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The nonlinear conductance of quantum microconstriction, which contains a single slow two-level system
(TLS), was investigated. It is shown that the sign of zero bias anomaly in the point contact spectrum depends
on the contact diameter and positions of TLS. This effect is due to the oscillation of local electron density of
states inside the quantum microconstriction.
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The two-level system(TLS) is an atom(group of atoms or
a dislocation) that can move between two different positions.
They play an important role in the low-temperature proper-
ties of disordered metals. Historically, TLS’s have been in-
troduced by Andersonet al.1 and their influence to different
kinetic coefficients of metal glasses has been studied both
theoretically and experimentally in many papers(for review,
for example, see Ref. 2). Usually two types of TLS’s are
distinguished: slow and fast TLS’s. In slow TLS atom has a
transition between two energy states by quantum tunneling
through a barrier or by thermal excitation over it. The tran-
sition rate in that case may be longer than seconds and an
electron scattering by the TLS can be considered as the scat-
tering by defect, which situated in a fixed position. If the
electron experiences several transitions of atom during the
interaction with it, such a TLS is called a fast TLS. Last TLS
is responsible for a low temperature Kondo-like anomaly of
kinetic coefficients.3

An investigation of bulk samples makes possible to find
average characteristics of TLS’s, such as an average distance
between energy levels and a relaxation time. In mesoscopic
conducting systems the electron scattering by a single TLS
may significantly change the transport properties and hence
the characteristics of certain TLS can be found. One of the
classes of mesoscopic systems is point contacts and micro-
constrictions. The most important feature of ballistic micro-
constriction is the splitting of the Fermi surface by applied
bias for opposite directions of electron velocity along the
contact axis.4 The nonelastic relaxation of this strongly non-
equilibrium electron state results in singularities on the sec-
ond derivative of the current-voltage characteristicsd2I /dV2

[point-contact spectrum(PCS)4,5].
Experimentally it was observed that the electron-TLS in-

teraction leads to a zero bias anomaly(ZBA) of the PCS.
This anomaly can have a different sign.6,7 The positive ZBA
may be explained as the nonmagnetic Kondo-like effect.3

Experiments of Ralph and Buhrman8 investigating the ZBA
in Cu nanoconstrictions are complied with the explanation9

based on the two-channel Kondo model.3 In some cases the
ZBA appears as a negative peak in the differential resistance
curve, which is only predicted in the theory of Kozub and

Kulik.10,11 In the quasiclassical approximation they have cal-
culated the derivatived2I /dV2 for the point contact contain-
ing the slow TLS. For slow TLS’s the sign of the PCS de-
pends on the difference of electron elastic scattering cross-
sections by the defect in different positions. If the scattering
cross section in the upper state of TLS is less than in the
lower state, the PCS has negative ZBA. The negative ZBA’s
were experimentally observed by Keijers, Sklyarevskii and
van Kempen.12 An intensity of PCS is defined by a position
of TLS near the point contact.11,13 The contact size depen-
dence of the ZBA and the PCS in point contacts containing
TLS’s were studied in the experiments.12,14 The different ef-
fects in metallic point contacts containing slow TLS’s were
reviewed in the paper.7

In mesoscopic systems the quantum effects are essentially
influenced the manifestation of the electron scattering in con-
ducting properties. Therefore the quantum oscillations of lo-
cal density of states(LDOS’s) of electron result in the size
dependence of Kondo anomaly in quantum microconstric-
tions containing single magnetic impurities.15,16 The reason
of this dependence is the changing of the matrix element
value of electron-magnetic impurity interaction as diameter
of microconstriction is changed. The same effect should be
taken into account in quantum constrictions with slow TLS’s.
In the difference with an impurity in a fixed position, the
TLS atom changes its position inside the constriction. For
such a TLS a distance between two positions in the perpen-
dicular contact axis direction may be of the order of Fermi
wave length. In this case the matrix elements of electron-
TLS interaction for two positions could be distinctly differ-
ent.

In this paper the nonlinear conductance of a long quantum
constriction containing a slow TLS inside it is studied theo-
retically. We obtain different voltage and contact size depen-
dencies of the conductance as well as its dependence on the
TLS positions. The effect of atom’s position changing after
electron nonelastic scattering is taken into account. We pre-
dict the quantum analog of Kulik-Kozub effect: the resis-
tance may decrease, as a result of the difference of local
density of states for different positions of the defect and
show that the ZBA in the PCS can change its sign with
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changing of the diameter of the constriction. Let us consider
the quantum microconstriction in the form of a long ballistic
channel with smooth boundaries and a diameter 2R compa-
rable with the Fermi wavelengthlF (Fig. 1). We assume that
the channel is smoothly(over Fermi length scale) connected
with bulk metal banks. Inside the microconstriction a single
TLS is situated. As was shown,17,18 in such constriction in
the zeroth approximation on the adiabatic parameteru¹Ru
!1 accurate quantization can be obtained.

The electron wave functions and eigenvalues in the long
channel in the adiabatic approximation are

C jsr d = cnmsr 'dexpsikzzd, « j = «nm+
"2kz

2

2me
, s1d

wherej =skz,n,md andsn,md is the set of discrete transverse
quantum numbers;kz is the wave vector of an electron along
the channel axis;me is an electron effective mass;r
=sr ' ,zd, r ' is a coordinate in the plain, perpendicular to the
contact axisz; «nm is the energy of the transverse electron
mode, which corresponds to the full set of transverse discrete
quantum numbersm andn.

The general formula for a currentI through the quantum
contact at a arbitrary voltageV was obtained by Bagwell and
Orlando.19 They have shown that the transmission coefficient
of electrons through a quantum microconstrictionT depends
on the applied voltageV because the electron scattering leads
to the appearance inside it the nonuniform electrical field. In
an almost ballistic microconstriction containing few scatter-
ers the mentioned electrical field is small and we neglect its
effect. For a pure ballistic microconstriction the conductance
is given by the Landauer-Büttiker formula(for a review see
Ref. 20). Below we assume that the applied biaseV is much
smaller not only the Fermi energy«F, but also the distances
between the energies«nm of quantum modes.

The effect of electron-TLS scattering leads to the decreas-
ing of the transmission probability. In accordance with the
standard procedure the changing of the electrical currentDI
due to the presence of TLS in the main onHe−TLS can be
written in the following form:21,22

DI = −
1

"2V
E

−`

t

dt8Trhr0f„H1s0d,He−TLSstd…,He−TLSst8dgj,

s2d

wherer0= fFsH0+H1d is the statistical operator for electrons
in the channel,fF is the Fermi function,

H0 + H1 = o
j

« jaj
†aj + o

j

eV

2
sgnskzdaj

†aj; s3d

the operatoraj
†sajd creates(annihilates) a conduction electron

with wave functionC j and energy« j. All operators is written
in the interaction representation. The TLS can be modeled by
a two-well potential, describing the system as occupying one
of the two local minima whose energy difference is assumed
to beD and the tunnelling probability for crossing the barrier
between them isD0. In this model the TLS Hamiltonian,
HTLS is written as

HTLS =
1

2 o
a,b=1

2

sDsab
z + D0sab

x dba
†bb, s4d

wherea labels the energy minima of TLS, andba
†sbad is the

fermionic operator, which creates(annihilates) an atom in
this state,sab

i is the element ofith Pauli matrix. The TLS
Hamiltonian can be diagonalized and one can obtain its
eigenstates.7

The splitting of energy between the two eigenstates isE
=ÎD2+D0

2. The occupation numbers for the upper and lower
eigenstates of the TLSn+ andn− satisfy the relationn++n−
=1. The Hamiltonian of electron-TLS interaction can be
written as3

He−TLS = o
a,b,i,j

bb
†aj

†Vij ,abaiba. s5d

The matrix elementsVij ,ab in general case can be written
in terms of Pauli matrices:

Vij ,ab = o
k=x,y,z

Vij ,ab
k sa

k . s6d

The diagonal matrixVz describes the process, in which the
atom stays in a given position during the scattering. The
off-diagonal electron-TLS interactionVx,y induces a transi-
tion of atom between two energy minima. It is proportional
to D0 and in most real systemsVx,y/Vz.10−3−10−4.2,3 In the
slow TLS D0!D, and dealing with this system, in the main
approximation onD0, we neglect off-diagonal interaction in
the full Hamiltonian.

The diagonal interaction potentials are given by

Vij ,ab
z =E drCi

*sr dC jsr d E dr 8Usr 8 − r dfa
* sr 8dfbsr 8d,

wherefa is the atom(TLS) wave function, which is strongly
localized and can be considered as the wave function of a
particle confined in a spherical box;Usr 8−r d is the potential
of the interaction between the electron and atom in the posi-
tion r 8.

FIG. 1. The model of the quantum microconstriction in the form
of a long channel of the radiusR, which smoothly(on the Fermi
length scale) connects two massive metallic reservoirs. Two posi-
tions of the TLS inside the constriction is shown schematically.
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Using Eq. (2) we find the first order corrections to the
current through the microconstriction

DI =
ep

"
o
j ,j8

ssgnkz − sgnkz8dsf j8 − f jdds« j − « j8dG j j 8,

where f j = fFf« j +seV/2dsgnskzdg, is the Fermi distribution
function for conducting electrons and

G j j 8 = n+suVjj 8,22
z u2 − uVjj 8,11

z u2d + uVjj 8,11
z u2.

In order to calculate conductance, one needs to differentiate
the current over voltage. In this step the voltage dependence
of the occupation number for the upper eigenstate of TLS,n+
should be well established. Under the assumption that the
transition probability between eigenstates of TLS by electron
scattering process is a constant parameter, the stationary part
of solution of time-dependent equation for the occupation
number of the upper eigenstate in the model of long channel
can be given by11

n+ =
1

2
−

2E

2E coth
E

2T
+ sE + eVdcoth

E + eV

2T
+ sE − eVdcoth

E − eV

2T

.

It should be noted although the nonequilibrium dependence
of n+sVd is due to the tunneling process but it does not de-
pend on the value ofD0.

11

Highlighting the novel quantum mesoscopic effect, let us
use a simplified model: consider that during the scattering
process, the atom is localized either at pointssr '1,zd or
sr '2,zd. Also we assume a point like electron-atom interac-
tion asUsr 8−r d=gdsr 8−r d, whereg is the constant of inter-
action. Within these approximations, the changing in the
conductance for the elastic interaction is given by

DG =
ep

"
g2o

j ,j8

ssgnkz − sgnkz8dds« j − « j8dRmn,m8n8sr '1d

3
d

dV
sf j8 − f jd+

ep

"
g2o

j ,j8

skz − kz8dds« j − « j8d

3Qmn,m8n8sr '1,r '2d
d

dV
fn+sf j8 − f jdg, s7d

where

Rmn,m8n8sr '1d = ucmnsr '1du2ucm8n8sr '1du2

and

Qmn,m8n8sr '1,r '2d = ucmnsr '1du2ucm8n8sr '1du2

− ucmnsr '2du2ucm8n8sr '2du2.

The valueQmn,m8n8sr '1,r '2d specifies the sign of last term in
the conductanceDG. Obviously this value depends on the
local electron density of states in the position of TLS. By
changing the diameter of channel, these densities change and
this may change the sign of conductance too. This is the
quantum analog of the effect has been predicted by Kuzob
and Kulik in point contacts containing the single TLS.10,11

To illustrate the results we use the free electron model of
a channel like contact consisting of two infinite half-spaces

connected by a long ballistic cylinder of a radiusR and a
length L (Fig. 1). In a limit L→` the transverse part of
electron wave functionscmnsr 'd and eigenenergies«mn can
be obtained analytically(see, for example, Ref. 20). Figure 2
shows the voltage dependence of correction to the conduc-
tance due to the presence of a slow TLS for three microcon-
strictions with different diameters whereas all other charac-
teristic parameters of TLS and its position are the same. In
Fig. 3 the PCS for these constrictions is plotted. This figure
illustrates the possibility of changing of the sign of point
contact spectrum with changing of diameter of microcon-
striction. The extremum of PCS occurs ateV=E,a TLS char-
acteristic parameter.

FIG. 2. Change in the conductance of quantum microconstric-
tions due to the presence of a slow TLS is plotted versus the bias
voltage for different values of the radius.
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Thus, we have shown that the influence of slow TLS on
the conductance of quantum microconstriction depends on
the space positions of atom inside it. This effect is due to the
essential inhomogeneity of the local density of states
(LDOS) of electrons across the constrictionnmnsr ' ,«d

=Îmeucmnsr 'du2/ f"Î2s«−«mndg. This inhomogeneity results
in different values of matrix element of electron-atom inter-
action for the same value of scattering potential for the two
positions. The increasing of applied bias leads to increasing
of probability to find the TLS in the upper state. The sign of
the correction to the conductance of ballistic microconstric-
tion depends on the difference of the LDOS of electrons in
two positions of the atom. If the LDOS for upper energy
state is smaller than for the lower state, the conductance
decreases with the increasing of the voltage. Changing the
diameter of the constriction makes it possible to change the
pattern of the LDOS oscillations inside the constriction. We
have shown that correction to the conductance due to such
effect can change its sign. The quasiclassical theory7,10,11

does not take into account the difference in the atom position
in the Fermi wavelength scale, and the possibility of different
sign of PCS related to the difference between effective elec-
tron scattering cross section by slow TLS in two quantum
states. For a channel with 2R@lF, the number of quantum
modessm,nd is large and after summation over all of them,
the mesoscopic effect, which has been considered in this
paper, becomes negligible. Note that conductanceG of the
microconstriction containing one usual pointlike defect de-
pends on its position due to inhomogeneity of LDOS, but in
such a caseG does not depend on the voltage. The nonlinear
dependenceGsVd may result from an interference of electron
waves, which are scattered by different defects. This effect
was analyzed in Ref. 22.

We acknowledge fruitful discussion with A. N. Omelyan-
chouk.
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FIG. 3. The point contact spectrum for three quantum microcon-
strictions with different diameters each one including a single slow
TLS. The sign of PCS changes with changing the diameter of mi-
croconstriction as the manifestation of a novel quantum mesoscopic
effect.
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