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E�ect of curvature on conductance of the quantum wire
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Abstract

The e�ect of the curvature-induced quantum mechanical potential on the conductance of the curved quantum wire is
investigated theoretically. We demonstrate that the characteristics of the quantum wire, such as conductance, can be changed
setting its size, shape, or applied bias. ? 2002 Elsevier Science B.V. All rights reserved.
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It was shown that a low-dimensional system, in
general, has some knowledge of its surrounding
three-dimensional Cartesian space: the e�ective poten-
tial arises from the mesoscopic con<nement process
which constrains particles to move in domain of
reduced dimensionality [1–4]. Namely, it was shown
that a particle moving in a one- or two-dimensional
domain is a�ected by attractive e�ective potential.
This idea was widely studied by several other authors
(see Refs. [5–11]).
The e�ect of the curvature on quantum properties

of electrons on a two-dimensional surface, in a quan-
tum waveguide, or in a quantum wire can be observed
by investigating kinetic and thermodynamic charac-
teristics of quantum systems [7–10]. In this paper, we
propose to use for this purpose measurements of the
conductance G of a quantum wire and we show that
the re@ection of electrons from regions with variable
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curvature results in non-monotonous dependence of
the conductance on the applied bias.
In Ref. [4] the SchrGodinger equation on the ellipti-

cally shaped ring was solved numerically in order to
get the eigenvalue spectrum of a particle con<ned to
the ring. The authors demonstrated that the behavior of
a quantum mechanical system con<ned by the rectan-
gular well potential to a narrow ring in the limit when
its width � tends to zero is analogous to the straight
line motion with e�ective potential

Ve� =− ˜2
8mR2 ; (1)

where R = k−1 is the radius of curvature. Later, in
Ref. [8] the electron energy spectrum in an elliptical
quantum ring was considered in connection with the
persistent current.
We will <rst brie@y overview how the e�ective

curvature-induced potential arise. Further, we apply
this results to consider theoretically the conductance
of the quantum wire which consists of two linear parts
and one elliptically shaped part between them, the wire
is connected to two conducting reservoirs at di�erent
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voltages. And <nally we discuss the in@uence of the
curvature on the conductance.
Let us consider an electron with e�ective mass m

moving in a quantum wire along a curve C which is
constructed by a prior con<nement potential V�. For
the sake of simplicity, we start from two-dimensional
motion. We introduce the orthonormal coordinate
system (s; q), where s is the arc length parameter and
q is the coordinate along the normal to the reference
curve C.
To obtain a meaningful result the particle wave

function should be “uniformly compressed” into a
curve, avoiding in this way the tangential forces
[2,4,8]. So, we consider V� to be dependent only on
the q-coordinate which describes the displacement
from the reference curve C. This potential contains
small parameter � (which is a characteristic width of
the potential well V�) so that the potential increases
sharply for every small displacement in the normal
direction. So, the small parameter of the problem is
�=R�1 [5].
The motion of the electron obeys the two-

dimensional time-independent SchrGodinger equation
which has the form

− ˜2
2m

�s;q  + V�(q) =  : (2)

Introducing  ̃ (s; q) =
√

1− k(s)q (s; q) (which is
normalized so that

∫
ds dq | ̃ (s; q)|2 = 1), we obtain

in the zero approximation in �=R[
− ˜

2

2m

(
92
9s2 +

92
9q2

)
− ˜2

2m
k2(s)
4

+ V�(q)− 
]

× ̃ (s; q) = 0: (3)

This equation can be decomposed by separating the
wave function  ̃ (s; q) = �(q)�(s) into two

− ˜2
2m

d2

dq2
�+ V�(q)�= Et�; (4)

− ˜2
2m

d2

ds2
� + Ve� (s)� = El�; (5)

where Ve� (s) is given by Eq. (1); =Et+El (in the fol-
lowing we omit the subscript “l”, identifying energy E
with its longitudinal component El). Eq. (4) describes

the con<nement of the electron to a �-neighborhood
of the curve C and Eq. (5) describes the motion along
the s coordinate (along the curve C). In fact, Eq. (5)
is a conventional one-dimensional SchrGodinger equa-
tion for an electron moving in the s-dependent poten-
tial Ve� (s), the latter connects the geometry and the
dynamical equation. The origin of this potential is in
the wave-like properties of the particles; Ve� is essen-
tial for not large R=�F. We underline that the e�ective
potential (Eq. (1)), in the zeroth-order approximation
in �=R, is universal for di�erent con<ning potentials
V�(q) and depends only on the curvature (see also in
Refs. [2,10,11]).
The conductance G of quantum contacts can be re-

lated to the transmission probability T (E) by Lan-
dauer’s formula [12]. At zero temperature and <nite
voltages V it takes the form

G =
G0

2

[
T
(
EF +

eV
2

)
+ T

(
EF − eV

2

)]
; (6)

where G0 =2e2=h; EF is the Fermi energy. Two terms
in this equation correspond to two electronic beams
moving in opposite directions and di�ering in bias en-
ergy. So, we are interested in the transmission proba-
bility T (E) with E being an electron energy.
We consider the curve C to consist of three ideally

connected parts: (i) linear (s¡ 0), (ii) elliptical
(0¡s¡l; l is half of the ellipse’s perimeter), and
(iii) one more linear domain (s¿ l). We con-
sider wave functions in regions (i) and (iii) to be
plane waves  1 = eik1s + re−ik1s;  3 = teik1s, where
k1 =

√
2mE=˜2 is the wave vector and t and r are the

transmission and re@ection coeOcients, the transmis-
sion probability is given by T = |t|2. The wave func-
tion  2 ≡ �, where � is the solution of Eq. (5). The
curvature can be written most simply in the elliptical v
coordinate, then the e�ective (geometrical) potential
from Eq. (1) can be written as

Ve� (v) =− ˜2
8ma2

1− e2

(1− e2 cos2 v)3
; (7)

where e is the eccentricity of an ellipse and a is the
length of its major semiaxis.
We introduce new wave function �(v) = �(s(v))=√
1− e2 cos2 v and get the fundamental system of

the solutions of Eq. (5) with the potential given by
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Eq. (7) (which is the Hill’s equation) [13]:

�± = e±i�vy(±v); (8)

where y(v) is a  -periodic function, and � is the char-
acteristic exponent.
Then we make use of the conditions of continuity of

the wave function and of its derivative, and the result
is Ref. [14]

T =

[
1 +

1
4

(
! − 1

!

)2

sin2  �

]−1

; (9)

where we denoted

! =− i

ak1
√
1− e2

(
�′+
�+

)
v=0

: (10)

Then we solve Hill’s equation Eq. (5) with poten-
tial (7) numerically in order to get the real parame-
ters � and !, which we put in Eqs. (9) and (6). And
the numerical analysis shows the strongly oscillating
dependence of the conductance on both the applied
bias eV and the ring size a for the elongated enough
ellipses (1 − e�1) [10]. For some values of eV and
a conductance becomes equal to G0, which corre-
sponds to the resonant transmission over the potential
well [14]. We also note that the amplitude of oscilla-
tions in G=G(V ) dependence is de<ned by the value
of a=�F.

In summary, we have studied the e�ect of the cur-
vature, in the zeroth-order approximation in the width

of the wire, on the conductance of an ideal elliptically
shaped quantum wire. It has been explained, in par-
ticular, that, due to the e�ect of the curvature, depen-
dence of the conductance G(V ) on the applied bias
changes drastically. So, the e�ect of the curvature can
be observed by measuring the conductance of a quan-
tum wire. On the other hand, one can change the char-
acteristics of the quantum wire, such as conductance,
setting its size, shape, or applied bias.
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