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In a previous paper [Ye. S. Avotina et al., Phys. Rev. B 74, 085411 (2006)], the effect of Fermi
surface anisotropy on the conductance of a tunnel point contact with a single point-like defect
situated in its vicinity was investigated theoretically. The oscillatory dependence of the conduc-
tance on the distance between the contact and the defect was found for a general Fermi surface
geometry. In the present paper the method developed in the cited work is applied to the calcula-
tion of the conductance of noble metal contacts. An original algorithm, which enables the com-
putation of the conductance for any parametrically specified Fermi surface, is proposed. On this
basis a pattern of the conductance oscillations, which can be observed by the method of scanning
tunneling microscopy, is obtained for different orientations of the surface for the noble metals.

© 2008 American Institute of Physics. [DOIL: 10.1063/1.2889410]

The scanning tunneling microscope (STM) method en-
ables one to observe and investigate quantum interference
phenomena concerned with electron scattering by single de-
fects. Among them are Friedel-like oscillations of the differ-
ential tunneling conductance G measured by STM around
the defect. It is known that electrons of the surface states on
the (111) surfaces of the noble metals Au, Ag, and Cu form a
quasi-two-dimensional electron gas which is confined at the
crystal surface. These electrons are scattered by surface de-
fects, e.g., impurity atoms, adatoms, or step edges, and the
STM conductance exhibits oscillatory patterns originating
from an interference between the principal wave that is di-
rectly transmitted through the contact and the partial wave
that is scattered by the contact and the defect.'™ The period
of the conductance oscillations depends on the distance ry
from the contact to the defect and the doubled Fermi wave
vector 2ky. A similar dependence can result from the scatter-
ing of bulk electron states by subsurface defects.” It was
found that the oscillatory pattern obtained by STM reflects
the anisotropy of the Fermi surface (FS), i.e., the value of the
vector ky depends on the direction in the plane of the sample
surface, and surface Fermi contours can be determined by
Fourier transformation of the STM image.gfw In particular,
the countour related to the “neck” of the bulk FS for the
Cu (111) and Au (111) surfaces was observed in Ref. 10.

In Refs. 11-13 the effect of quantum interference of
electron waves which are scattered by single defects below a
metal surface on the conductance of a tunnel point-contact
was investigated theoretically. It was shown'? that the depen-
dence of G on an applied voltage V can be used for determi-
nation of defect positions below a metal surface. In Ref. 11
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we analyzed the conductance of a tunnel point contact in the
presence of a defect located inside the bulk for metals with
arbitrary FS. The conductance of the contact in the quasiclas-
sical approximation was found. The general formula was il-
lustrated for two non-spherical shapes for the FS: an ellip-
soid and a corrugated cylinder (open surface). These
relatively simple models of FS make it possible to get ana-
Iytical expressions for the conductance and to analyze the
main manifestations of the FS anisotropy: “necks,” inflection
lines, etc. In order to compare the theoretical results with
experiment it is necessary to calculate the conductance for a
real model of the FS of a specific metal. In this paper we
present such calculations for noble metals.

We consider as a model for our system a nontransparent
interface separating two metal half-spaces, in which there is
an orifice (contact) of radius a<< Ay (\p is a characteristic
Fermi wavelength). The potential barrier in the plane of the
contact is taken to be a delta function with a large amplitude
U (the transmission coefficient of electron tunneling through
the barrier is small, 7= (Av/ U< 1; v is the Fermi veloc-
ity). At a distance o>\ from the contact a point-like de-
fect, which is described by a short range potential, is placed.
The interaction of electrons with the defect is taken into ac-
count in the framework of a perturbation theory in the inter-
action constant g. We also assume the applied bias eV is
much smaller than Fermi energy e5. The conductance of the
contact is calculated in the linear approximation in the trans-
mission coefficient 7, the constant g and the voltage V by the
method developed in Refs. 12 and 14. A general formula for
the conductance under the listed assumptions was derived in
Ref. 11:
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G= G0<1 — 7> Re A%(rg,e,)Im Ajf(ro,sp)) . (1)

r
5,8

Here G,~T is the conductance of the tunnel point contact
without the defect, g=~gm*?v;/h> is the dimensionless
electron—impurity interaction constant (m* is the effective
electron mass). The function A{*(r,&) defines the asymptote
of the wave function ¢(r) ~ TA%(r) of the electrons trans-
mitted through the contact at large distances r>> Ay from the
contact. For points in momentum space at which the Gauss-
ian curvature K(e,p,) of the FS e(p,,p,)=¢r (z is directed
along the contact axis, p, and p, are components of the mo-
mentum tangential and perpendicular to the interface) is not
equal to zero, the function A{(r,ey) is given by

(+)
' cos ¥
A (r,ep) = —,_exp{if‘ +iZ sgn( Pzz )
Zﬂ'hr\s’|K| 4 ap;
><(1+sgnK)] , (2)
pt:pfs;)

where I'(p,,r) is the phase accumulated over the path trav-
eled by the electron between the contact and the point r,

1
F(p1) = (P +pM(p)2), 3)

p§+)(s,p,) is the root of the equation s(pt,p£+))=sp corre-
sponding to a wave with a z component of the velocity v,
X(ep,p,) >0, and cos Hr)=z/r, where O is the angle
between the vector r and the z axis. The momenta p,=p§f:)
(s=1,2,...) are defined by the equation

o =0. 4)

Py p,=pi;t)
Originally, ptzpizt) are the stationary phase points of the in-
tegral wave function.'’ These projections of the momentum
correspond to velocities V(s,pf;t))llr, i.e., at large distances
from the contact the electron wave function for a certain
direction r is determined by those points on the FS for which
the electron group velocity is parallel to r.'"5 If the curva-
ture of the FS changes sign, Eq. (4) has more than one solu-
tion (s=1,2...). It may also occur that Eq. (4) does not have
any solution for given directions of the vector r, and the
electrons cannot propagate along these directions.'®

At the stationary phase points the curvature K(e,p) can

be written as

1
Ky(em)=| =3 X Aunmy , ©)
|v| p=p©)

i,k=x,y,z

where A;=ddet(m™")/dmj;'(p) is the algebraic adjunct of
the element

Pe
dp; I py

my(p) = (6)
of the inverse mass matrix m~' (Ref. 17); n; are components
of the unit vector n=r/r.

For those points at which Ky=0 the amplitude of the
electron wave function in a direction of zero Gaussian cur-
vature is larger than for other directions. This results in an
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enhanced current flow near the cone surface defined by the
condition K0=O.15 If the FS is open, there are directions
along which the electrons cannot move at all. These proper-
ties of the wave function manifest themselves in an oscilla-
tory part of the conductance (1):

1. The amplitude of oscillations is maximal if the direc-
tion from the contact to the defect corresponds to the elec-
tron velocity belonging to an inflection line.

2. There are no oscillations of G if this direction belong
to cones in which the electron motion is forbidden.

Further calculations requires information about the FS,
e(p)=¢&p. We use the parameterization of the FS of the noble
metals copper, silver, and gold from Ref. 18:

pya pAa

s(p):a{—3+cos%cos%§+cos azcos E

p:a Pxa p«a
+cos = cos — +r{—3+cos — +cos
2h 2h ( h

+ cos ’%)] (7)

pya
h

This parameterization is accurate up to 99%. The value
of the constants are r=0.0995, and ¢/ a=3.63, and a is dif-
ferent for each metal. For copper, silver, and gold a=0.361,
a=0.408 and a=0.407 nm, respectively. The Fermi energy is
equal to 7.00 eV for copper, 5.49 eV for silver, and 5.53 eV
for gold.

The FS (7) has bce symmetry. It basically looks like a
sphere with 8 “necks” positioned at the 8 vertices of a cube
(Fig. 1). The central part of the surface “belly” has a positive
curvature K>0, while the ends near the Brillouin zone
boundary (“necks”) have negative curvature. The size of the
“necks” and the curvature of the spherical areas are slightly
different for each noble metal. In the regions of “necks”
there are the inflection lines, at which the curvature K=0.

In Eq. (7) for the FS, the x, y, and z directions corre-
spond to a [100] direction, and the xy interface plane is
therefore a (100) crystal plane. To align the xy plane with a
(110) plane, the FS is rotated by /4 along the x or y axis.

STM tip

sample

Iy

FIG. 1. The main contributions to the conductance oscillations caused by a
defect at r, come from the points on the Fermi surface where the normal
vector (velocity vector) points in the same direction as the vector ry.
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For the (111) orientation, the total rotation consists of a ro-
tation of 7/4 along the z axis, followed by a rotation of
arcsin(1/ \6) along the x or y axis.

The direct way—to find solutions pl:pgj) of Eq. (4) nu-
merically for a certain position of the defect r,, and to calcu-
late AS°(rg,er) with Eq. (2)—is not the most suitable. In-
stead, the result that p,= pisst) corresponds to the direction of
the electron velocity along the direction from the contact to
the defect can be used. We start with a point p on the FS,
calculate the value of A{*(r,e;) for every point rllv
=de(p)/dp in the real space, and then repeat this for all
points on the FS. Next, it is easy to perform the summation
over all points on the FS at which rllv to obtain the conduc-
tance. This idea is shown schematically in Fig. 1.

Strictly speaking, the asymptotic expression in Eq. (1) is
correct at a<< \p, ro>>\y). However, as was shown in Ref.
11 from a comparison of the exact result for the ellipsoidal
FS with asymptotic expression (1), Eq. (1) describes the con-
ductance qualitatively correctly for a <\ and distances r of
a few \p. The other point is that at the inflection lines, which
define the classically inaccessible regions, the curvature K
=0. As was shown in Ref. 11, for such directions of the
vector r, the amplitude of the conductance oscillations in-
creases, remaining finite. Below we restrict ourselves to the
condition K# 0 and do not approach the inflection lines to a
distance for which the second term in the Eq. (1) becomes of
the order of unity.

We present the result of computations for three different
crystallographic orientations (Fig. 2). The conductance as a
function of the contact position for a defect in a noble metal
at various depths are plotted in Figs. 3-5 for the (100), (110),
and (111) lattice orientations respectively. For each of the
lattice orientations, the graphs have the symmetries of that
particular orientation of the FS. In all figures “dead” regions,
in which there are no conductance oscillations, can be seen.
These regions originate from the “necks” of the FS, and their
edges are defined by the inflection lines. In our plots the
edges are abrupt. In reality there is a smooth change from a
maximum to a zero of amplitude of the oscillations in the
“dead” regions. This change cannot be described by Eq. (1),
and a numerical solution of the Schrodinger equation with
energy—momentum relation (7) must be used. However,
while the problem becomes much more complicated, it does
not give any additional physical information. The rings of
high amplitude conductance oscillations have already been
reported in experiments on Ag and Cu (111) surfaces.’®

100

FIG. 2. The orientation of the Fermi surface relative to the contact axis for
three principal lattice orientations.
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FIG. 3. Conductance G as a function of the contact position for a defect at
the origin at depths of 5\; (a) and 7\ (b) for a (100) interface plane. The
x and y directions both correspond to (100) directions. The conductance is
plotted in gray scale, where the color of the “dead” regions corresponds to
the conductance value in absence the defect G=G,; a positive addition to G
is white and negative is black.

From Figs. 3-5 it can be seen that the interference pat-
tern of the conductance oscillations, in particular the size and
appearance of “dead” regions, depend on the depth of the
defect. These characteristics of the part of the conductance
related to the scattering by the defect contain the information
about the position of the defect. For all orientations of the
metal surface the defect position in the plane of the surface
corresponds to a center of symmetry. The depth can be found
in the following way: the orientation of the “neck” axes de-
fines the axes of the cones in which there are no scattered
electrons. The vertices of these cones coincide with the de-
fect. If the contact is situated at a point which belongs to a
sectional plane of the cones by a surface plane, the conduc-
tance of the contact is equal to its value without the defect
(we called these “dead” regions). A rough estimate of the
defect depth can be obtained if we use the approximation of
a cone of revolution with an opening angle 2. For example,
in Fig. 5 the radius R of the central “dead” region is defined
by the equality R=z, cot y (y= 30°).° Using a fitting of ex-
perimental results with theoretical calculations in the frame-
work our method enables one to find the depth of the defect
below metal surface more exactly.

Thus, we have demonstrated the possibility of calcula-
tions of anisotropic conductance oscillations caused by elec-
tron scattering by a defect in noble metals. The developed
algorithm of calculations can be used for any parametrically
specified FS. We have shown that the analysis of interference
patterns makes it possible to find the position of a defect
below a metal surface.

This work was partly supported by Fundamental Re-
search State Fund of Ukraine (Project F 25.2/122).
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FIG. 4. Same as Fig. 3 but for a (110) interface plane. The x and y directions
correspond to the [001] and [110] directions, respectively.
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FIG. 5. Same as Fig. 3 but for a (111) interface plane. The x and y directions
correspond to the [112] and [110] directions, respectively.
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