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The oscillatory voltage dependence of the conductance of a quantum point contact in the presence of a single
pointlike defect has been analyzed theoretically. Such signals are detectable and may be exploited to obtain
information on defect positions below a metal surface. Both tunnel junctions and ballistic contacts of adiabatic
shape have been considered. The effect of quantum interference has been taken into account between the
principal wave that is directly transmitted through the contact and the partial wave that is scattered by the
contact and the defect. This effect leads to oscillations of the conductance as a function of applied voltage. We
obtain the dependence of the period and amplitude of the conductance oscillations on the position of the defect
inside the metal.
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I. INTRODUCTION

In the two decades following its invention, scanning tun-
neling microscopysSTMd has proved to be a valuable tool
for investigating surfaces on an atomic scale. More recently,
several experiments show a growing interest in the study of
structures that are situated in the bulk below the surface in
both semiconductors and metals. Whereas in the formersi.e.,
semiconductord case the absence of effective screening al-
lows dopants down to the third subsurface layer to be viewed
directly as apparent topographic features,1 the situation for
metals turns out to be somewhat more complicated. One
method that has been suggested for imaging structures buried
in metal involves several surface study techniques to be em-
ployed simultaneously in combination with STM.2 However,
although this experiment has lead to successful identification
of subsurface defects, it cannot be used as a tool for probing
the exact depth. Also, its employability is limited to certain
specific alloys only. A more successful approach, however,
seems to be by probing standing electron waves.3,4 The
groundwork of these experiments is as described in Ref. 5,
where Cus111d surface states form a two-dimensional nearly
free electron gas. When scattered from step edges or ada-
toms, these states then form standing waves that can be
probed by scanning tunneling spectroscopysSTSd.

Although it has been proposed to utilize these surface
states for imaging subsurface impurities,6 the exponential de-
cay of the wave-function amplitudes into the bulk will limit
the effective range to the topmost layers only. Bulk states,
however, of which the square falls off with onlyr2, form a
good alternative. To demonstrate this, we mention results
that were obtained by bulk state spectroscopy on relatively
large structures, such as Ar bubbles submerged in AlsRef. 3d
and Sis111d step edges buried under a thin film of Pb.4 In
these experiments, bulk electrons are found to be confined in
a vertical quantum well between the surface and the top
plane of the object of interest.

In this paper we show that the investigation of the non-
linear conductance of a point contact placed on a metal sur-
face makes it possible to determine the position of pointlike

defects, such as the vacancies or foreign atoms inside the
metal in the vicinity of the contact. We consider theoretical
models both for the cases of a tunnel point contact and for a
ballistic quantum contact. We look for conductance oscilla-
tions caused by interference of electrons that are transmitted
directly, and electrons that are first backscattered elastically
by the defect and again scattered forward by the contactsi.e.,
the tip-sample junctiond, much in the same way as was de-
scribed for atomic point contacts in Refs. 7–9. The effect of
such quantum interference on the nonlinear conductance of
quantum wires was theoretically analyzed in Refs. 11–13,
but the point-contact geometry was not yet studied.

The organization of this paper is as follows. In Sec. II we
consider a tunnel junction in the limit of a high potential
barrier. The interaction of the transmitted electrons with a
single impurity near the junction is taken into account by
perturbation theory with the electron-impurity interaction as
the small parameter. A general analytical expression for the
voltage dependence of conductanceGsVd is obtained. It de-
fines GsVd in terms of the contact diameter, the distance
between contact and the impurity and the parameters that
characterize the metal, and the transmission of the tunnel
junction. In Sec. III the conductance of a ballistic quantum
contact of adiabatic shape is analyzed. In absence of a barrier
inside the contact, electrons can still be reflected from it due
to the variation of the confining potential. The influence on
electron scattering by an explicit barrier potential in the cen-
ter of the contact is also discussed. As in Sec. II, assuming
the electron-impurity interaction to be small, we derive an
expression forGsVd and its dependence on the position of
the defect. In Sec. IV we conclude by discussing the possi-
bilities for experimental exploitation of the conductance fluc-
tuations for subsurface imaging as well as the technical dif-
ficulties involved.

II. TUNNEL POINT CONTACT

Let us consider as a first model of our system a nontrans-
parent interface located atz=0 between two metal half-
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spaces in which there is an orificescontactd, as illustrated in
Fig. 1. The potential barrier in the planez=0 is taken to be a
d function

Usr d = Ufsrddszd, s1d

where r=sx,yd is a two-dimensional vector. The function
fsrd→` in all points of the planez=0 except in the contact,
wherefsrd=1. At a pointr =r 0 in vicinity of the interface, in
the half-spacez.0, a pointlike defect is placedssee Fig. 1d.
The electron interaction with the defect is described by the
potential

gsr d = gdsr − r 0d, s2d

whereg is the constant of the electron-impurity interaction.
In this section we consider tunnel junctions and assume that
the transmission probability of electrons through the orifice
is small. In that case the applied voltage drops entirely over
the barrier and we choose the electric potential as a step
function Vszd=VQs−zd and takeeV.0.

The electrical currentIsVd can be evaluated10 from the
electron wave functions of the systemck,

IsVd =
e"

4p3m* E dk E dS Imsck
* ¹ ckdQskzdfnFs«kd − nFs«k

+ eVdg. s3d

Here,«k ="2k2/2m* is the electron energy,k is the electron
wave vector,m* is an effective mass of electron, andnFs«kd
is the Fermi distribution function. The real-space integration
is performed over a surface overlapping the contacts in the
regionz.0. At low temperatures the tunnel current is due to
those electrons in the half-spacez,0 having an energy be-
tween the Fermi energy«F and«F+eV because, on the other
side of the barrier, only states with«k ù«F are available.

The wave functionck satisfies the Schrödinger equation

¹2cksr,zd +
2m*

"2 f«k − Usr d − gsr d − eVszdgcksr,zd = 0,

s4d

where the wave vectork =sû ,kzd has componentsû and kz

parallel and perpendicular to interface, respectively. As
shown in Ref. 14, Eq.s4d can be solved for arbitrary form of
the function fsrd in the limit 1 /U→0. The wave function
cksr ,zd for kz.0 in the main approximation of the small
parameter,1/U takes the form

ck̃sr,zd = eiûrseik̃z − e−ik̃zd +
1

U
w

k̃

s−dsr,zd sz, 0d, s5d

cksr,zd =
1

U
wk

s+dsr,zd sz. 0d, s6d

where k̃ =sû ,−k̃d, k̃=Îkz
2+2meV/"2. The functioncksr ,zd

satisfies the conditions of continuity and the condition of the
jump of its derivative at the boundaryz=0. At largeU these
conditions are reduced to

w
k̃

s−dsr,0d = wk
s+dsr,0d, s7d

ik̃ =
m*

"2 fsrdwk
s+dsr,0d. s8d

In the absence of the defectsg=0d the wave function was
obtained in Ref. 14,

w0k
s+dsr,zd = −

i"2k̃

2pm*E
−`

`

dû8Fsû − û8deiû8r+ikz8z, s9d

where

Fsû − û8d =E
−`

`

dr
eisû−û8dr

fsrd
s10d

and kz8=Îû2+kz
2−û82. For a circular contact of a radiusa,

defined by fsuruøad=1 and fsuru.ad→`, the function
Fsû−û8d takes the form

Fsû − û8d =
2aJ1suû − û8uad

uû − û8u
. s11d

In order to introduce the effect of the impurity we solve
the Schrödinger equation for the Fourier components
Fksû ,zd of the functionwk

s+dsr ,zd

wk
s+dsr,zd =E

−`

`

dûeiûrFksû,zd. s12d

For z.0 this equation takes the form

FIG. 1. Model of a tunnel junction contact as an orifice in an
interface that is nontransparent for electrons except for a circular
hole, where tunneling is allowed. Trajectories are shown schemati-
cally for electrons that are reflected from or transmitted through the
contact and then reflected from a defect.
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− û82Fksû8,zd +
]2Fksû8,zd

]z2

+
2m*

"2 f«kFksû8,zd − gdsz− z0de−iû8r0wk
s+dsr0,z0dg = 0.

s13d

Integrating Eq.s13d near the pointz=z0, we obtain the effec-
tive boundary condition

]

]z
Fksû8,z= z0 + 0d −

]

]z
Fksû8,z= z0 − 0d

=
2m*g

"2 e−iû8r0wk
s+dsr0,z0d. s14d

To proceed with further calculations we assume that the
electron-impurity interaction constantg is small and use per-
turbation theory. In this approximation we replacewk

s+d by
w0k

s+d s9d on the right-hand side of Eq.s14d. Solving the
Schrödinger equations13d with the boundary conditionss7d,
s8d, s14d, and the condition of continuity of the function
Fksû ,zd at z=z0, we obtain in the regionz.z0

Fksû8,zd = tksû8deikz8z, s15d

where

tksû8d = −
i"2k̃

2pm* Fsû − û8d −
2m*g

kz8"
2 w0k

s+dsr0,z0de−iû8r0 sinskz8z0d.

s16d

Using Eq.s13d we find the wave function

wk
s+dsr,zd = w0k

s+dsr,zd −
4pm*g

"2 w0k
s+dsr0,z0d

3E0
`dû8û8eikz8z1

sinskz8z2d
kz8

J0sû8ur − r0ud,

s17d

where z1=z, z2=z0, when z.z0, and z1=z0, z2=z when
0,z,z0. The modulus of the wave functions17d in a plane
through the impurity and normal to the circular contact is
illustrated in Fig. 2, for an incident wave vector normal to
the interfaceskz=kF=s1/"dÎ2m*«Fd. One recognizes an in-
terference pattern of partial waves reflected at the impurity
with those emanating from the contact. These contain the
information that we hope to extract.

Substituting wave functions6d into Eq.s3d and taking into
account Eq.s17d, we calculate the current-voltage character-
istics IsVd. After integration over all directions of the wave
vector k and integration over the space coordinater in a
planez=constsz.z0d, retaining only terms to first order ing
si.e., ignoring multiple scattering at the impurity sited, the
current is given by

IsVd =
2e"5

2pm*3U2E
0

`

dkk3E E dr1dr2

fsr1dfsr2d
fnFs«kd − nFs«k

+ eVdg 3 FA2skrd
r4 − 2p

m*gk

"2

Askl1dAskl2d
l2

2l1
2 z0

2SAskrd
r2

+
2m*eV

"2

sinskrd
kr

DG , s18d

wherer= ur1−r2u, l1=Îz0
2+ ur0−r1u2, l2=Îz0

2+ ur0−r2u2, and

Asxd =
sinx

x
− cosx. s19d

Differentiating Eq.s18d with voltageV and integrating over
the absolute valuek of the wave vector, in the limit of low
temperatures,T=0, we obtain the conductanceGsVd of the
system

GsVd =
e2k̃F

2"3

psm*Ud2 E E dr1dr2

fsr1dfsr2d

3FA2sk̃Frd
r4 − 2p

m*gk̃F

"2

Ask̃Fl1dAsk̃Fl2d
l1

2l2
2 z0

2

3SAsk̃Frd
r2 +

2m*eV

"2

sinsk̃Frd

k̃Fr
D

−
8p

k̃F
2

m*g

"2 z0
2E

kF

k̃F
k3dk

sinskrd
r

Askl1dAskl2d
l1

2l2
2 G ,

s20d

wherek̃F=ÎkF
2 +2m*eV/"2 is the Fermi wave vector acceler-

ated by the potential difference, and we have assumed
eV/«F,1. For li and r much larger than the Fermi wave
length lF=1/kF, the functionA oscillates withseV/«FdkFli

andseV/«FdkFr, which results in a fluctuation of the conduc-
tance with applied voltage. The first term in square brackets

FIG. 2. Modulus of the wave function in the vicinity of a tun-
neling point contact in a plane perpendicular to the contact axis,
having an impurity atsr0=5,z0=15d. The incident wave has a wave
vector normal to the point contacta=lF /4p.
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of Eq. s20d describes the conductanceGsVd=GcsVd in the
absence of a defectsg=0d.

For a contact of small diametera!lF, Eq. s20d can be
simplified and the conductance is given by

GsVd = GcsVdH1 −
6pm*g

"2

A2sk̃Fgd

k̃Fg4
z0

2S1 +
6m*eV

"2k̃F
2 D

−
72pgm*

"2k̃F
7

z0
2

g4E
kF

k̃F
dkk4A2skgdJ , s21d

whereg=Îz0
2+ ur0u2 is the distance between the contact and

the defect. The conductanceGcsVd of the tunnel junction of
small cross sectionS=pa2!lF

2 is given by

GcsVd =
4pe2«F

2k̃F
2a4

9"U2 =
p2

9
Tbsk̃Fd

2e2

h
sk̃Fad4, s22d

for small transmission coefficientTbskd="4k2/m*2U2!1.
In numerical calculations we use a value for the dimen-

sionless parameter 2pm*gkF /"2=0.3 to characterize the
strength of the defect scattering. Figure 3 shows a plot of the
dependence of the normalized conductanceGs0d /Gcs0d, Eq.
s20d, for the contact as a function of the position of the defect
sr0,z0d in the limit of low voltageV→0. We observe a sup-
pression of the conductance that is largest when the contact
is placed directly above the defect and find thatG is an
oscillatory function of the defect position. In Fig. 4 we show
the voltage dependence of the normalized conductance
GsVd /GcsVd, Eq. s20d, for r0=0 and as a function of the
depthz0 of the defect under the metal surface.

III. BALLISTIC CONTACT

In this section we consider another limit of a junction, a
cylindrically symmetric, ballistic contact of adiabatic shape

sFig. 5d. The center of the contact is characterized by a
d-function potential barrier of amplitudeU. In one of the
banks of the contact a single defect is situated at the point
r 0=sr0,z0d, in the half-spacez0.0, such that the distance
g between the center of the contactr =0 and the defect
is much larger than the characteristic lengthL of the con-
strictionssee Fig. 5d. The shape of the contact is described by
the radius as a function of thez coordinateaszd. The contact
size is given byas0d=a0, while aszd→` for uzu→`. The
adiabatic condition implies that the radius of the contactaszd
varies slowly on the scale of the Fermi wavelength. As a
result, the electric potentialVsr d drops dominantly over the
same characteristic lengthL, as can be derived from the con-
dition of electroneutrality. In the Landauer formalism the ex-
act distribution ofVsr d is not important for determining the
conductance of a quantum constriction, which can be ex-
pressed using only the difference of potentialsV in the banks
far from the contact. We will consider the effect of quantum
interference on the conductance under conditionseV/«F!1
and kFgseV/«Fd.1. Fluctuations ofGsVd results from the
phase shiftDw that the wave function accumulates after be-

FIG. 3. Dependence of the normalized conductanceG/Gc for a
single tunnel point contact as a function of the position of the defect
sr0,z0d; contact radius isa=lF /4p.

FIG. 4. Voltage dependence of the normalized conductance
GsVd /GcsVd of a tunnel point contact forr0=0 and as a function of
the depthz0 of the defect under metal surface, contact radius is
a=lF /4p.

FIG. 5. Model of a ballistic contact of adiabatic shape having a
defect sitting nearby. The trajectories of electrons that are transmit-
ted through the contact and reflected from the defect are shown
schematically.

AVOTINA et al. PHYSICAL REVIEW B 71, 115430s2005d

115430-4



ing scattered by the defect and reflected by the contact,
Dw ,seV/«FdkFg. If g@L, the main part of the electron
trajectory is situated in the region where the local electric
potentialVsr d differs only little from its valueV=0 in the
bank atz→`, and we neglect this small variation of the
potential. Assuming hard wall boundary conditions, we need
to solve the Schrödinger equation,

¹2casr,zd +
2m*

"2 f« − gd„r − r 0… − Udszdgcasr,zd = 0,

s23d

with the boundary conditions

casuru = aszd;zd = 0, s24d

anda represents the full set of quantum numbers.
In the adiabatic approximation15,16 the “fast” transverse

and “slow” longitudinal variables in Eq.s23d can be sepa-
rated and the wave function takes on the form

casr,zd = c'bsr,zdwb«szd, s25d

whereb=sm,nd is a set of two discrete quantum numbers,17

which define the transverse local eigenvalues«bszd and
eigenfunctionsc'bsr ,zd. The functionc'bsr ,zd depends on
the coordinatez as a local parameter, and its derivatives with
respect toz are small. Therefore Eq.s23d can be separated
into two equations,

¹r
2c'bsrd =

2m*

"2 «bsad, s26d

d2wb«

dz2 +
2m*

"2 f« − «bsadg = 0. s27d

The functionsc'bsrd and wb«szd satisfy the following con-
ditions:

c'bsuru = ad = 0, s28d

Udwb«szd
dz

U
z0+0

− Udwb«szd
dz

U
z0−0

=
2m*g

"2 uc'bsr0du2wb«sz0d,

s29d

wb«
incszd → eikz for z→ − `, s30d

Udwb«szd
dz

U
+0

− Udwb«szd
dz

U
−0

=
2m*U

"2 wb«s0d, s31d

wherek=Î2m*« /" and wb«
incszd is the incident wave. Condi-

tion s30d means that we consider a wavewb«
incszd of unit am-

plitude, which moves from −̀ toward the contact.
For the subsequent calculations we make the explicit

choice for the shape of the contactaszd=a0 coshsz/Ld. The
condition of adiabaticity for this dependenceaszd is L@lF.
The solution of Eq.s26d is given by

c'bsr,w,zd =
1

ÎpaszdJm+1sgmnd
JmSgmn

r

aszd
Deimw, s32d

having eigenvalues

«b =
"2gmn

2

2m*a2szd
, n = 0,1,2, . . . , m= 0, ± 1, ± 2, . . . .

s33d

Here, we use cylindrical coordinatesr=sr ,w ,zd and gmn is
thenth zero of Bessel functionJm. The energy spectrums33d
describes the quantized energy levels inside the constriction
sz,Ld and a quasicontinuous spectrum atz@L sthe distance
between the levelsD«b→0 at uzu→`d.

First, we consider a contact without an explicit barrier
sU=0d. A general solution for the longitudinal wave function
wb«szd in Eq. s27d has the form,

wb«szd = As1 − j2d−sikL/2d

3FS− ikL − s,− ikL + s+ 1,− ikL + s,
1 − j

2
D + Bs1

− j2d−sikL/2dS1 − j

2
DikL

FS− s;s+ 1,1 +ikL,
1 − j

2
D ,

s34d

where Fsa,b,c;jd is the hypergeometric function,
j=tanhsz/Ld, and s= 1

2s−1+iÎs2Lgmn/a0d2−1d. The con-
stantsA and B can be found from the conditionss29d and
s30d. By using the asymptotic form of hypergeometric func-
tion atz.z0@L and in the limit of a small electron-impurity
interaction constantm*gkF /"2!1, we find

wb«szd = tbF1 +
gm*

ik"2uc'bsr0;z0du2s1 + rbeikz0dGeikz,

s35d

whererb andtb are the amplitudes of the reflected and trans-
mitted waves far from the contact

rb =
Gs− ikL − sdGs− ikL + s+ 1dGsikLd

Gs− sdGss+ 1dGs− ikLd
, s36d

tb =
Gs− ikL − sdGs− ikL + s+ 1d

Gs− ikLdGs1 − ikLd
. s37d

The expression for the current takes the form

IsVd =
e

pÎ2m* o
b
E

z@L

dSE d«

Î«
Imsca

* ¹ cadfnFs«d − nFs«

+ eVdg. s38d

Substituting the wave functioncasr ,zd from s25d into Eq.
s38d, with c'bsr ,zd given by s32d and wb«szd by s35d, and
carrying out the integration overrøaszd at z.z0, we find
the total current trough is the contact forkL@1 andL@a0,

METHOD TO DETERMINE DEFECT POSITIONS BELOW… PHYSICAL REVIEW B 71, 115430s2005d

115430-5



IsVd =
2e

h
E d«o

b

TbfnFs«d − nFs« + eVdg

3H1 +
gm*

"2k
uc'bsr0du2urbucoss2kz0 + wbdJ . s39d

Here,

Tbs«d =
1

1 + expf2pLskb − kdg
, s40d

urbs«du =
1

Îexpf2pLsk − kbdg + 1
, s41d

wbs«d = sk + kbdLh1 − lnfsk + kbdLgj − sk − kbdLcs 1
2d − 2kLs1

− ln kLd, s42d

kb=Î2m*«bs0d /" is the quantized momentum of the
transverse electron motion at the center of the contact,
cs 1

2
d=G8s 1

2
d /Gs 1

2
d<−1.96.

The conductanceGsVd=dI /dV, in the low-temperature
limit, is given by

GsVd = G0o
b

Tbs«Fd

3H1 +
gm*

"2kF
uc'bsr0du2urbucoss2k̃Fz0 + wbdJ ,

s43d

where G0=2e2/h is the quantum of conductance and

k̃F=ÎkF
2 +2meV/"2. All energy-dependent functions are

taken at«=«F. We also used the conditioneV/«F!1.
The transmission coefficient is exponentially small

Tbs«d, expf−2pLskb−kdg for «!«bs0d, while Tbs«d→1
above this energy,«@«bs0d. For u«−«bs0du!«bs0d, Eq. s40d

agrees with the formula for the transmission coefficient that
can be obtained in such a case for an arbitrary dependence
aszd, by using an expansion near the point of minimum cross
section,as0d ssee, e.g., Ref. 18d. For very long constrictions
sL→`d, Eq. s40d transforms to a step functionQs«−«bs0dd.
For largeL the electrons are strongly reflected by the contact
whenk.kb. Hence, for observation of conductance oscilla-
tions in an adiabatic ballistic constriction the contact diam-
eter should be chosen in such a way that«F*«bs0d, i.e., not
very far from the middle of a conductance step.

In the caseUÞ0 the boundary conditions31d must be
taken into account. Atk@kb, reflection due to the shape of
the contact is negligibly small, as discussed above, and the
conductanceGsVd is also described by Eq.s43d, but with

Tbs«d =
1

1 + sm*U/"2kb8d2 , s44d

urbs«du =
m*U/"2kb8

Î1 + sm*U/"2kb8d2
, s45d

wbs«d = arcsinS 1

Î1 + sm*U/"2kb8d2D , s46d

wherekb8 =Îk2−kb
2.

Figure 6 shows the dependence of the oscillatory part of
conductanceDGsVd=GsVd−GcsVd, Eq. s43d, on the position
of the defect at low voltagesV→0d for a contact without
barrier sU=0d. Here,Gc=G0obTb is the conductance in the
absence of a defectsg=0d. Figure 7 shows the dependence of
the DGsVd on applied bias voltage for a defect sitting on the
axis of the contactsr0=0d and as a function of the distancez0

from the contact center. In creating the plots of Figs. 6 and 7
we have used dimensionless parameter 2pm*gkF /"2=0.5,
2pa0=2.405lF, and 2pL=10lF, corresponding to a contact
having one allowed quantum conductance mode.

FIG. 6. Dependence of the oscillatory part of normalized con-
ductanceDGs0d /Gcs0d of the ballistic point contact with the posi-
tion coordinates of the defectsr0,z0d.

FIG. 7. Voltage dependence of the oscillatory part of normalized
conductanceDGsVd /GcsVd for an adiabatic ballistic point contact
for r0=0 as a function of the depthz0 of the defect under metal
surface.
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IV. DISCUSSION

The presence of an elastic scattering center located inside
the bulk, either in the vicinity of a tunnel contact in an STM
configuration or in one of the banks of a ballistic point con-
tact, has been shown to cause oscillatory fluctuations in the
conductance of the junction. For small contact radii
sa!lFd, these oscillations result solely from interference of
electron waves that are directly transmitted on the one hand,
and electrons that are both backscattered by the defect and
again reflected by the contact on the other. What now follows
is a discussion as to whether this effect can be employed
experimentally for three-dimensional mapping of subsurface
impurities.

In the case of a tunnel contact, the oscillatory part of the
conductance can be expressed by

GoscsVd
Gc

~
z0

2lF
2

g4 sin 2k̃Fg, k̃Fg @ 1, s47d

wherek̃F=ÎkF
2 +2meV/"2 is the wave vector of electrons that

are passing through the orifice,z0 is the depth of the defect
under the surface, andg is the distance between the contact
and the defect. Comparing this to the results found for a
ballistic contact, where

GoscsVd
Gc

~
lF

2

a2sz0d
coss2k̃Fz0 + wbd s48d

sherewb is the phase the electron acquires after reflection by
the contactd, we see that although both oscillations have
similar arguments, the expression for the ballistic case has an
extra phasewb, which depends nonlinearly on the wave vec-
tor k, making the signal hard to identify. Furthermore, the
adiabatic condition, being an essential assumption in the bal-
listic model, cannot be readily achieved experimentally.

Therefore, choosing the tunnel contact for experimental
application seems most sensible. In that situation we can
expect the information in the conductance signal about a
defect’s whereabouts to be twofold: the amplitude will de-
crease with growing distanceg, whereas the frequency of the
oscillation is expected to increase upon enlarging the dis-
tance from contact to defect. The actual experiment would
consist of sensitively measuringsdI /dVdsVd curves on a tight
grid of r coordinates. The lateral positions of defects could

then be identified as the centers of radially symmetric pat-
terns in this signal. Next, the depth of an impurity should be
derived from the period of the oscillation in thesdI /dVdsVd
curve atr0.

Assuming the numerical parameter 2pm*gkF /"2=0.5 in-
troduced in Sec. IIIswhich can be shown to be applicable for
hard wall scatterers with atomic radiusd and choosing the
orifice to be located exactly above the defectsg=z0d, the
amplitude of the oscillation is expected to be 10−1Gc for
z0=3 nm swith kF=1010 m−1d.

Note that the chosen value of the interaction constant is
rather large. We use such a value of the parameter to show
the investigated effects more clearly in illustrations. For real
values of parameterg<10−35 erg cm3, which can be esti-
mated from an electron effective scattering cross section
,1 Å2, the relative amplitude of oscillations is 10−2/10−3Gc.

Comparing this to previous STS experiments,19 where
signal-to-noise ratios of 5310−4 sat 1 nA, 400 Hz sample
frequencyd have been achieved, we should be able to mea-
sure defects located more than ten atomic layers under the
surface.

As the period of the oscillation becomes longer for small
z0, the minimum discernable depth will be determined by the
maximum voltage that can be applied over the junction. For
example, 30 mV is sufficient for probing a quarter of a con-
ductance oscillation caused by a defect at 1 nm depth. The
increase of the noise level inherent to measuring at elevated
voltages will not pose a problem because the amplitude of
the signal is much higher for small depths.

Finally, the anisotropy of the electronic structure will have
to be taken into account. Materials with an almost spherical
Fermi surface, such as Al or Au, realizing the condition of a
free-electron gas, are expected to be most suitable. Further-
more, deviations of spherical symmetry might be used as a
secondary proof for the effectiveness of the method, i.e., in
the case of Aus111d, where the “necks” in the Fermi surface
should cause a defect to be invisible when probed exactly
from above.
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