is not valid
because the Green function diverges.

Substituting the wave function �10� into the general ex-
pression �5� for the conductance G we find

G = Gc�a1,a2� + Gosc, �14�

where Gc is the conductance of the double contact system in
the absence of the defect

Gc�a1,a2� = G0�a1� + G0�a2� + G12, �15�

G0 is the inherent conductance of a single contact17

G0�a� = �t�kF��2
e2�kFa�4

36�
, �16�

and G12 takes the interference of electron waves passing
through different contacts into account,

G12 = �t�kF��2
e2�kFa1�2�kFa2�2

18�
f2�kFd� . �17�

Here we have introduced the notation

f�x� =
3j1�x�

x
, �18�

where j1�x� is the spherical Bessel function of the first kind
such that f�0�=1. The second term in Eq. �14�, Gosc, de-
scribes the quantum interference resulting from the scattering
of the electrons by the defect

150 5 10
kx

kz

20

15

10

5

0

FIG. 2. Squared modulus of the wave function �10�. The defect is located at
kr0= �10,0 ,15�, the distance between the contacts kd=14, and the scattering
phase shift is �0=1.5.
ense or copyright; see http://ltp.aip.org/about/rights_and_permissions
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Gosc�r0,d� = G0�a1���r0� + G0�a2���r0��

+ 2G12��r0,r0��/f�kFd� , �19�

where r0�= ��0−d ,z0�, and r0� is the distance between the de-
fect and the second contact. The functions ��r0� and ��r0��
account for interference of electron waves passing through
the contact and returning to the same contact after scattering
by the defect,

��r� =
1

F�z�
sin �0

z2

r2 �12j1�kFr���kFr� + 6�1 − j0�2kFz��

��kFr�−4��kr�2 + 1�sin �0� , �20�

where

F�z� = 1 + 2 sin �0	� 1

2�2kFz�2 − j0�2kFz�sin �0

− y0�2kFz�cos �0
 , �21�

and

��r� = − y1�kFr�cos �0 + sin �0�j1�kFr��j0�2kFz� − 1�

+ y0�2kFz�y1�kFr�� . �22�

In the last term in Eq. �19�, ��r0 ,r0� � describes the inter-
ference of electron waves that arrive at the other contact after
scattering by the defect,

��r,r�� = F−1 sin �0
z2

rr�
�j1�kFr����r� + j1�kFr���r��

+ sin �0�j0�kFd� − j0�kF
�4z2 + d2��

� �j1�kFr�j1�kFr�� − y1�kFr�y1�kFr���� . �23�

For a2=0 �i.e., when we have just a single contact� Eq.
�14� coincides with the expression for the conductance of a
tunnel point contact obtained in Ref. 20. Figure 3 illustrates
the dependence of the oscillatory part of the conductance
�19� on the position of the defect in the plane z=z0. The
oscillatory pattern shown in Fig. 3 represents an image
which could be obtained by DSTM when mapping the tun-
nelling conductance in the vicinity of a subsurface defect.

The general formula for the conductance �14� can be

simplified for large distances between the contacts and

Downloaded 21 Mar 2013 to 129.78.32.24. Redistribution subject to AIP lic
the defect, r0 ,r0��1kF, and for a weak scattering potential
�0�−gm*kF /2�2
1. Under these assumptions, the nor-
malized oscillatory part of the conductance can be written in
a linear approximation in g as

Gosc

G0
= − 6�0

z0
2

kF
2� 1

r0
4 sin 2kFr0 +

1

r0�
4 sin 2kFr0�

−
2f�kFd�
�r0r0��

2 sin kF�r0 + r��� . �24�

For simplicity we take here a1=a2=a. Equation �24� shows
that in contrast to one tunnel point contact, for which Gosc

�sin 2kFr0 when kFr0�1, the oscillatory dependence of the
double contact has a phase shift � that depends on the dis-
tance between the contacts

Gosc

G0
� sin�2kFr0 + �� , �25�

0.15
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FIG. 3. The normalized oscillatory part of the conductance Gosc /G0 as a
function of the defect position �0 in the z=0 plane parallel to the interface;
kFz0=5. The distance between the contacts is taken to be kFd=20, and the
scattering phase shift is �0=1.5.
where
���0,z0,d� = − arcsin	 sin 2� + 2f�kFd�sin �

�2 + 4f2�kFd� + 4f�kFd��cos 2� + 2 cos ��

, d 
 r0, �26�
and �=kF�0d /r0. The defect position in the plane parallel to
the surface, �0, is known from the interference pattern of the
conductance oscillations �see Fig. 3�. In principle, the depth
z0 of the defect can be found from the experimental data in
the following way: changing the distance between the con-
tacts over a small range �d
d leads to the appearance of an
additional phase shift ����0 ,z0 ,d�, which can be determined
from the dependence Gosc��0 ,z0 ,d�. �See Fig. 4.� The depth
z0 can be found as a numerical solution of the equation

�� = �d���0,z0,d��d . �27�

Let us now consider applying a magnetic field H parallel
to the surface of the sample �see Fig. 1�. If the external
magnetic field is sufficiently weak, such that the radius of the
ense or copyright; see http://ltp.aip.org/about/rights_and_permissions
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electron trajectories rH=ckF /eH is much greater than the
distances between the positions of the contacts and the im-
purity, r0 ,r0�, the magnetic distortions of the trajectories21 are
negligible, i.e., the trajectories can be considered as straight
lines.

Under this condition of rH�r0 ,r0�, the zero-field wave-
function ��r� acquires an additional phase,

�̃�r� = ��r�exp� ie

c
�

0

r

A�r��dr� , �28�

and the Green function similarly takes the form16

G̃�r,r0� = G�r,r0�exp� ie

c
�

r0

r

A�r��dr� . �29�

Here, A�r� is the vector potential of the magnetic field.
Because of this change in the wave function �28� the

formula for the conductance G is modified, becoming

G = Gc�a1,a2� + G̃osc�r0,d,H� , �30�

G̃osc�r0,d,H� = G0�a1���r0� + G0�a2���r0��

+ 2G12�̃�r0,r��/f�kFd� , �31�

�̃�r,r�� =
1

F
sin �0

z2

r�
	 j1�kFr�����r�cos

��

�0

+ �̃�r�sin
��

�0
 + j1�kFr����r��cos

��

�0

+ �̃�r��sin
��

�0
 + sin �0�j0�kFd�

− j0�kF
�4z2 + d2���j1�kFr�j1�kFr��

− y1�kFr�y1�kFr���
 , �32�

�̃�r� = cos �0j1�kFr� + sin �0�y1�kFr��j0�2kFz� − 1�

− y0�2kFz�j1�kFr�� , �33�

where ��r� is defined by Eq. �22�, � =�c /e is the flux

0 20 40

0.02

0

G
G

o
sc

0
/

k xF

kFd = 20

kFd = 21

kFd = 25

FIG. 4. Dependences of the oscillatory part of the conductance on the co-
ordinate x0 of the defect for different distances between the contacts, with
y0=0, kFz0=5, and �0=0.1.
0
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quantum and �=HS is the magnetic flux through the tri-
angle formed by the vectors r0 and r0� and the vector d join-
ing the contacts. For H=0 Eq. �30� reduces to the formula
�14� obtained earlier.

For r0�1 /kF and �0
1, Eq. �31� takes the form

�Gosc�r0,d,H�
G0

� −
12�0z0

2f�kFd�
kF

2�r0r0��
2 	cos kFr0 sin�kFr0�

−
��

�0
 + cos kFr0� sin�kFr0 −

��

�0

 .

�34�

Similar oscillations in the electron local density of states
have been predicted22 for a system of two adatoms and an
STM tip in a plane perpendicular to a surface magnetic field.

If the period of the oscillations is known, the depth z0

can be determined using the following procedure: in the most
convenient geometry for the experiment the contacts should
be placed so that the vectors r0 ,r0� and the normal to the
sample surface lie in the same plane, i.e., the vectors H and
S are parallel. For our illustration in Fig. 1 that means the
coordinate �0 of the defect in the xy plane is on the line
connecting the tips. In this case the relation between the
period of oscillations �H and the depth z0 is very simple:

z0 =
4�0

d�H
. �35�

Note that observing the conductance oscillations �34� re-
quires a sufficiently strong magnetic field. A magnetic field
up to 15 T is currently attainable in low temperature STM.23

For example, in order to record the period �H for z0=d
=20 nm it is necessary to apply a field of H=5 T. For typical
metals, where �F�0.1 nm, for the given distance between
the contacts and the defect r0�10 nm the amplitude of con-
ductance oscillations becomes very small Gosc�G0��F /r0�2

��10−4−10−5�G0. Therefore more appropriate subjects for
the proposed magnetic method of determining the position of
subsurface defects include semiconductors and semimetals
�Bi, Sb and their ordered alloys� where the Fermi wave
length �F�10 nm. Also, a large amplitude Gosc��10−2

−10−3�G0 could be expected in the metals of the first group,
a Fermi surface of which has small cavities with effective
mass m*��10−2−10−3�m0 �m0 is the mass of a free electron�.
Low temperature STM could be used to avoid electron-
phonon scattering along the electron trajectory.

In this paper we have investigated theoretically the con-
ductance of a system consisting of two close tunnel point
contacts with a a point defect in their vicinity. The oscillatory
dependence of the conductance on the separation between
the contacts and their distances from the defect has been
studied in the s-wave scattering approximation, which is
valid for short range scattering potentials. We have proposed
an alternative method for determining the depth of a subsur-
face impurity by measuring the phase change in the conduc-
tance oscillations which arise when the distance between the
contacts of double-tip STM is varied. We have also found
that, when there is a low magnetic field parallel to the surface
of the sample, the depth of the subsurface impurity can be
found easily from the period of Aharonov–Bohm oscillations
in the conductance that develop in this case.
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