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Method to determine defect positions below a metal surface by STM
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The oscillatory voltage dependence of the conductance of a quantum point contact in the presence of a single
pointlike defect has been analyzed theoretically. Such signals are detectable and may be exploited to obtain
information on defect positions below a metal surface. Both tunnel junctions and ballistic contacts of adiabatic
shape have been considered. The effect of quantum interference has been taken into account between the
principal wave that is directly transmitted through the contact and the partial wave that is scattered by the
contact and the defect. This effect leads to oscillations of the conductance as a function of applied voltage. We
obtain the dependence of the period and amplitude of the conductance oscillations on the position of the defect
inside the metal.
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I. INTRODUCTION defects, such as the vacancies or foreign atoms inside the
In the two decades following its invention, scanning tun-metal in the vicinity of the contact. We consider theoretical

neling microscopy(STM) has proved to be a valuable tool Models both for the cases of a tunnel point contact and for a
for investigating surfaces on an atomic scale. More recenthpallistic quantum contact. We look for conductance oscilla-
several experiments show a growing interest in the study ofions caused by interference of electrons that are transmitted
structures that are situated in the bulk below the surface iflirectly, and electrons that are first backscattered elastically
both semiconductors and metals. Whereas in the fotheey by the defect and again scattered forward by the cofitact
semiconductor case the absence of effective screening althe tip-sample junction much in the same way as was de-
lows dopants down to the third subsurface layer to be viewedcribed for atomic point contacts in Refs. 7-9. The effect of
directly as apparent topographic featutebe situation for such quantum interference on the nonlinear conductance of
metals turns out to be somewhat more complicated. Onguantum wires was theoretically analyzed in Refs. 11-13,
method that has been suggested for imaging structures buriédit the point-contact geometry was not yet studied.
in metal involves several surface study techniques to be em- The organization of this paper is as follows. In Sec. Il we
ployed simultaneously in combination with STAMHowever,  consider a tunnel junction in the limit of a high potential
although this experiment has lead to successful identificatiobarrier. The interaction of the transmitted electrons with a
of subsurface defects, it cannot be used as a tool for probingingle impurity near the junction is taken into account by
the exact depth. Also, its employability is limited to certain perturbation theory with the electron-impurity interaction as
specific alloys only. A more successful approach, howeverthe small parameter. A general analytical expression for the
seems to be by probing standing electron wa¥®e3he voltage dependence of conductar@e/) is obtained. It de-
groundwork of these experiments is as described in Ref. Hjnes G(V) in terms of the contact diameter, the distance
where Cul111) surface states form a two-dimensional nearlybetween contact and the impurity and the parameters that
free electron gas. When scattered from step edges or adeharacterize the metal, and the transmission of the tunnel
toms, these states then form standing waves that can kenction. In Sec. Il the conductance of a ballistic quantum
probed by scanning tunneling spectroscégyS. contact of adiabatic shape is analyzed. In absence of a barrier

Although it has been proposed to utilize these surfacénside the contact, electrons can still be reflected from it due
states for imaging subsurface impuritfethe exponential de- to the variation of the confining potential. The influence on
cay of the wave-function amplitudes into the bulk will limit electron scattering by an explicit barrier potential in the cen-
the effective range to the topmost layers only. Bulk statester of the contact is also discussed. As in Sec. I, assuming
however, of which the square falls off with onty, form a  the electron-impurity interaction to be small, we derive an
good alternative. To demonstrate this, we mention resultexpression foiG(V) and its dependence on the position of
that were obtained by bulk state spectroscopy on relativelyhe defect. In Sec. IV we conclude by discussing the possi-
large structures, such as Ar bubbles submerged iR&f. 3  bilities for experimental exploitation of the conductance fluc-
and S{111) step edges buried under a thin film of ln  tuations for subsurface imaging as well as the technical dif-
these experiments, bulk electrons are found to be confined ificulties involved.
a vertical quantum well between the surface and the top
plane o_f the object of interest. _ o Il. TUNNEL POINT CONTACT

In this paper we show that the investigation of the non-
linear conductance of a point contact placed on a metal sur- Let us consider as a first model of our system a nontrans-
face makes it possible to determine the position of pointlikeparent interface located a=0 between two metal half-
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where the wave vectdk=(x,k,) has componentg andk,
parallel and perpendicular to interface, respectively. As
shown in Ref. 14, Eq4) can be solved for arbitrary form of
the functionf(p) in the limit 1/U—0. The wave function
(p,2) for k,>0 in the main approximation of the small
parameter-1/U takes the form

Yi(p.2) = (k- ek + %cp{)(p.z) (z<0), (5
FIG. 1. Model of a tunnel junction contact as an orifice in an
interface that is nontransparent for electrons except for a circular
hole, where tunneling is allowed. Trajectories are shown schemati- 1
cally for electrons that are reflected from or transmitted through the (p,2) = U(,D(k+)(p,z) (z>0), (6)
contact and then reflected from a defect.

e e s .
spaces in which there is an orifi¢eontac}, as illustrated in ~ Where k=(x,=k), k=yk;+2meV/4*. The function s (p,2)

Fig. 1. The potential barrier in the plaae 0 is taken to be a satisfies the conditions of continuity and the condition of the
S function jump of its derivative at the boundamz0. At largeU these

conditions are reduced to

U(r)=Uf(p)(2), 1 _
(r) (p)8(2) (1) (pgk )(p,O) - <P(k+)(P,0), 7)

where p=(x,y) is a two-dimensional vector. The function

f(p) — o in all points of the plang=0 except in the contact, - m

wheref(p)=1. At a pointr =r in vicinity of the interface, in ik = —Zf(p)<p(k+)(p,0). (8)

the half-space>0, a pointlike defect is place@ee Fig. 1 h

The electron interaction with the defect is described by th

potential qn the absence of the defe@=0) the wave function was

obtained in Ref. 14,

g(r)=galr —ro), 2 i (>
ohe(p2) == —f dx'F(x = ') 7iaz, (9)
whereg is the constant of the electron-impurity interaction. 2mm J_..
In this section we consider tunnel junctions and assume that
the transmission probability of electrons through the orificewhere
is small. In that case the applied voltage drops entirely over

the barrier and we choose the electric potential as a step © @l

function V(z2)=V@®(-z) and takeeV>0. F(%‘%'):f dp (o) (10
The electrical current(V) can be evaluatél from the _” P

electron wave functions of the systey, %

and k,=x?+k2-x'2. For a circular contact of a radius
defined by f(|p|]<a)=1 and f(|p|>a)—, the function

(V)= % f dk f dSIM(y; V )@k )Ne(sy) —neley, T~ %) takes the form

rev]. @ oo n) = 22 2) (1
%= 5|
Here,e,=#%k?/2m’" is the electron energy is the electron In order to introduce the effect of the impurity we solve

wave vectorm’ is an effective mass of electron, anglex)  the Schrodinger equation for the Fourier components
is the Fermi distribution function. The real-space mtegratlon(bk(% 2) of the functiongof:)(p 2)

is performed over a surface overlapping the contacts in the
regionz>0. At low temperatures the tunnel current is due to oo
those electrons in the half-spazel 0 having an energy be- (Pf(’f)(p,z) :J dx€ P, (x,2). (12)
tween the Fermi energyr andeg+eV because, on the other -
side of the barrier, only states wity =¢r are available.
The wave functiony satisfies the Schrddinger equation For z>0 this equation takes the form
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_%'ZCDK(%,,Z)+ ;(Z;‘ Z)
o (9 ~ 15
72 [Skq)k(% ,2) —98(z - Zp)e™” o (po, Z0) ] = 0. _
(13 S 10
e

Integrating Eq(13) near the poinz=z,, we obtain the effec-
tive boundary condition 5|

J J
— D (x',2=25+0) - —Py(x',2=2,-0)
0L - o 2 |
7z 7z -10 -5 0 5 10
2m*g _ p (&, units)
=22 hz I poﬁo (pO zy). (14)

FIG. 2. Modulus of the wave function in the vicinity of a tun-
neling point contact in a plane perpendicular to the contact axis,
aving an impurity atpg=5,2,=15). The incident wave has a wave

vector normal to the point contaat=\g/ 4.

To proceed with further calculations we assume that th
electron-impurity interaction constagtis small and use per-
turbatlon theory. In this approximation we repla¢§') by

) (9) on the right-hand side of Eq.l4). Solving the
Schrodlnger equatioflL3) with the boundary condition§’), (V) = - f ff dp,dp,
(8), (14), and the condition of continuity of the function 3U f(pD)f(p2)
®,(x%,2) at z=z,, we obtain in the regioz> z,

o~ [Ne(er) — neleg

A%k m gk A(K\ ) A(KA Ak
ew] x [ (o) _,, hg (A 2)23( ()
Dy (', 2) =t ('), (15) N g
2m'eVsin(kp)
where * 52 kp )} (18)
itk m'g wherep=|p1=p|, M =\Z3+|popal*, \2=\Z5+]po=pol?, and
(%)= —=F(x— ') - —— ‘Pok /(o zo)e™ ¥ P sin(k}zp). -
sinx
2mm kot A = 2 cosx. (19
(16) X
. ) ) Differentiating Eq.(18) with voltageV and integrating over
Using Eq.(13) we find the wave function the absolute valu& of the wave vector, in the limit of low
. temperaturesT=0, we obtain the conductan¢&V) of the
mmg
Pk )(P 7)= <P0k (P 2) - 72 <P0k (Po Zy) system
e2k2h3 dp,d
oy 1 ikzsm(k’ZZ) G(V) = 2ff Prbe
X [ O’ o' € 1—=— o Jo(5' m'U) f(p)f(po)
y4 ~ ~ ~
a7 X[Az(ka e Al Akehy)
4 i 52 2,2
p NINS

where z,=2, z,=7;, when z>27,, and z,=27;, z,=z when _ _
0<z<z,. The modulus of the wave functidid?) in a plane Alkep) 2m'eVsin(kep)
through the impurity and normal to the circular contact is X p? * 52

illustrated in Fig. 2, for an incident wave vector normal to Kep

the interface(k,=kg=(1/%4)\2m’'eg). One recognizes an in- 8rm'g , [k sin(kp) A(kA)A(KA,)
terference pattern of partial waves reflected at the impurity - ——2(2) kdk 12 2 =1,
with those emanating from the contact. These contain the k% ke Ak,
information that we hope to extract. (20)

Substituting wave functiof6) into Eg.(3) and taking into
account Eq(17), we calculate the current-voltage character- wherekF Vk2+2m eV/%? is the Fermi wave vector acceler-
istics (V). After integration over all directions of the wave ated by the potential difference, and we have assumed
vector k and integration over the space coordinatén a  eV/eg<1. For \; and p much larger than the Fermi wave
planez=constz>z,), retaining only terms to first order ip  length\g=1/kg, the functionA oscillates with(eV/ep)ke\;
(i.e., ignoring multiple scattering at the impurity Sitahe  and(eV/eg)kgp, which results in a fluctuation of the conduc-
current is given by tance with applied voltage. The first term in square brackets
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FIG. 3. Dependence of the normalized conducta@¢6€, for a
single tunnel point contact as a function of the position of the defect FIG. 4. Voltage dependence of the normalized conductance
(po»2Zp); contact radius i®/=\g/ 4. G(V)/G.(V) of a tunnel point contact fas,=0 and as a function of
the depthz, of the defect under metal surface, contact radius is

of Eq. (20) describes the conductan€V)=G,(V) in the a=\g/4m.

absence of a defe¢g=0). ) . .
For a contact of small diameter<\, Eq. (20) can be (Fig. 5. The center of the contact is characterized by a

simplified and the conductance is given by é-function potential barri_er of amplitu.dPJ.. In one of the .
banks of the contact a single defect is situated at the point
6mm g A%(ke7) 6m eV ro=(po,2), in the half-spacez,>0, such that the distance
CV) =GV 1-—7 = %1+ y between the center of the contactO and the defect
Key hoke is much larger than the characteristic lendgitbof the con-
72mgni 2 (% striction(see Fig. 5 The shape of the contact is described by
- dkK'A2(ky) ¢, (21) the radius as a function of theecoordinatea(z). The contact
1l 7V i size is given bya(0)=a,, while a(z)— for |7 —w». The

adiabatic condition implies that the radius of the contde}
varies slowly on the scale of the Fermi wavelength. As a
SN AN result, the electric potentidl(r) drops dominantly over the
small cross sectio=ma" <z is given by same characteristic length as can be derived from the con-
272 .4 dition of electroneutrality. In the Landauer formalism the ex-

WLIZF&I = fTb(T(F)g(k,:a)“, (22)  act distribution ofV(r) is not important for determining the

oAU 9 h conductance of a quantum constriction, which can be ex-
for small transmission coefficiert,(k) =A%k?/m~?U?<1. pressed using only the difference of potentidis the banks

In numerical calculations we use a value for the dimenJfar from the contact. We will consider the effect of quantum
sionless parameter 721 gk-/A2=0.3 to characterize the Interference on the conductance under conditieVieer <1

strength of the defect scattering. Figure 3 shows a plot of th&nd ke¥(eV/eg) > 1. Fluctuations ofG(V) results from the
dependence of the normalized conducta6¢e)/G.(0), Eq.  Phase shiftA that the wave function accumulates after be-
(20), for the contact as a function of the position of the defect

(po.2o) in the limit of low voltageV— 0. We observe a sup- V(z)=V
pression of the conductance that is largest when the contact
is placed directly above the defect and find ti@tis an
oscillatory function of the defect position. In Fig. 4 we show
the voltage dependence of the normalized conductance
G(V)/G.(V), Eg. (20), for pp=0 and as a function of the
depthz, of the defect under the metal surface.

where y=1\z>+|pof? is the distance between the contact and
the defect. The conductan&.(V) of the tunnel junction of

G(V) =

2a(z)

. BALLISTIC CONTACT FIG. 5. Model of a ballistic contact of adiabatic shape having a
defect sitting nearby. The trajectories of electrons that are transmit-
In this section we consider another limit of a junction, ated through the contact and reflected from the defect are shown
cylindrically symmetric, ballistic contact of adiabatic shapeschematically.
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ing scattered by the defect and reflected by the contact,
Ap ~(eVlep)key. If y>L, the main part of the electron
trajectory is situated in the region where the local electric
potential V(r) differs only little from its valueV=0 in the  haying eigenvalues
bank atz— o, and we neglect this small variation of the p

ﬁz mn

¥ pp D) = =

—_— mn gme (32
ENET— (7 <>) (32

potential. Assuming hard wall boundary conditions, we need

n=0,1,2,..., m=0,%1,+2,....

to solve the Schrédinger equation,

[e=ga(r =19 —Ud(2)]h(p,2) =0,

(23

2m'
V2(p,2) + e

with the boundary conditions

Ya(lpl =a(2);2 =0,

and « represents the full set of quantum numbers.

In the adiabatic approximatién® the “fast” transverse
and “slow” longitudinal variables in Eq.23) can be sepa-
rated and the wave function takes on the form

(24)

l//a(p,Z) = l/lLlB(plZ)‘PBs(Z)v (25)

whereS=(m,n) is a set of two discrete quantum numbéfs,

which define the transverse local eigenvaluggz) and
eigenfunctions/, 45(p,2). The functionys, 4(p,2) depends on

the coordinate as a local parameter, and its derivatives with
respect toz are small. Therefore Eq23) can be separated

into two equations,

*

V20, 4p) = ”;s[xa) (26)
d? 2m
—Fpe z[s e5(2)]=0. (27)

dZ

The functionsy, 4(p) and ¢g.(2) satisfy the following con-
ditions:

vpllol=2)=0, (28)
dz dz - |¢LB(P0)| ®p:(20),

750 20
(29)
‘PIEEC(Z) — ek forz— - o, (30)

dess(2) deg(2| _2mU
dz gz - ﬁ2 (Pﬁs(o) (31)
+0 -

wherek=\2m'e/# and <p'”°(z) is the incident wave. Condi-
tion (30) means that we conS|der a Wa¢§°(z) of unit am-
plitude, which moves from e toward the contact.

%= omaZ(z)’
(33

Here, we use cylindrical coordinates(p, ¢,z) and v, is
thenth zero of Bessel functiod,, The energy spectruri3d)
describes the quantized energy levels inside the constriction
(z<L) and a quasicontinuous spectrunezatL (the distance
between the levelds;— 0 at|z] — ).

First, we consider a contact without an explicit barrier
(U=0). A general solution for the longitudinal wave function
®g:(2) in Eq. (27) has the form,

epe(2) =A(1 - £2)~(kL12)

£

xF(—ikL—s, ikL +s+1, —|kL+sT) +B(1

o L€V ( . 1—§>
_ &2\—(ikL/2) .
&) < > ) Fl-s;s+ 1,1 +ikL, > )

(34)

where F(a,b,c;¢ is the hypergeometric function,
&=tanh(z/L), and s:%(—1+i\,(2Lymn/a0)2—1). The con-
stantsA and B can be found from the condition®9) and
(30). By using the asymptotic form of hypergeometric func-
tion atz>z,>L and in the limit of a small electron-impurity
interaction constann’'gk-/4%<1, we find

m ; :
03D =ta| 14 205101 o ) (L + ) €4,
39

wherer ; andt; are the amplitudes of the reflected and trans-
mitted waves far from the contact

_I(=ikL = 9)I'(=ikL + s+ 1I'(ikL)
B T T(C9r(s+ Dr(-ikL)

(36)

_I(=ikL-9)I'(-ikL+s+1)
B I(-ikL)[(1 —ikL)

The expression for the current takes the form

(37

=== [ a5 [ L im, ¥ glnete)-nete
m™2m g JL Ve

+eV)]. (39)

For the subsequent calculations we make the expliciSubstituting the wave functiog,(p,2z) from (25 into Eg.

choice for the shape of the contaaliz) =a, cosiz/L). The
condition of adiabaticity for this dependena&z) is L > \g.
The solution of Eq(26) is given by

(38), with ¢, 5(p,2) given by (32) and ¢g.(2) by (35, and
carrying out the integration ovegr<a(z) at z>z, we find
the total current trough is the contact foc>1 andL > a,
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FIG. 6. Dependence of the oscillatory part of normalized con-

ductanceAG(0)/G¢(0) of the ballistic point contact with the posi-

tion coordinates of the defe€pg,zy).
2e
|(V) = F J dSE Tﬁ[nF(S) - nF(S + e\/)]
B

x{l w9 P fcos2kay + “’ﬂ)}' 39

2%k
Here,
Tyle) = 1 40
A&= 17 exg2mL (ks - k)]’ (40
1
Irg(e)] = (41)

Vexg2aL(k—kg)]+1'

op(e) = (k+ kg)L{1 = In[(k+ kg)LT} - (k= kg)Lyu(3) — 2KL(L
~InkL), (42)

Kg= 2m*sﬁ(0)/ﬁ is the quantized momentum of the
transverse electron motion at the center of the contact,

Y3)=1"(3)/r(3) ~-1.96.

The conductances(V)=dl/dV, in the low-temperature

limit, is given by
G(V) = Go2, Ty(er)
B
gm ~
X{l + 2K |¢L,3(P0)|2|rﬁ|005(2kF20 + 905)} ,
F
(43)

PHYSICAL REVIEW B 71, 115430(2005

10 10 Po

FIG. 7. Voltage dependence of the oscillatory part of normalized
conductanceAG(V)/G.(V) for an adiabatic ballistic point contact
for pp=0 as a function of the depth, of the defect under metal
surface.

agrees with the formula for the transmission coefficient that
can be obtained in such a case for an arbitrary dependence
a(z), by using an expansion near the point of minimum cross
section,a(0) (see, e.g., Ref. 18For very long constrictions
(L—), Eq. (40 transforms to a step functiof (e —£4(0)).

For largelL the electrons are strongly reflected by the contact
whenk=Kkg;. Hence, for observation of conductance oscilla-
tions in an adiabatic ballistic constriction the contact diam-
eter should be chosen in such a way that e4(0), i.e., not

very far from the middle of a conductance step.

In the caseU # 0 the boundary conditioi31) must be
taken into account. Ak> K, reflection due to the shape of
the contact is negligibly small, as discussed above, and the
conductancés(V) is also described by E@43), but with

1
To(e)= (44)

(M U/h2Kp)?’

m U/h%k;

- , 45
A g (45

1

@p(e) arcsv( NP e (m*U/ﬁzk’B)z) , (46)
wherekj= k- k3.

Figure 6 shows the dependence of the oscillatory part of
conductancG(V)=G(V)-G.(V), Eq. (43), on the position
of the defect at low voltag€V— 0) for a contact without
barrier(U=0). Here,G.=Gy2 4T, is the conductance in the
absence of a defe@=0). Figure 7 shows the dependence of

where Gy=2¢’/h is the quantum of conductance and the AG(V) on applied bias voltage for a defect sitting on the
ke=Vk2+2meV/42 All energy-dependent functions are axis of the contactp,=0) and as a function of the distanzg

taken ate=er. We also used the conditioeV/ e <1.

from the contact center. In creating the plots of Figs. 6 and 7

The transmission coefficient is exponentially smallwe have used dimensionless parametemXyk-/#%=0.5,

Tge) ~ exp[-27L(kg—K)] for e<e4(0), while Tg(e)—1
above this energy; > £4(0). For|e—£4(0)| <£4(0), Eq. (40)

2mayg=2.405¢, and 27L=10\g, corresponding to a contact
having one allowed quantum conductance mode.
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IV. DISCUSSION then be identified as the centers of radially symmetric pat-

The presence of an elastic scattering center located insid€™S in this signal. Next, the depth of an impurity should be
the bulk, either in the vicinity of a tunnel contact in an STM derived from the period of the oscillation in titel/dV)(V)
configuration or in one of the banks of a ballistic point con-curve atpg.
tact, has been shown to cause oscillatory fluctuations in the Assuming the numerical parameterri® gk-/%2=0.5 in-
conductance of the junction. For small contact radiitroduced in Sec. ll{which can be shown to be applicable for
(a<\p), these oscillations result solely from interference ofhard wall scatterers with atomic radjuand choosing the
electron waves that are directly transmitted on the one handyifice to be located exactly above the defégtzy), the
and electrons that are both backscattered by the defect amgnplitude of the oscillation is expected to be 4B, for
again reflected by the contact on the other. What now follows,,=3 nm (with k=10 m™).
is a discussion as to whether this effect can be employed Note that the chosen value of the interaction constant is
experimentally for three-dimensional mapping of subsurfacather large. We use such a value of the parameter to show

impurities. _ the investigated effects more clearly in illustrations. For real
In the case of a tunnel contact, the oscillatory part of the,ajues of parameteg~ 10735 erg cn¥, which can be esti-
conductance can be expressed by mated from an electron effective scattering cross section
os 2 _ ~1 A?, the relative amplitude of oscillations is F0107°G..
G%qV) = . . : . ¢
o “—74 sin &gy, key>1, (47) Comparing this to previous STS experimetftsyhere
Cc

signal-to-noise ratios of 5107* (at 1 nA, 400 Hz sample
at frequency have been achieved, we should be able to mea-

are passing through the orificg, is the depth of the defec
under the surface, anglis the distance between the contact SUTface-

and the defect. Comparing this to the results found for a As the period of the oscillation becomes longer for small
ballistic contact. where Zy, the minimum discernable depth will be determined by the

maximum voltage that can be applied over the junction. For
G™V) N Szt 4  ©xample, 30 mV is sufficient for probing a quarter of a con-
Ge a%(zo) COS2keZo + @) (48) ductance oscillation caused by a defect at 1 nm depth. The
) ) ) increase of the noise level inherent to measuring at elevated
(heregg is the phase the electron acquires after reflection bY/oItages will not pose a problem because the amplitude of
the contadt we see that although both oscillations haveine signal is much higher for small depths.
similar arguments, the expression fpr the ballistic case has an Finally, the anisotropy of the electronic structure will have
extra phasep, which depends nonlinearly on the wave vec-1, pe taken into account. Materials with an almost spherical
tor k, making the signal hard to identify. Furthermore, the perm; surface, such as Al or Au, realizing the condition of a
adiabatic condition, being an essential assumption in the bakee_electron gas, are expected to be most suitable. Further-
listic model, cannot be readily achieved experimentally. more, deviations of spherical symmetry might be used as a
Therefore, choosing the tunnel contact for experimentakecondary proof for the effectiveness of the method, i.e., in
application seems most sensible. In that situation we cafhe case of A(L11), where the “necks” in the Fermi surface

expect the information in the conductance signal about &noyid cause a defect to be invisible when probed exactly
defect's whereabouts to be twofold: the amplitude will de-fom above.

crease with growing distancg whereas the frequency of the

oscillation is expected to increase upon enlarging the dis- This research was supported partly by the program
tance from contact to defect. The actual experiment wouldNanosystems, nanomaterials, and nanotechnology” of Na-
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