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A study is made of the generation of electromagnetic oscillations by a sound wave in a weak
ferromagnet with a higher-order symmetry axis. The electric fields are calculated for different
states with different orientations of the antiferromagnetic vector. It is shown that the magneto-
elastic interaction leads to an additional phase difference between the electromagnetic and sound
waves. © 2006 American Institute of Physics. �DOI: 10.1063/1.2178472�
The interconversion of electromagnetic and sound
waves in substances possessing magnetic ordering is an in-
dependent research topic in solid state physics. Magnetic ma-
terials are characterized by specific mechanisms of excita-
tion, interconversion, and interaction of sound, spin, and
electromagnetic waves. Many papers have been written on
the subject �see, e.g., Refs. 1–5 and the references cited
therein�. The main focus of attention has been on the study of
the features of the spectrum of magnetoacoustic and spin
waves and also the question of electromagnetic generation of
sound, while the mechanisms of excitation of electromag-
netic waves by a sound wave have been the subject of a
limited number of papers.6,7 Recently experiments have been
done to study the kinetic phenomena in rare-earth �R� nickel
borocarbides �RNi2B2C�. These substances are a new and
extremely interesting class of objects.8–11 These objects are
attracting attention because of a number of peculiar proper-
ties. While having the same tetragonal body-centered crystal
structure and electrical conductivity comparable to that of
ordinary metals, borocarbides can exhibit a transition to the
superconducting state �R=Y,Lu�, possess heavy-fermion
properties �R=Yb�, and demonstrate coexistence of super-
conductivity and magnetism �R=Tm,Er,Ho,Dy� or only
magnetic ordering �R=Tb,Gd�. The magnetic properties are
due to localization of the 4f electrons of the rare-earth
elements. Compounds containing Tb and Er exhibit weak
ferromagnetism. The small magnetic moment arises because
of a deviation of the antiferromagnetic ordering of the
magnetic moments from a strictly antiparallel orientation. In
this paper we calculate the electromagnetic field amplitude
and the phase difference of the electromagnetic and sound
waves in an antiferromagnet with a weak ferromagnetic
moment in various orientational states as functions of the
saturation magnetization, anisotropic energy, magnetostric-
tion constants, and other parameters containing magnetic
materials.

The energy density of an antiferromagnet, which is a
sum of magnetic wm, magnetoelastic wme, and elastic
we energies, is conveniently written in terms of the relative
antiferromagnetic and magnetization vectors:
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l =
M1 − M2

2M0
, m =

M1 + M2

2M0
,

where m� l, and M1 and M2 are the sublattice magnetiza-
tions, and the electrons responsible for the magnetic proper-
ties are assumed to be localized on atoms of the lattice. As-
suming that the usual condition for low temperatures, M1

2

=M2
2=M0

2, it is easy to show that the vectors l and m satisfy
the following relations: l2+m2=1, l ·m=0.

For tetragonal crystals with a high-order symmetry axis
OZ the magnetic energy density divided by 4M0

2 can be writ-
ten in the form
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�xi
·
�m

�xi
− h · m . �1�

Here the first term is the exchange energy, the second
and third terms are the uniaxial anisotropy energy, and the
fourth term is the Dzyaloshinskii interaction, which is re-
sponsible for the weak ferromagnetism. The last three terms
determine the exchange energy due to the nonuniformity of
the magnetic moment, and the Zeeman energy of the mag-
netic moment in a magnetic field H is, accordingly, h
�H /2M0. Expressions for wme and we in the approximation
of isotropy of the magnetostrictive and elastic properties in
the basal plane can be written in the form3

wme = b11�uxxlx
2 + uyyly

2� + b12�uxxly
2 + uyylx

2� + + b33uzzlz
2

+ 2b44�uyzly + uxzlx�lz + 2b66uxylxly , �2�

we = c11�uxx
2 + uyy

2 � + c12uxxuyy + c13�uxx + uyy�uzz

+ c33uzz
2 + 2c44�uyz

2 + uxz
2 � + 2c66uxy

2 . �3�

Here uij is the strain tensor, bij and cij are the nonzero com-
ponents of the fourth-rank tensor of magnetoelastic and elas-
tic constants, respectively, divided by 4M0

2. These constants
are related by the expressions b66=b11−b12 and c66=c11

−c12. Formula �3� describes the change of the elastic energy
due to a change of the direction of the vector l.

Assuming that the sublattice magnetizations satisfy the
Landau–Lifshitz equations with a relaxation term of the
© 2006 American Institute of Physics
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Gilbert form, we easily find the following equations of mo-
tion for the magnetization and antiferromagnetic vectors:

dm�r,t�
dt

= − �0�m�r,t� � Hm + l�r,t� � Hl� + Rm, �4�

dl�r,t�
dt

= − �0�m�r,t� � Hl + l�r,t� � Hm� + Rl, �5�

where �0=g �e �M0 /mec, g is the gyromagnetic ratio, e is the
charge of the electron, me is the mass of the electron, c is the
speed of light,

Rm = ��m�r,t� �
d

dt
m�r,t� + l�r,t� �

d

dt
l�r,t�� ,

Rl = ��m�r,t� �
d

dt
l�r,t� + l�r,t� �

d

dt
m�r,t��

are the relaxation terms, �=1/�0�, � is the effective relax-
ation time of the sublattice magnetizations with respect to
direction, Hm�r , t�, H1�r , t� are the effective magnetic fields,
and

Hm�r,t� = −
�w

�m
+

�

�xi

�w

���m/�xi�
,

Hl�r,t� = −
�w

�l
+

�

�xi

�w

���l/�xi�
. �6�

For finding the electric fields E excited by an external sound
field, Eqs. �4� and �5� must be supplemented by Maxwell’s
equations

rotH =
4�

c
j, rotE = −

1

c

�B

�t
, div B = 0, div j = 0. �7�

In the case when the mean free path of the charge carriers is
much less than the skin depth, the current density can be
written in the local limit:

j = �	E +
1

c
�u̇ � B� −

me

e
ü
 � �Ẽ , �8�

where � is the electrical conductivity, B=H+8�M0m is the
magnetic induction, and u is the lattice displacement vector.
The force acting on the charges in the field of the sound

wave is determined by the effective electric field Ẽ, which
includes the a Lorentzian term and an inertial term. The elas-
tic and acoustic properties of the antiferromagnet are deter-
mined by the constants cij, and the coupling of the spin sub-
system with the lattice is determined by the constants bij. The
constants cij are usually several orders of magnitude greater
than the constants bij, since coupled magnetoacoustic waves
exist only when certain resonance conditions are met. In the
remaining cases the spin waves and elastic waves can be
treated separately. We shall not investigate further the fea-
tures of the spectrum of acoustic and spin waves, assuming
that the sound field is external and the frequency is specified.
We note that under the condition max �bij �B2 /8�	s2�1,
which holds for magnetic fields up to the order of 105 Oe,
the frequency of the sound wave can be assumed equal to
�=sk �here s is the sound velocity, 	 is the density of the
magnet, and k is the wave vector�.
Let us first consider the case when b+df
2 /A
0 and the

external magnetic field H0 is directed along the symmetry
axis OZ. We restrict consideration to the field region H0

�AM0, in which m� l. Investigation of the minimum of
expression �1� together with the equations of motion �4�, �5�
in the equilibrium state shows that the following states of the
antiferromagnet, differentiating in the orientation of the vec-
tor l, are possible:

1� h0�H0 /2M0
h1=��A+a� �b+df
2 /A� — the antifer-

romagnet is found in a state with a compensated magnetic
moment m=0, and the vector l is directed along the OZ axis;

2� h0�h1 — the vector m is perpendicular to the OZ
axis, and the longitudinal and transverse magnetization are
equal to

mz =
h0

A + a
, m� = −

df�ez � l�
A

,

where ez is the unit vector along the OZ axis.
Taking into account the smallness of the anisotropy con-

stants and the relaxation constant in comparison with the
exchange interaction constant A and neglecting terms of or-
der m2, we can write Eqs. �4�, �5� approximately as

l̇ = �0l � �Am − h + df�ez � l�� , �9�

ṁ = �0�l � 	blzez + df�m � ez� − �
�2l

�xi
+ Fl


+ m � �df�ez � l� − h�� + ��l � l̇� . �10�

Here an overdot indicates a derivative with respect to
time, and F1��wme /�l. In the case when the transverse
sound wave propagates along the symmetry axis

u = u0exp�− i�t + ikz�, u0 = �u0x,u0y,0� �11�

it follows from expression �2� that

F1 = ikb44lzu + ikb44�uyly + uxlx� . �12�

We set m=m0+m�, l= l0+ l�, and h=h0+h�, where m0

and l0 are the equilibrium values of the magnetization and
antiferromagnetic vectors, and m�, l�, and h� are the vari-
able corrections proportional to exp�−i�t+ ikz�, determined
from the linearized system of Eqs. �9� and �10�.

In the oriented state 1� the longitudinal components of
the vectors l� and m� are equal to zero, while the circularly
polarized components l+

�= lx
�+ ily

�, m+
�=mx

�+ imy
� have the

form

l+
� =

�� + �H − idf�0��0h+
� + ikb44A�0

2u+

�� + �H�2 − ��1
2 + �l

2 + i���
, �13�

m+
� =

1

A
�− �0

−1�� + �H + idf�0�l+
� + h+

��

= +h+
� − i�+ku+, �14�
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where

+ =
1

A
�1 −

�� + �H�2 + �0
2df

2

�� + �H�2 − ��k
2 + �1

2 − i���� ,

�+ =
�� + �H + idf�0��0b44

�� + �H�2 − ��k
2 + �1

2 − i���
,

�H = �0h0 = g
�e�H0

2mec
, �k

2 = A�k2�0
2,

�1
2 = �0

2A�b + df
2/A� = �0h1

2, � = �0�A .

The components l−
�= lx

�− ily
�, m−

�=mx
�− imy

� are found from
formulas �13�, �14� by taking the complex conjugate and
then making the substitution �→−�.

Substituting �14� into the Maxwell’s equation

k2h+
� = i

4���

c2 �h+
� + 4�m−

�� +
4���

c2 h0	1 +
�

�H

ku+,

�15�

we find the magnetic and electric fields induced by a sound
wave:

h+
� = i

4��− + h0�1 + �/�H�
1 + 4�+ + ik2�2 ku+, �16�

E+ = u+
�

c
�− 2iM0k2�24��+ + h0�1 + �/�H�

1 + 4�+ + ik2�2

+ H0	1 +
�

�H

� , �17�

where �=c /�4��� is the skin depth.
The poles of the magnetic susceptibility ± determine

the eigenfrequencies of spin waves of left and right circular
polarization; in the limit �→0 they are equal to �±�k�
=��k

2+�1
2��H. If the frequency of the sound wave does not

coincide with either of these frequencies or if the relaxation
constant is not small, then the quantity 4�±�A−1�1 in Eq.
�17� can be neglected. In the case when the sound wave-
length is large compared to the skin depth, k��1, the effec-

tive electric field Ẽ−=E+− �� /c�u−H0�1+� /�H� can be writ-
ten in the form

Ẽ+ = − 2iM0k2�2u+
�

c

�� 4��� + �H − idf�0��0b44

�� + �H�2 − ��k
2 + �l

2 − i���
+ h0�1 + �/�H�� .

�18�

The phase shift �� between the sound wave and the
effective electric field is determined by the constants � and
df. In the limiting case when the relaxation constant is neg-
ligibly small ��→0� we obtain from formula �18�
�� = −
�

2
+ arctan

�
4�df�H�0

2b44

�� + �H�4��H�0b44 + h0��� + �H�2 − ��2 + �1
2���

.

�19�

In the orientational state 2� for h1�h0 the magnetoelas-
tic interaction, according to Eq. �12�, is due to the component
of the displacement vector directed along l0. We choose a
coordinate system in which the OX axis is parallel to the
vector l0, and then from Eqs. �9�, �10�, and �12� we find the
following expressions for the components of the variable
magnetization:

mx
� = xxhx

� + xyhy
� + xzhz

� + �1kux,

my
� = yxhx

� + yyhy
� + �2kux,

mz
� = zxhx

� + zzhz
�, �20�

where

xx = −
1

A
	 �0

2df
2

�2 − �k
2 + i��

+
�H

2

�2 − �2 + i��

 , �21�

xy = − yx =
i��HA−1

�2 − �2 + i��
,

xz = − zx =
i��0dfA

−1

�2 − �k
2 + i��

,

yy =
1

A
	1 −

�2

�2 − �2 + i��

,

zz =
1

A
	1 −

�2

�2 − �k
2 + i��


, �1 = −
i�0�Hb44

�2 − �2 − i��
,

�2 =
��0b44

�2 − �2 + i��
, �2 = �k

2 + �H
2 − �1

2.

The frequency of the sound wave is much lower than the
cyclotron frequency in a magnetic field H0�2M0h1

�104–105 Oe, corresponding to the orientational state 2�,
and therefore the inertial term in the expression �8� for the
current density can be neglected, and Maxwell’s equations
for the Fourier components of the variable fields take the
form

k2h�
� = i

4���

c2 �h�
� + 4�m�

�� +
4���

c2 b0ku ,

jz = �	Ez + 4�
i�

c

df

A
ux
 = 0, hz

� + 4�mz
� = 0. �22�

Here h�
�= �hx

� ,hy
� ,0�, m�

�= �mx
� ,my

� ,0� are the transverse
components of the magnetization and magnetic field, b0

=h0+4� /A�h0 is the z component of the constant magnetic
induction. After determining h� from Eqs. �22�, we find the
effective electric field generated by the sound wave:
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Ẽx = − 2iM0k2�2�

c
D−1��1 + 4�̃xx + ik2�2��− 4��2ux

+ ib0uy� − 4�yx�− 4��1ux + ib0ux�� ,

Ẽy = − 2iM0k2�2�

c
D−1��1 + 4�yy + ik2�2�

��− 4��1ux + ib0ux� − 4�xy�− 4��2ux + ib0uy�� ,

Ẽz = 0, �23�

where

D = �1 + 4�̃xx + ik2�2��1 + 4�yy + ik2�2�

− 16�2xyyx, ̃xx = xx − 4�zx/�1 + 4�zz� .

If the sound wave frequency does not coincide with one of
the poles of the components of the magnetic susceptibility
tensor, and the sound wavelength is large in comparison with
the skin depth, then formulas �23� become

Ẽx = 2M0k2�2�

c
	 4�i��0b44

�2 − �2 + i��
ux + b0uy
 , �24�

Ẽy = − 2M0k2�2ux
�

c
	 4��0�Hb44

�2 − �2 + i��
+ b0
 . �25�

Between the component of the effective electric field Ẽx

and the elastic wave there is a phase shift ��x due to the
interaction of the spin subsystem with the lattice. In the limit
�→0 we obtain from Eq. �24�

��x = − arctan
4���0b44tan �

��2 − �2�b0
, �26�

where tan�=u0x /u0y.
In the case b+df

2 /A�0 the vector l0 lies in the basal
plane perpendicular to the OZ axis, and the antiferromagnet
has a weak magnetic moment m�=−df�ez� l0� /A in the ab-
sence of external magnetic field. The induced magnetic mo-
ment is directed along the external magnetic field, and its
value in the leading approximation with respect to A−1 is
equal to m�h0 /A. The electric field generated by an acoustic
wave �11� in an easy-plane antiferromagnet in a magnetic
field directed along the OZ axis is given by Eqs. �23�–�25� in
which the substitution �1

2→−�1
2 or �2→�k

2+�H
2 +�1

2

�l0 �OX� has been made.
Formulas �18�, �24�, and �25� for the electric fields radi-

ated by a sound wave consist of two terms. The first term in
the brackets describes the contribution of the magnetoelastic
interaction, which is inherent only to magnetically ordered
substances, and the second term is due to the Lorentzian
mechanism taking place in ordinary metals. It follows from
expressions �17�–�19� and �23�–�26� that the magnetoelastic
interaction has a substantial influence on the polarization and
phase of the variable electric field.
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