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Influence of a single defect on the conductance of a tunnel point contact between
a normal metal and a superconductor
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We have investigated theoretically the conductance of a normal-superconductor point contact in
the tunnel limit and analyzed the quantum interference effects originating from the scattering of
quasi-particles by point-like defects. Analytical expressions for the oscillatory dependence of the
conductance on the position of the defect are obtained for a defect situated either in the normal
metal or in the superconductor. It is found that the amplitude of oscillations increases signifi-
cantly when the applied bias approaches the gap energy of the superconductor. The spatial distri-
bution of the order parameter near the surface in the presence of a defect is also obtained.
© 2008 American Institute of Physics. �DOI: 10.1063/1.3009591�
I. INTRODUCTION

Electron scattering by single surface1 and subsurface2

defects results in an oscillatory dependence of the scanning
tunneling microscope �STM� conductance G on the distance
r0 between the contact and the defect. These oscillations
originate from the interference of electron waves, which are
scattered by the defect and reflected back by the contact.
They have the same period �G�sin�2kFr0+��, kF is the
Fermi wave vector� as the Friedel oscillations3 of the local
electron density of states in the vicinity of a scatterer. For
subsurface point-like defects, the oscillatory dependence of
the conductance in a STM-like geometry has been investi-
gated theoretically in Refs. 4–8.

Although defects below a metal surface can be “visible”
in STM data for up to ten interatomic distances,9,10 the am-
plitude of the quantum oscillations in the conductance be-
comes very small with increasing defect depth. An effective
way to enhance the STM sensitivity to such oscillation ef-
fects is to use a superconducting tip.11 In Ref. 12, using a
low-temperature STM with normal metal tungsten tips and
superconducting niobium tips, the formation of electron
standing waves near surface defects and step edges on the Au
�111� surface has been observed. It was demonstrated that the
amplitude of conductance oscillations is significantly en-
hanced when a superconducting tip is used and the applied
bias �eV� is close to the gap energy �0 of the superconductor.

The STM investigation of various defects in supercon-
ductors is of interest in itself. For example, in Ref. 13 a
bound state near a magnetic Mn adatom on the surface of
superconducting Nb was observed by STM. The effect of
single Zn defects on the superconductivity in high-Tc super-
conductors was investigated in Ref. 14, and the manifesta-
tion of d-wave symmetry of the order parameter was ob-
served in a quasibound state near the defect.
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For the reasons listed there is interest in theoretical in-
vestigations of the conductance of normal metal-
superconductor �NS� tunnel contacts of small lateral size, in
the vicinity of which a single defect is placed. The authors of
Ref. 15 considered the conductance of an NS contact of finite
size at low temperatures and for voltages �eV���0 using the
tunneling Hamiltonian approximation. They found that when
the radius a of the contact is smaller than the Fermi wave-
length �F, the conductance of an NS point contact becomes
Gns= �h /2e2�Gnn

2 �a8, where Gnn is the conductance of the
contact in the normal state.15 This dependence is fundamen-
tally different from the result of a quasiclassical theory,16

valid for a��F.
The conductivity of large �a��F� ballistic NS contacts

in the presence of a “planar defect” has been investigated
theoretically in several papers.21–24 In those papers a planar
NS structure and a �-function potential barrier, playing the
role of the defect, have been considered, from which “geo-
metrical” resonances resulted due to combined Andreev and
normal reflections.

In order to describe the effect of isolated point-like de-
fects in a superconductor on the STM conductance one usu-
ally calculates the local density of states n�r� �for a review,
see Ref. 25�, where it is assumed that the conductance of the
small tunnel contact is proportional to the local density of
electron states. While for subsurface defects this assumption
remains qualitatively valid, it does not permit a correct de-
scription of the details of the conductance oscillations be-
cause the bulk electron density of states around the defect is
modified by reflection from the interface, r��, and in the
limit of zero tunneling probability we have n�r���=0. In
this case, the problem of electron transmission through the
small NS tunnel junction in the presence of the defect should
be considered.

In this paper we present the results of a theoretical in-
vestigation of the conductance of an NS point contact �with
© 2008 American Institute of Physics
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a��F� in the tunneling limit, and we analyze the quantum
interference effects originating from the scattering of quasi-
particles by a point-like defect. Analytical expressions are
obtained for the dependence of the conductance on the posi-
tion of the defect and on the applied voltage, for a defect
situated in the normal metal or in the superconductor.

II. MODEL AND BASIC EQUATIONS

Our model is presented in Fig. 1. The normal and super-
conducting half-spaces are separated by an infinitely thin di-
electric interface, which has an orifice of radius a. The po-
tential barrier in the plane of interface z=0 is taken to be a �
function, U�r�=U0f�����z�, where � is the value of the ra-
dius vector � in the plane z=0. The function f���→� at all
points of the plane except in the contact ���a�, where
f���=1. At the point r0 a nonmagnetic defect described by a
spherically symmetric potential D��r−r0�� is placed. A volt-
age V is applied between the two sides of the contact. We
assume that the transmission probability �t� of electrons
through the barrier in the orifice is small ��t��	2kF /m*U0

�1, m* is the effective electron mass�. In that case the ap-
plied voltage drops entirely over the barrier, and the electric
potential can be described by a step function, V�z�=V
�−z�
with V a constant. Based on the same reasoning we use a step
function for the superconducting order parameter ��r�
=��r�
�z�. We consider the case of low temperatures and in
the calculations take T=0. At zero temperature a tunnel cur-
rent flows through the contact for �eV���. The applied bias
is assumed to be small on the scale of the Debye frequency
�D and the Fermi energy 
F, �eV��	�D�
F.

For definiteness we consider electron tunneling from the
normal half-space �z�0� to the superconducting half-space
�z�0�, i.e., eV�0. In order to evaluate the total current
through the contact, I�V�, and the differential conductance
G�V�=dI�V� /dV, we should find the current density jk�r� of
quasiparticles with momentum k at z�0, formed by elec-
trons transmitted through the contact. The current density
jk�r� can be expressed in terms of the coefficients uk�r� and
v �r� of the canonical Bogoliubov transformation17,18

FIG. 1. Model of the contact. The point-like defect is situated in the normal
half-space. The electron trajectories in the normal metal and the trajectories
of “electron-like” and “hole-like” excitations in the superconductor are
shown schematically.
k

jk�r� =
e	

m*
Im�uk�r� � uk

*�r�fF�Ek�

− vk�r� � vk
*�r�fF�− Ek�� , �1�

where fF�E� is the Fermi function, which at T=0 is simply
the unit step function, fF�E�=
�E�. The functions uk�r� and
vk�r� satisfy to the Bogoliubov-de Gennes �BdG� equations19

�−
	2

2m*
�2 − 
F + D��r − r0��	uk�r� + ��r�vk�r�

= Ekuk�r� ,

− �−
	2

2m*
�2 − 
F + D��r − r0��	vk�r� + �*�r�uk�r�

= Ekvk�r� . �2�

Equations �2� may be interpreted as wave equations for a
two-component “wave function,”

�̂k = 
uk

vk
� , �3�

of quasiparticles with energy Ek. The conditions connecting

the vector �̂k in the normal metal ��̂nk� and in the supercon-

ductor ��̂sk� at the interface z=0 are

�̂nk��,0� = �̂sk��,0� = �̂k��,0� , �4�

�

�z
�̂sk��,0� −

�

�z
�̂nk��,0� =

2m*

	2
U0f����̂k��,0� . �5�

The order parameter in the superconductor should be
determined from the self-consistency condition

��r� = � �
k,Ek�	�D

uk�r�vk
*�r��1 − 2fF�Ek�� , �6�

��z → + �� → �0, �7�

where the constant �0 can be chosen real; � is the pair po-
tential constant. It can be easily shown17 that Eq. �1� com-
bined with the self-consistency condition �6� automatically
satisfies the continuity equation

div �
k

jk�r� = 0. �8�

The current-voltage characteristic I�V� of the contact in
the presence of a defect can be found by means of integration
of the current density jk�r� over the momentum k �within the
energy interval �0�Ek�eV� and over a surface overlapping
the contact in the superconducting half-space. For this sur-
face we choose a half-sphere of large radius r�r0 ,�0 ��0 is
the coherence length of the superconductor� centered at the
contact r=0. On this half-sphere we assume ��r�=�0 and
hence Ek=
�k

2 +�0
2, where �k=	2k2 /2m*−
F is the kinetic

energy measured from the Fermi level. The conductance
G�V� of the contact �at T=0� is given by
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G�V� = 4�re2N�0� � d�

4�

�z��

−�

�

d�k� d�k

4�

�kz�

��rjk�r����Ek − eV� , �9�

where d� and d�k are elements of solid angle in the real and
momentum spaces, respectively, and N�0� is the density of
states for one direction of spin.

III. SOLUTION OF THE BOGOLIUBOV-DE GENNES
EQUATION

Generally, a self-consistent solution of Eqs. �2� can be
found only numerically. Such solution must fulfill the condi-
tion of conservation of the total current I through any surface
overlapping the contact, in spite of the spatial dependence of
the order parameter. In order to simplify the task we will
exploit the condition of a small barrier transparency and find
an analytical solution of Eqs. �2� using the approximation of
a constant order parameter ��r�=�0
�z�. By means of this
solution the coordinate dependence of ��r� can be found �see
Appendix�.

In this Section we generalize the method developed in
the papers.4,20 We search the solutions of Eqs. �2� as a series
expansion in the small transmission probability �t��1 /U0,

�̂k�r� = �̂k0�r� + �̂k1�r� + . . . , �10�

where �̂k0�r� satisfies the zero boundary condition at z=0,

and �̂k1�r��1 /U0. For calculation of the current in the lead-
ing approximation in the transmission coefficient �I�1 /U0

2�
it is enough to find the first correction �̂k1�r�. Substituting
the expansion �10� into the boundary conditions �4� and �5�,
we find that the function �̂k1�r� satisfies the condition of
continuity at z=0, and its value at z= +0 �in the supercon-
ducting half-space� is given by the relation

usk1��,0� =
	2

2m*U0f���
�

�z
unk0��,0�; vsk1��,0� = 0.

�11�

The bondary condition does not contain Andreev reflections,
which appear in the next approximation in 1 /U0 �Ref. 30�.
Thus we shall not consider Andreev resonances, which were
analyzed in Refs. 21–24 for a one-dimensional model.

The quasiparticle scattering by the defect will be taken
into account by perturbation theory in the strength of the
interaction with the defect. First, we find the solution of Eqs.
�2� for the contact without the defect.

Let us consider an electron with energy Ek��0, which
moves towards the interface from the normal metal. When
D�r�=0 �the defect is absent� and 1 /U0=0 �the interface is
impenetrable for electrons�, in the normal half-space we have

uuk0�r� = ei���eikzz − e−ikzz�, vnk0�r� = 0, �12�

where k= �� ,kz�, kz=k cos���, � is the angle between the
vector k and the z axis, and � is the component of the wave
vector parallel to the interface.

Making use of the Fourier transform of the �̂k�r� com-
ponents with respect to the coordinate � in the plane parallel
to the interface,
�̂k1��,z� = �
−�

�

d���̂k1���,z�ei��·�. �13�

and finding �̂k1�� ,0� from the simplified boundary condi-
tion �11�, we find the solution of Eqs. �2� in the supercon-
ducting half-space:

uk1�r� = t�kz�
1

u0
2 − v0

2 �u0
2�0

�+��r� + v0
2�0

�−��r�� , �14�

vk1�r� = t�kz�
u0v0

u0
2 − v0

2 ��0
�+��r� + �0

�−��r�� , �15�

where

�0
����r� = �

1

�2��2�
−�

�

d��ei��·��
−�

�

d��
ei��−���·��

f���

�e�ikz
���z, �16�

kz
��� =


2m*

	
�
F −

	2�2

2m*
� 
Ek

2 − �0
2	1/2

, �17�

u0
2 = 1 − v0

2 =
1

2

1 +

�k

Ek
� , �18�

and t�kz�=	2kz / im*U0 is the amplitude of the electron wave
after tunneling through a homogeneous barrier with a large
U0. The functions uk1�r� and vk1�r� contain the sum of two
solutions �0

����r� of equations �2�, which correspond to
“electron-like” �kz

�+��kzF=1 /	
2m*�
F−	2�2 /2m*�� and
“hole-like” �kz

�−��kzF� quasiparticles having a positive z
component of the group velocity vg=dEk /	dk.

For a small radius of the contact �in the limit a→0� the
function �16� takes the form8

�0
����r,k� =

�k���a�2 cos �

2
h1

�1��k���r� , �19�

k��Ek� =

2m*

	
�
F � 
Ek

2 − �0
2�1/2

. �20�

Here h1
�1��x� is the spherical Hankel function of the first kind.

In the presence of the defect the functions uk1�r� and
vk1�r� can be found in first approximation in the electron-
impurity interaction potential D��r−r0�� by means of Eqs.
�2�.

1. If the defect is situated in the normal half-space the
functions uk1�r� and vk1�r� in the superconductor have the
same form as Eqs. �14� and �15� in which the amplitude t�kz�
must be replaced by the value

t̃�kz� = t�kz� +
4�2m*k

	2 gt�k�unk0�r0�h1
�1��kr0� , �21�

where g is the electron-defect interaction constant:

g =� drD��r − r0�� , �22�

In order to obtain Eq. �21� we assume that the characteristic
radius of the scattering potential is much smaller than the
Fermi wavelength � �point defect�. This condition permits
F
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taking the functions uk1�r� and h1
�1��kr� outside the integral at

the point r=r0. The variations in the amplitudes of the “wave
functions” uk1�r� and vk1�r� result from the fact that the
wave incident on the contact is a superposition of a plane
wave and a spherical wave that comes from the scattering by
the defect.
0 F 0 F
2. If the defect is situated inside the superconductor, the
additions �uk1�r� and �vk1�r� to the functions �14� and �15�
due to the defect scattering take the form
�23�

�24�
It is known that the order parameter ��r� displays
Friedel-like oscillations near a defect26,27 or a surface.28,29

The current I through the tunnel contact is defined by the
average value of ��r�, which coincides with �0. In the Ap-
pendix we analyze the spatial dependence of ��r� near the
surface of the superconductor, in the vicinity of which a non-
magnetic defect is placed �at a distance less than the coher-
ence length �0�. Figure 2 illustrates the results of these cal-
culations. An inhomogeneous spatial distribution of the order
parameter is visible. We removed from the plot the region of
radius �F �black circle� near the defect where Eq. �A9� is not
valid.

IV. CONDUCTANCE OF THE CONTACT

By means of the solutions of the BdG equations obtained
in the previous Section, we calculated the conductance G of

FIG. 2. Real-space image of ��r� /�0 near the surface of the superconductor
in the plane passing through the defect; the image was obtained by using Eq.
�A9� with the parameters z =10� , � =104� , and g̃=4�.
the NS tunnel point contact. In the linear approximation in
the electron-defect interaction constant g the conductance G
can be presented as the sum of two terms,

G�V,r0� = G0ns�V� + �Gosc�V,r0�, eV � �0. �25�

The first term G0ns�V� in Eq. �25� is the conductance of the
NS tunnel point contact in the absence of the defect,

G0ns�V� = G0nn
eV


�eV�2 − �0
2

; G0nn =
2e2a4m*
F

3

9�	3U0
2 . �26�

where G0nn is the conductance of a contact between normal
metals, which is multiplied by the normalized density of
states of the superconductor at E=eV in Eq. �26�. The second
term describes the oscillatory dependence of the conductance
on the distance between the contact and the defect.

If the defect is situated in the normal metal half-space,
�Gosc�V ,r0� is given by

�Gosc�V,r0� = − G0ns�V�
12

�
g̃
�F

r0
�2

��kFz0�2j1�kFr0�y1�kFr0� , �27�

where

g̃ =
2�m*kF

	2 g �28�

is the dimensionless electron-defect interaction constant,
jl�x� and yl�x� are the spherical Bessel functions of the first
and second kinds,31 and �F=	 /
2m*
F. In Fig. 3 the depen-
dence of �Gosc�V ,r0� on the distance �0 is shown for two
values of the bias eV, one of which is very close to the gap
energy �eV /� =1.1� and the other is eV=2� . The figure
0 0
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illustrates the increasing amplitude of the conductance oscil-
lations near eV��0.

For the defect in the superconducting half-space the os-
cillatory part of the conductance consists of two terms:

�Gosc�V,r0� = − G0ns�V�
12

�
g̃
 �

r0
�2

�kFz0�2

� �
�=�

���eV�j1�k�r0�y1�k�r0� , �29�

where

�� = �u0

v0
�, k� =


2m*

	
�
F � 
�eV�2 − �0

2�1/2. �30�

In Eqs. �26�–�29� we have neglected all small terms of order
�0 /
F and eV /
F. Nevertheless we have kept the second
term in square brackets in the formula for k� �see Eq. �30��
because for a relatively large r0, �
�eV�2−�0

2 /
F� �r0 /�F�
�1, the phase shift of the oscillations may be important. In
Fig. 4 we show the difference between the dependences of

FIG. 3. Dependence of the normalized oscillatory part of the conductance
�Gosc /G0ns, Eq. �27�, on the distance �0 between the defect and the contact
axis for two values of the applied voltage. The defect is situated in the
normal metal at a depth z0=5�F. The dimensionless interaction constant is
taken as g̃=0.01.

FIG. 4. The dependence of the oscillatory parts of the conductance
�Gosc /G0 �29� on the distance �0 between the defect and contact axis for
contact between normal metals ��Gosc

�nm� /G0mn� and an NS contact
��Gosc

�ns� /G0mn�. The defect is situated in the right metal �the superconductor�
at a depth of 10� ; eV /� =5; g̃=0.01.
F 0
the normalized oscillatory parts of the conductance
�Gosc /G0ns on the distance �0 for a contact between normal
metals ��0=0� and for an NS contact. An observable shift of
the conductance oscillations results from the voltage depen-
dence of the wave vectors k� �30�.

V. CONCLUSION

Thus we have analyzed the conductance G of an NS
tunnel point contact with radius a smaller han the Fermi
wavelength �F, at low temperatures �T=0� and for applied
bias eV larger than the gap energy �0 of the superconductor.
The effect of quantum interference of quasiparticles scattered
by a single defect situated in the vicinity of the contact has
been taken into account. We have shown that in leading ap-
proximation in the parameters eV /
F�1, �0 /
F�1 the con-
ductance of a small NS contact is G0ns=G0nnNs�eV�, Eq.
�26�, i.e., the product of the conductance of the same contact
between normal metals, G0nn�a4, and the normalized den-
sity of states of the superconductor Ns�eV�, similar to the
case of a planar tunnel contact. Although such result is not
unexpected and has been confirmed by experiment,11 for a
contact of radius a��F it was not obvious, and it is obtained
in this paper for the first time.

If the defect is situated in the normal metal, the conduc-
tance displays oscillations with a period defined by the Fermi
wave vector, �Gosc�V ,r0��sin 2kFr0 at kFr0�1 �Eq. �27�,
Fig. 3�, as in the case of a contact between normal metals.4 In
this case the defect plays the role of an additional “barrier”
between the normal and superconducting metals and results
in oscillations of the transmission coefficient. The underlying
principle here is similar to resonance transmission through a
two-barrier system.

In the superconductor the electron wave incident on the
contact from the normal metal is transformed into a superpo-
sition of “electron-like” and “hole-like” quasiparticles. In the
case when the defect is located in the superconducting half-
space, quantum interference takes place between the partial
waves transmitted and scattered by the defect, for both types
of quasiparticles independently �Eq. �29��. Although the dif-
ference between the wave vectors k����eV� of “electrons” and
“holes” is small, the shift �k�+�−k�−��r0 between the two os-
cillations should be observable �Fig. 4�.

APPENDIX: OSCILLATIONS OF THE ORDER
PARAMETER NEAR THE SURFACE IN THE

PRESENCE OF A DEFECT
When calculating the conductance to first order in the

transmission probability we should know the order parameter
��r� in the limit of a nontransparent interface �surface�, U0

→�. According to Ref. 32,

�*�r� = �T �
n=−�

�

F�
+�r,r�
��D − �� , �A1�

where �=�T�2n+1� are the Matsubara frequencies. The
Fourier components G��r ,r�� and F�

+�r ,r�� of the Green
functions satisfy the Gor’kov equations, which in the ab-
sence of a defect potential have the form


i� −
	2�2

2m*
− 
F�G��r,r�� + ��r�F�

+�r,r�� = ��r − r�� ,
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i� +
	2�2

2m*
+ 
F�F�

+�r,r�� + �*�r�G��r,r�� = 0. �A2�

For a homogeneous superconductor ��r�=�0=const, and the
solutions G��r ,r��=G�

�0��r−r�� and F�
+�r ,r��=F�

+�0��r−r��
of Eqs. �A2� can be found to be

G�
�0��r − r�� = −

�N�0�
kFr �cos kFr +

i�


�0
2 + �2

sin kFr	
� exp
−

r

vF	

�0

2 + �2� . �A3�

F�
+�0��r − r�� =

�N�0��0
*


�0
2 + �2

sin kFr

kFr
exp
−

r

vF	

�0

2 + �2� ,

�A4�

where r= �r−r��, vF is the Fermi velocity, and ��
F. For the
semi-infinite superconducting half-space any component of
the matrix Green function

Ĝ�
�s��r,r�� = 
G�

�s��r,r�� F�
�s��r,r��

F�
+�s��r,r�� − G�

�s��r�,r�
� �A5�

can be written as

Ĝ�
�s��r,r�� = Ĝ�

�0��r − r�� − Ĝ�
�0��r − r̃�� , �A6�

where r̃�= �x� ,y� ,−z��. Equation �A6� is exact and it pro-
vides the zero value of ��r� at the surface z=0. The fact that
the order parameter vanishes at the nontransparent interface
can by seen from Eq. �6�.

The Green function for the superconducting half-space
in the presence of the point defect can be found from the
Dyson equation

Ĝ��r,r�� = Ĝ�
�s��r,r��

+� dr�Ĝ�
�s��r,r��D��r� − r0���3Ĝ��r�,r�� ,

�A7�

where �3 is a Pauli matrix. Making use of the small radius of
the defect potential in the first-order approximation in the
interaction constant g �22�, we obtain

F�
+�r,r� = F�

+�s��r,r�� + g�F�
+�s��r,r0�G�

�s��r0,r�� + G−�
�s�

��r0,r�F�
+�s��r0,r��� . �A8�

As a first step for the self-consistent solution, the func-
tions G�

�0��r−r�� �A3� and F�
+�0��r−r�� �A4� may be used. At

T→0 the summation over Matsubara frequencies in Eq. �A1�
can be replaced by an integration. Substituting Eqs. �A3� and
�A4� into Eq. �A6� and using Eq. �A8�, we find the spatial
distribution of the order parameter �A1� in the next �after
�=� =const� approximation:
0
�A9�

Here

K�a;b� = �
0

arcsinh b

dte−a cosh t, �A10�

s0= �r−r0�; s̃0= �r− r̃0�, and �0=	vF /��0 is the coherence
length. At ab�1, K�a ;b��K0�a�, the modified Bessel
function.31 Equation �A9� is valid at distances from the de-
fect larger than the characteristic radius of the potential
D��r−r0��. The correction to the constant value of the order
parameter �0 decreases at small distances r��0 from the
surface or the defect according to a power law, and vanishes
exponentially ��e−2�r/�0� at larger distances r��0. A gray-
scale plot of ��r� obtained by means of Eq. �A9� is presented
in Fig. 2. In the plot we used an unrealistically large value of
the constant g̃ in order to show the influence on the order
parameter of the defect and the surface in the same plot. For
realistic values g̃�0.01 the spatial oscillations of ��r� re-
sulting from the scattering by the defect have a much smaller
amplitude than the second term in the braces of Eq. �A9�.
The matching procedure can be continued when we put ��r�
of Eq. �A9� into Gor’kov’s equations �Eqs. �A2�� or the BdG
equations �2�. Unfortunately, starting with this step, the so-
lutions may be obtained only numerically.

One of us �Yu.K� would like to acknowledge helpful
discussions with A. N. Omelyanchouk, E. V. Bezuglyi, and
S. V. Kuplevakhsky. This research was supported in part by
the program “Nanosystems, nanomaterials, and nanotechnol-
ogy” of the National Academy of Sciences of Ukraine and
Fundamental Research State Fund of Ukraine �Project F
25.2/122�.

1M. F. Crommie, C. P. Lutz, and D. M. Eigler, Science 262, 218 �1993�.
2M. Schmid, W. Hebenstreit, P. Varga, and S. Crampin, Phys. Rev. Lett. 76,
2298 �1996�.

3J. Friedel, Nuovo Cimento 7, 287 �1958�.
4Ye. S. Avotina, Yu. A. Kolesnichenko, A. N. Omelyanchouk, A. F. Otte,
and J. M. Ruitenbeek, Phys. Rev. B 71, 115430 �2005�.

5Ye. S. Avotina, Yu. A. Kolesnichenko, A. F. Otte, and J. M. Ruitenbeek,
Phys. Rev. B 74, 085411 �2006�.

6Ye. S. Avotina, Yu. A. Kolesnichenko, S. B. Roobol, and J. M. Ruiten-
beek, Fiz. Nizk. Temp. 34, 268 �2008� �Low Temp. Phys. 34, 207
�2008��.

7Ye. S. Avotina, Yu. A. Kolesnichenko, A. F. Otte, and J. M. Ruitenbeek,
Phys. Rev. B 75, 125411 �2007�.

8Ye. S. Avotina, Yu. A. Kolesnichenko, and J. M. Ruitenbeek, J. Phys.:
Condens. Matter 20, 115208 �2008�.

9N. Quaas, M. Wenderoth, A. Weismann, R. G. Ulbrich, and K. Schönham-
mer, Phys. Rev. B 69, 201103�R� �2004�.

10N. Quaas, PhD Thesis, Göttingen University �2003�.
11S. H. Pan, E. W. Hudson, and J. C. Davis, Appl. Phys. Lett. 73, 2992

�1998�.



942 Low Temp. Phys. 34 �11�, November 2008 Avotina et al.
12Mingxiang Xu, Zhanwen Xiao, Masayo Kitahara, and Daisuke Fujita, Jpn.
J. Appl. Phys. 43, 4687 �2004�.

13Ali Yazdani, B. A. Jones, C. P. Lutz, M. F. Crommie, and D. M. Eigler,
Science 275, 1767 �1997�.

14S. H. Pan, E. W. Hudson, K. M. Lang, H. Eisaki, S. Uchida, and J. C.
Davis, Nature �London� 403, 746 �1999�.

15E. Prada and F. Sols, Eur. Phys. J. B 40, 379 �2004�.
16A. V. Zaitsev, Zh. Eksp. Teor. Fiz. 86, 1742 �1984� �Sov. Phys. JETP 59,

1015 �1984��.
17A. V. Svidzinskii, Spatially Inhomogeneous Problems in the Theory of

Superconductivity �in Russian�, Nauka, Moscow �1982�.
18M. Hard, S. Datta, and P. F. Bagwell, Phys. Rev. B 54, 6557 �1996�.
19P. G. de Gennes, Superconductivity of Metals and Alloys, Benjamin, New

York �1966�.
20I. O. Kulik, Yu. N. Mitsai, and A. N. Omelyanchouk, Zh. Eksp. Teor. Fiz.

63, 1051 �1974�.
21A. Hahn, Phys. Rev. B 31, 2816 �1985�.
22
P. C. van Son and H. van Kempen, Phys. Rev. B 37, 5015 �1988�.
23R. A. Riedel and P. F. Bagwell, Phys. Rev. B 48, 15198 �1993�.
24S. Chaudhuri and P. F. Bagwell, Phys. Rev. B 51, 16936 �1995�.
25A. V. Balatsky, I. Vekhter, and Jian-Xin Zhu, Rev. Mod. Phys. 78, 373

�2006�.
26A. L. Fetter, Phys. Rev. 140, A1921 �1965�.
27M. E. Flatté and J. M. Bayers, Phys. Rev. B 56, 11213 �1997�.
28R. G. Boyd, Phys. Rev. 167, 407 �1968�.
29K. Tanaka and F. Marsiglio, Physica C 284, 356 �2003�.
30G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B 25, 4515

�1982�.
31M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions,

National Bureau of Standards �1964�.
32A. A. Abrikosov, L. P. Gor’kov, and I. Ye. Dzyaloshinskii, Quantum Field

Theoretical Methods in Statistical Physics, Pergamon, New York �1965�.

This article was published in English in the original Russian journal. Repro-
duced here with stylistic changes by AIP.




