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Influence on nonlinear conductance and shot noise of metallic microconstriction due to interference between
electron waves scattered on single impurities and/or a barrier is studied theoretically in this paper. It is shown
that these characteristics are nonmonotonic functions of the applie&/bias
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I. INTRODUCTION pressed. However, even for an adiabatic ballistic constric-

Single defects have a strong influence on physical proptionS néar the values of its diameter, at which the highest
energy levelsy is close tosg, the probabilityTy is smaller

erties of mesoscopic systems. A different kind of defects ; : o
arise during manufacturing of mesoscopic conductors aan‘I".m one:.AC(Eprdlnfg toItEqé}) at small bias the shot noise is
investigation of its influence on the transport properties had 'IN€ar function ot voltage.

been of practical significance. On the other hand, study O(fj_ﬁCondtuitance 0: a_qulantgmf mtlcr(i]constt)rlctlon_ Contt‘f"n'tn%
the contributions by single defects to kinetic coefficients ierent types or single detects has been nvestgate

: o : >
makes it possible to obtain the most detailed information Or{heorehcally? The most remarkable effects which manifest

the electron scattering processes which are very importarﬁlectron scattering process in mesoscopic constrictions with

for fundamental science. Point contacts and quantum microiny a few point-like defects ardi) quantum interference

constrictions(quantum wiresare one of the classes of me- directly transmitted through the contact electron waves and
soscopic systems, which are extensively investigated botﬁlecmr_] waves scattered by the defects ".md a ba_rner in the
theoretically and experimentallgsee Refs. 1 and)2 The contacti(ii) _d_epepdence of eIe_ctrpn scattering amplitude on a

electrical conductanc& of a constriction is proportional to defect position in the constriction. The first effect causes

the numbeiN of propagating electron modgte number of nonmonotonlc dgpendepce of the pomt-contact.conductance
discrete energy levels,<ep of transverse quantizatiosg Ondthtﬁ appltl_ed”blas, W.hd'Ch \(/jva_\s obseé:?\éelg expe;lrlmeﬁf)aqu

is the Fermi energy where single mode contribution is equal an eoretically considered in papers.recently, experi-

to Gy=2€?/h. Changing the contact diameterresults in a mental observations of conductance oscillations in quantum

different number of occupied levels, and G(d) exhibits a contact have been reported Ref. 22. The second effect is

step-like change of its value with a step size equaGto responsible for the contact size dependence of the Kondo

6,19 Thi . .
This effect is a manifestation of the quantum size effect inanomaly% This dependence is due to nonhomogeneity of

metals, which was predicted by Lifshits and Kosevich. the local density of electron states across the diameter of

: microconstriction. In numerical simulatiotisthe influence
However scattering processes on defects could decreas

probability T, <1 for the transmission of thath mode and ?a(f}ctd Ihr;ys gsgrﬁscggstir:jeercgdnd:lfttsgfsehoa]:da qri?i?ct‘?e% Fs)ﬁmtr((:azggon
the conductance at zero temperatdre0 and an applied of the conductance quctuétions near theped es of theprs)te s of
voltage of V—0 should be described by the Landauer- he f : his effect h ges I P
Buttiker formula®s the functionG(d). This effect has been experimentally ob-

Shot noise is an important characteristic of the transpor erved in Ref. 21 and explained by decreasing of the inter-

properties of mesoscopic conductd?é It originated from erence terms in the _conductance un_der the conditions that
the time-dependent current fluctuations. Kulik andthe contact d.|ametai Is closed 1o the Jump .OG@‘ .
Omelyanchouknoticed that the shot noise in a ballistic con- The most important feature of the ballistic microconstric-
tact vanishes in the quasiclassical approximation if there ig)n is splitting of the Fermi surface by applied volteie.

no electron scattering. In quantum microconstriction thes _ffect!vely, there_ are two .elect(omc waves moving In oppo-
fluctuations arise from the quantum-mechanical probability‘SIte directions with energies difference at each point of the

of electrons to be transmitted through the constrictionTAt cpnstnctlon by exactly the bias gnergy/. Because of this
=0, bias at the contacd/—0 and for low frequenciess difference in the electron energiesteV/2, a value of a
_}6 the shot noise is describedby wave vectork,(e+eV/2) along the constriction depends on

N eV. As mentioned above, the effect of quantum interference
between directly transmitted and scattered waves is defined
S(0) :2eVGOZ To(1=Th). L) by relative phase shiflp=2k,Az of the wave functions,
=L where(Az is a distance between scattejeasd dependence
In perfect ballistic contacts where the transmission probabilon k,(e+eV/2) results in oscillations of transmission prob-
ity for every modeT,, is one, the shot noise is fully sup- abilities T,(V) as functions oiV. In this paper we consider
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| L J,/ discrete energies; of conducting modes, arlg is the wave
v I - v vector along thez axis; r=(R,z). The transversal part
Y ﬁ]\ r.e——] 21 \ 5 ¥, g(R) of the wave function satisfies zero boundary condi-
tions at the surface of the constriction. The functigingr)

z are orthogonal and normalized.
By definition the noise power spectrum is

4 N Sel) =5 f dte (Al (DAT(0) + Alb(0)AT(0),  (5)

FIG. 1. A model of quantum constriction in the form of long

channel adiabatically connected to bulk metallic reservoirs. TrajeCyhere A| (t)=i -1, 1 () is the current operator in the
a a a 'a

tories (1-4) of electrons, which are scattered by defects and a bar-. ~ o
ier are shown schematically. right (a,b=R) or left (a,b=L) lead;|,=(l,) is the average

current in the lead; brackets(...) denotes the quantum sta-

the influence of the interference effect on the conductanclaiSticaI average of a system in thermal equilibriu_m. In this
paper we will only consider zero frequency noiSg,0).

and shot noise in long quantum microconstrictions with & '
few defects and the potential barrier. Note that due to current conservatibs1, =Iz we haveS

The paper is organized as follows. In Sec. Il the model of= 3.L=SrRrR= ~SR=~SkL:
microconstriction and the basic equations are discussed. In A general formula for the currerit through a quantum
Sec. Il the voltage dependence of conductance and sh§Pntact ft arbitrary voltage was obtained by Bagwell and
noise is studied. Two cases are considered: single impurity if?"1andd* (see also Ref. 25
the constriction with a barrier and two impurities in the con- )

e . . . ) e
stnctl_on without the barrier. _The expressions for Greens_ IZ—fdsT(s,V) X (f_ - fr), (6)
function for these cases are given. Also the results of numeri- h
cal calculations are presented in this section. We finally sum-
marize our results in Sec. IV. where is the transmission coefficient of electrons through the

constriction

Il. MODEL OF MICROCONSTRICTION AND

FORMULATION OF THE PROBLEM T(e,V) = Tr[fT(s,V)f(a,V)], 7)

We consider the qguantum microconstriction in the form of
a long channel with smooth boundaries and a diamefer 2andf_g(e)=fr(exeV/2) is the distribution function of elec-
comparable with the Fermi wavelength (Fig. 1). Alength  trons moving in the contact from leff,) or right(fz) banks;
of the channeL is much larger thafR. We assume that the f(¢) is the Fermi functioni(e,V) is a scattering matrix. In
channel is smoothlyover Fermi length scajeconnected to  general case the functiofi(e,V) depends on the applied
bulk metal banks to which the voltage/<er is applied. At voltageV because electron scattering leads to the appearance
the center of the constriction a potential barrigd(z2)  of nonuniform electrical field inside the constricti&hThis
=U4&(2)] is situated in the vicinity of which there are a few field has to be calculated self-consistently from the electro-
point-like defects at positiong. The Hamiltonian of the sys- neutrality equation. In an almost ballistic microconstriction

tem can be written as containing a few scatterers aaeunction potential barrier of
~o the small amplituddJ the electrical field is small and we
H= p_ +U8(2) +g>, 8(r —r)), (2) neglect its effect, assuming that the electrical potential drops
2m i off at the ends of the constriction.

wherep is a momentum operatom’ is an effective mass of In the same approximation the noise spectrgi(f) is

. . o given by'?
an electron andj is a constant of electron—impurity interac-
tion (g>0, a repulsive impurity In a ballistic channel with- &2
out the barrier and defects)=g=0) the wave functions and S(0) = 2 f ds(Tr[t(e)t(e)T(e)E(e)]
energies of the eigenstates inside the channel can be sepa- h
rated to Fransvg@al and longitudinal parts with respect to the X [f(1-f) +fa(l-fp)]
constriction axisz A
1 +Tr{t'(e)i(e)[I - tT(e)i(e)]}
) = R ikZZ' 3
A= LR @ X [~ 1]+ fR(L - 1), ®)
h2Ae wherel is the unit matrix. The first term in Eq8) corre-
gu=8gt (4) sponds to thermal fluctuatiorighe equilibrium, or Nyquist-

2m Johnson noigeand vanishes if the temperatufe- 0. If the
wherea=(S,k,) is a full set of quantum numbers consisting bias is applied to the constriction the second part of this
of two discrete quantum numbegs-(m, n), which define the equation remains finite &t=0, and describes the shot noise.
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Calculation of the transport properties of the quantum imuU .
constriction can now be done by determination of the scat- = o v imu COS pge! 7%, (17)
tering matrixi(e). Elements of scattering matrig, can be #
expressed by means of the advanced Green’s functiots the amplitude of reflected wave,

G*(r,r’;e) of the systent’ 1
ik : oot {\1 +(m U/ﬁZkﬁV} (
tﬁﬁ’(s)__—*Gﬁ,B'(z'Z 18)1 Z— =% 7 — +Ool
m The amplitudet, of the transmitted wave can be evaluated
9 throughr from the continuity of electron wave function at
z=0:
where
1 ery+ 1= KE i gin g,d¥ 19
ko) = 5 \2m (e o) (10 o= L= vy T SN e (19

is an absolute value of electron wave vector corresponding t‘(l)’he same functions; andt, can be found from the solution

the quantum energy level; G (2,2 ;) are components of_ the one-_dlmen5|_onal Scf218rod|nger equation of a system
) 4 . with &-function barrierU §(z).
of the expansion of Green’s function on the full set of wave

; ; : Equation(12) can be solved exactly for any finite number
functions corresponding to the transverse motion of electron(s)f defects. For that Eq12) should be written at all points

Gl e)=S '//iB(R)wlﬁ’(R,)G;;B’(Z’Z,‘8)' (11) of the defect positions and t_he funct_io@éri,r '; ) are found
g from the system of algebraic equations.
] ) o By using the matrix elements E¢) the conductanc&
The matrix elementsy (¢) describe the transmission prob- =qj/dv of the microconstriction as well as the shot noise
abilities for carriers incident in chann@ in the left leadL  §0) can be calculated.
and transmitted into channgd’ in the right leadR. The
Green’s function satisfies the Dyson’s equation: lll. VOLTAGE DEPENDENCE OF CONDUCTANCE AND
E SHOT NOISE
G(ryr,58)=G (rlr,18)+ G (r,r-,s)G(r-,I”,s), . .
b g i b ' In order to illustrate the effect of quantum interference of
scattered electron waves on the conductance and the shot
(12 ; L . .
noise we present the results for two cagessingle impurity
whereGy(r,r’;e) is the Green’ function of ballistic micro- in the constriction with a barrieri) two impurities in the
constriction with the barrier in the absence of defects. It carconstriction without the barrier. For the first case the Green’s

be found from the equation function takes the form:
ng(r!rl;s)Gb(rl!r,;S)
! . = ! . n . rr I!: . Gr,r/, :G r,r/; +
Gb(rvr 18) Go(rvr 18) + U f dR Go(ryR ,Z 018) ( 8) b( 8) 1 _ng(rlnr]_uS)
XGy(R'",Z"=0:r";¢), (13) (20)
where wherer, is the position of the impurity, a Green’s function
. Gy(r,r';e) is defined by Eqs(11) and(16). In the case of
m ) ’ . o . . . . . .
Gi(rr':e)= R)W. (RNekdZ-4 (14 only two impurities present inside the ballistic microconstric-
o(f.r"3e) Zﬁ iﬁzkﬁl//m( V4R (149 tion, solution of Eq(12) is

is the Green'’s function in the absence of impurities and theG(r [e) = Go(r 1 e) + 1
barrier. Substituting the expansiofl) and (14) into Eq. w0 1_Gl(rl;S)Gl(rz;s)Gg(r1ar2;8)
(13) and taking into account the orthogonality of functions

1 4(R) for the coefficientsGy,(z,Z' ;&) dp Of Gy(r,r';e) X E {G(ri;8)Go(r,ri;e)[Go(ri,r';e)
in the expansion Eqa1) we obtain the algebraic equation Lk=1,217k
R m 7] - +G(r ;&) Go(r, 1 8)Golr i1 5 €)1} (21)
I. - | Z —Z I Z| /.
Gpp(z,2'58) = iﬁzkﬁ[e 772+ Ueks?Gyy(0,26)]. where
(15 g

. . . o . Gyrize) = ———~ ———, (22)

Taking this equation a=0 we findG;4(0,2' ;) and finally 1-9Gy(ririe)

Gpp(z,2';2) is given by andGy(r,r’,¢) is the Green’s function of the ballistic micro-

m ) constriction Eq.(14). Using Eqgs.(20) and(21) it is easy to
G (2,7:¢) = gkplz' =2 4 dikp(lZ'[+12) 16 - - e
bpp (22 7€) = =y ( rg ), (16)  find the transmission probabilitigsgs (9).
B At zero temperature the nonlinear conducta@d¥) and
where the noise powes(0,eV) are given by following expressions:
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ev)|? eV)|? mg)\? 1 .
¥ :E[ nloe+ )|+ Janloe-5) } Te) =2 {%" ) S A5
BB’ 8B’ BrB =12
(23 +Re X Al AW exd (ks + ky)(z - 2) + g
i#j=1,2
spteVi2 . + Q%’]]}: &> ¢ep€p, (26)
Soev= X deftys ()tg 50 (2)
BB BB EmeVI2 where
><[5ﬁ",B"’5,8"’,B_tﬁ”ﬁ”’(s)tﬁ'”,3(8)]} (24) A(B”l;/ = wlB(Rl)lﬂlﬁ/(Rl) (27)

In order to explain analytical results we present the ex-a |ast term in square brackets describes the interference ef-
pansion of the transmission coefficigidy on the constant of  fact petween trajectory 3 in Fig. 1 and trajectory 4, which
electron—impurity interactiog up to linear ing term for the  corresponds to two scattering by different impurities. It de-
constriction with one impurity at point;=(R;,2;) and the  pends nonmonotonically on the energy Energy depen-
barrier dence of the transmission coefficiéfts) manifests itself in

nonmonotonic dependence of conductance and shot noise on
the applied biagV.
m' The general expression for componenyis (e) (9) calcu-
T(e) =2 |tﬁ|2{l_ﬁz_lf’|rﬂ||‘/ﬂﬂ(Rl)|2 lated using Green'’s functiorj&gs. (20) an:jgél)] takes into
A A account a multiple electron scattering by impurities and bar-
rier. It is valid for any values of parameters. We will illustrate
X cod2kgz, + ‘Pﬁ)}' &= &g, (29 such a situation presenting plots for the voltage dependencies
of conductance and shot noise for some values of the param-
eters, which could be related to experiments.
For numerical calculations we used a model of cylindrical

wherety, 15, and phasep, are defined by Eq.17), (18), and channel where in formula) and (4):

(19). This formula is valid for 2n'g/%%kz<1, i.e., far from

the end of the step of conductance, whiege-0. The oscil- p\ .

- iqi - ¥p(p@) = = Jm| Ymng, |€™ (28
latory telrm in Eq.(25)_or|g|nates from the mterf_erence be- B\P: VTRI 1 (Vo) m\ Ymng '
tween directly transmitted waugrajectory 1 in Fig. 1 and
the wave, which is once reflected by the barrier and after one 1292
reflection from the impurity passes through the contaet- Emn= ;’; (29)
jectory 2 in Fig. 3. The amplitude of the oscillations de- 2m

pends on the local density of electron stategRi.e)  where we used the cylindrical coordinates(p, ¢,2); ¥mn iS
=m’[yy, g(Ry)|*/[7i%k4(e)] in the point, in which the impurity n th zero of Bessel functiod,, Also, dimensionless param-
is located. At certain pointsg(R, &) can be equal to zero and eters are introduced

a defect located near such a point contributes very little to

the oscillatory addition of3sth mode to theT(e). In particu- 9=—55, U= m2_U (30)
lar, impurities at the surfac® =R do not influence oscilla- TR Ke Ke

tions of T(e), because), 4(Ry)=0. As a result of the reflec-  yherek. is the Fermi wave vector. We have performed the
tion from the barrier the oscillations have the additional ;. iations forg=1 andU=0.5 For such values of these

phaseg,. Its dependence on the energyeads to nonperi-  5rameters the amplitude of conductance oscillations is close
odicity of oscillations of functionTl(e). Equation(25) could 5 5 value which was observed in Ref. 22. For the radius
be used to calculate the dependence of oscillation amplitudezs,TR:gg)\F (one mode channglthe first energy level
on the contact diameter. If the diameter is increased and aRy ;< ep is comparatively far from the Fermi energy and for
proaches the end of the conductance step, the energy of the-R=3.45\ this level is closed ter. For a larger value of
transverse quantum mods is decreasefisee, for example, radius(2mR=5\) there are two open quantum modes with
Eq. (28) for cylindrical geometry. The wave numbek; (10)  energiese 1, £+11<ep. In order to illustrate different rea-
is increased and according to Ed.7) the modulus of the sons for the appearance of conductance oscillations, in Figs.
reflection probabilitylr 4| is decreased. In the opposite situa- 2 and 3 we show the dependencies of the conductance on the
tion (the radius is decreaspthe decreasing ok; leads to  applied voltage for the channel without the barrigr=0)
decrease of the transmission probabilty Eq.(19). In both  containing two impurities and for the channel with the bar-
cases amplitude of the oscillations Bfe) is decreased. rier and a single impurity. By comparison of the different
Similar expansion off(¢) for the constriction with two curves in Figs. 2 and 3 we observe that the amplitude of
defects at points,=(R;,z;) andr,=(R,,z,) without barrier =~ conductance oscillations is decreased for radius vé&ludR
is =3.45\¢) corresponding to the end of a first step in conduc-

*

mg
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3.000 (2rR=51)
- - - (2rR=3.45)) 0.04 (2nR=51.)
----- (21R=2.91) - — —(2rR=3.45).) .
1 |- (2nR=2.91) .
2.995 K
\—/\ — 0.03 + .
0 P
1 5 Lo
3 b . .
G 2990 2 0.02-
= .
1.0 - . =) .
T ~o 'l’y——"\\ = . -
-, ~Seog-- n .- -
I . . ' . 0.01 4 -
s . l‘ . LT -
0.8 . 1 7 = ==
; s
0.00 v L] 4 1 v L] v ]
T T T T T T T T T 1
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.18 0.20

eV/2 (The Fermi energy units) eV/2 (The Fermi energy units)

FIG. 2. Dependencies of the conductance on the applied voltage F!C- 4. Voltage dependencies of noise power on the applied
for a channel containing two impurities for different values of ra- voltage for a channel containing two impurities for different values

dius; impurity positions are 20;=0.3\r and 2rp,=0.4\p, 27(2, of radius; impurity positions are 7201=0.3\ and 2rp,=0.4\g,
~2,)=35\¢, ©1= . 2m(z1=2) =35\, @1= 2.

. . . IV. CONCLUSION
tance. In Figs. 4 and 5 the voltage dependencies of noise

power are plotted. We notice that, as seen in Fig. 4, for one We have studied theoretically the voltage dependence of
mode channel the shot noise is a strongly nonmonotoniéthe conductanc& and the shot noise pow&in a quantum
function of V. Similar to behavior observed for the conduc- microconstriction in the form of a long channguantum
tance, the amplitude of the oscillations of the shot noise isvire). The effect of quantum interference of electron waves
decreased near the end of the first stBpR=3.45\¢). For  scattered by single defects and the potential barrier inside the
the two mode channel th&V) is almost a linear function constriction, is taken into account. In the framework of our
that can be explained by the effect of a superposition omodel we have obtained an analytical solution for the prob-
oscillations with different periods. In the contact with the lem and found dependencies Gfand S on such important
barrier the main part of the shot noiSg(V) originates from parameters as a constriction diameter, a constant of electron—
electron reflection from the barrier potentidlS(V) impurity interaction, an amplitude of the barrier potential and
=5(V),if g=0)], if and is the monotonic function of. A positions of impurities. In general, these dependencies are
small nonlinearity of this function arises from the energycomplex and are defined by the expression of transmission
dependence of the transmission probability. The interferencerobabilitytzz (9) by means of Green’s functioriggs.(20)

of electron waves in the presence of a defect leads to norgnd(21)]. For a small constarg of electron-impurity inter-

monotonic additions, which we show in Fig. 5. action and far from the step in conductance the part of the
2zR=5). )
(2xR=51) ( ¢
- - - (27R=3.451)
- - - (2nR=3.451) 0,002 F -
..... (2nR=2.91) : (2nR=2.92.)) .

2.0
=
E 0.000 -
=

(\_')c = = ) .
© 1 . g-o.ooz- el
R - — . - _ _~ e \‘
0.6 4 _—// N . - \\\ U.J .
R . ) S -0.004 4 .
’ . - T 1753 N
0.4 -
T T T T T T T 4 T ' -0.006 v T T T v T d T
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20
eV/2 (The Fermi energy units) eV/2 (The Fermi energy units)

FIG. 3. Dependencies of the conductance on the applied voltage FIG. 5. \Voltage dependencies of the nonmontonic part of noise
for a channel containing a single impurity and a barrier for differentpower on the applied voltage for the channel containing a single
values of radius; the impurity position is@,=0.3\F, 27z, impurity and a barrier for different values of radius; the impurity
=35\. position is 2rp;=0.3\g, 27Z;=35\.
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total transmission coefficienfi(e) (25), which is due to the barrier wave. The reflection probability, from the barrier
interference effect, is proportional tpand to the amplitude has the minimal value, if the energy of quantum meges

of the reflected from the barrier wavg [see, Eq(17)]. Asa  close to Fermi levekg=<egg. It is demonstrated that in one
result, at smalh andU the interference part of conductance mode constriction containing only impurities the shot noise
and shot noise is proportional giJ or g* (for U=0) for any  power is a strongly nonlinear function bf In a contact with

number of defects. _ . the barrier the almost linear depender®¥) has a small
We have shown that conductance and noise are oscnlator(ysci"atory addition.

functions on the applied bia¢ and have come to the con-

clusion that the experimentally observed suppression of con-

ductance oscillatio?$ could be explained by energy depen- ACKNOWLEDGMENTS

dence of the transmission probability of electrons through

the constriction. In the framework of our model this suppres- The authors acknowledge fruitful discussions with A.N.
sion of conductance oscillations can be explained in the folOmelyanchouk. This research was supported by the Nano-
lowing way: The oscillatory part of conductance is decreasedystems, Nanomaterials and Nanotechnology Program of the
with the decreasing of amplitude; of reflected from the National Academy of Sciences of Ukraine.

1Ya. M. Blanter and M. Buittiker, Phys. Re336, 1 (2000). 16A. Namiranian, Yu. A. Kolesnichenko, and A. N. Omelyanchouk,
2N. Agrait, A. L. Yeyati, and J. M. van Ruitenbeek, Phys. Rep.  Fiz. Nizk. Temp. 26, 694 (2000.
377, 81 (2003. 17D. L. Maslov, C. Barnes, and G. Kirczenov, Phys. Rev. L&,
3]. M. Lifshits and A. M. Kosevich, Izv. Akad. Nauk SSSR, Ser. 1984(1993.
Fiz. 19, 395(1955 (in Russiai. 18 ye. S. Avotina and Yu. A. Kolesnichenko, Fiz. Nizk. Tem@o,
4R. Landauer, IBM J. Res. De\, 223(1957. 209 (2004 [J. Low Temp. Phys30, 153(2004)].
5M. Buttiker, Phys. Rev. Lett57, 1761(1986. 19G. zarand, J. von Delft, and A Zawadowski, Phys. Rev. L8,
6Sh. Kogan,Electronic Noise and Fluctuations in Solid€am- 1353(1998
bridge University Press, Oxford, 1996 20C. Untiedt, G. R. Bollinger, S. Vieira, and N. Agrait, Phys. Rev. B
1. O. Kulik and A. N. Omel'yanchuk, Fiz. Nizk. Temp10, 305 62, 9962(2000.
(1984 [Sov. J. Low Temp. Physl0, 158 (1984)]. 21B. Ludoph and J. M. van Ruitenbeek, Phys. Rev.6B, 2273
8A. G. Scherbakov, E. N. Bogachek, and Uzi Landman, Phys. Rev. (2000.
B 57, 6654(1997. 22A. Halbritter, Sz. Csonka, G. Mihaly, O. I. Shklyarevskii, S.
9A. Namiranian, Yu. A. Kolesnichenko, and A. N. Omelyanchouk, Speller, and H. van Kempen, cond-mat/0311038 (upub-
Phys. Rev. B61, 16 796(2000. lished).
10M. E. Flatté and J. M. Byers, Phys. Rev. B, R10 536(1996. 23 1. O. Kulik, A. N. Omelyanchuk, and R. I. Shekhter, Sov. J. Low
1E, Granot, cond-mat/0303347 vinpublishegl Temp. Phys.3, 1543(1977); 3, 740(1977.
12M. 1. Molina, and H. Bahlouli, Phys. Lett. 2284, 87 (2002. 24p, F. Bagwell and T. P. Orlando, Phys. Rev.4B, 1456(1989.
13|, E. Aronov, M. Jonson, and A. M. Zagoskin, Appl. Phys. Rep. 2°S. DattaElectronic Transport in Mesoscopic Systef@ambridge
93, 57 (1994). University Press, Cambridge, 1997
14C. s. Kim, O. N. Roznova, A. M. Satanin, and V. B. Stenberg, Zh.2D. Lenstra and R. T.M. Smokers, Phys. Rev3B, 6452(1988).
Eksp. Teor. Fiz.121, 1157(2002 [JETP 94, 992(2002] . 27D. S. Fisher and P. A. Lee, Phys. Rev.2, 6851(1981).
15D, Boese, M. Lischka, and L. E. Reichl, Phys. Rev6B 16 933  28S. Fliigge, Practical Quantum MechanicgSpringer, Berlin,
(2000. 1971, Vol. 1.

075308-6





