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The modern physics of superconductivity can be called the physics of unconventional
superconductivity. The discovery of thed-wave symmetry of the order parameter in high-
temperature superconductors and the triplet superconductivity in compound Sr2RuO4 has caused
a huge stream of theoretical and experimental investigations of unconventional
superconductors. In this review we discuss some novel aspects of the Josephson effect which are
related to the symmetry of the order parameter. The most intriguing of them is spontaneous
current generation in an unconventional weak link. The example of a Josephson junction in the
form of a grain boundary between two disorientatedd-wave or f -wave superconductors is
considered in detail. Josephson current–phase relations and the phase dependences of the
spontaneous current that flows along the interface are analyzed. The spontaneous current
and spontaneous phase difference are manifestations of the time-reversal symmetry~T ! breaking
states in the system. We analyzed the region of appearance ofT-breaking states as function
of temperature and mismatch angle. A review of the basics of superconducting qubits with
emphasis on specific properties ofd-wave qubits is given. Recent results in the problem of
decoherence ind-wave qubits, which is the major concern for any qubit realization, are
presented. ©2004 American Institute of Physics.@DOI: 10.1063/1.1789112#
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1. INTRODUCTION

The modern physics of superconductivity can be cal
the physics of unconventional superconductivity. It should
noted that right after the famous paper1 of Bardeen, Cooper
and Schriffer ~BCS! it became clear that~conventional!
s-wave singlet pairing is not the only possibility,2,3 and
more-complex superconducting~superfluid! states may be
realized, with nonzero orbital and spin momenta of the C
per pairs. Because of the success of the BCS theory in
scribing properties of the known metallic superconducto
theoretical research on unconventional superconducti
was of purely academic interest and did not attract m
attention. Interest in unconventional pairing symmetry h
increased after the discovery of superfluidity in3He, with
triplet spin symmetry and multiple superfluid phases.4,5 Low-
temperature experiments on complex compounds led to
discovery of unconventional superconductivity in heav
fermion systems.6 The heavy-fermion metal UPt3 , like 3He,
has a complex superconducting phase diagram, which sh
the existence of several superconducting phases, whi
weak temperature dependence of the paramagnetic susc
bility indicates triplet pairing. Another triplet superconduct
is the recently discovered compound Sr2RuO4.

The real boom in investigations of unconventional sup
conductivity started after the discovery by Bednorz a
Müller7 of high-temperature~high-Tc) superconductivity in
cuprates, because of its fundamental importance for both
5351063-777X/2004/30(7–8)/19/$26.00
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sic science and practical applications. Numerous experim
show that high-Tc cuprates are singlet superconductors w
nontrivial orbital symmetry of the order parameter~a so-
calledd-wave state, with the orbital moment of pairsl 52).

The Josephson effect8 is extremely sensitive to the de
pendence of the complex order parameter on the momen
direction on the Fermi surface. Thus the investigation of t
effect in unconventional superconductors enables one to
tinguish among different candidates for the symmetry of
superconducting state. This has stimulated numerous the
ical and experimental studies of unconventional Joseph
weak links. One of the possibilities for forming a Josephs
junction is to create a point contact between two mass
superconductors. A microscopic theory of the station
Josephson effect in ballistic point contacts between c
ventional superconductors was developed in Ref. 9. La
this theory was generalized for a pinhole model in3He,10,11

for point contacts betweend-wave high-Tc super-
conductors,12–14and for triplet superconductors.15 A detailed
theory of the Josephson properties of grain-boundaryd-wave
junctions was developed in Ref. 16. In those papers it w
shown that the current–phase relations for the Josephson
rent in unconventional weak links are quite different fro
those of conventional superconductors. One of the m
striking manifestations of a unconventional order-parame
symmetry is the appearance, together with the Joseph
current, of a spontaneous current flowing along the con
© 2004 American Institute of Physics
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interface. The spontaneous current arises due to the brea
of the time-reversal symmetry~T! in the system. Such a situ
ation takes a place, for example, in a junction between
d-wave superconductors with different crystallographic o
entations. Thed-wave order parameter itself doesn’t bre
the T symmetry. But the mixture of two differently oriente
order parameters~proximity effect! forms aT-breaking state
near the interface.17 Such spontaneous supercurrentj spon

~and corresponding spontaneous phase difference! exists
even if the net Josephson current equals zero. The state o
junction with the spontaneous current is twofold degener
and in fact, two values6 j spon appear. An interesting poss
bility arises then to use these macroscopic quantum state
the design ofd-wave quantum bits~qubits!.

This review consists of three parts. In Sec. 2 the gen
features of unconventional superconductivity are presen
The different types of order parameters are described.
briefly outline the essence ofT-symmetry breaking in uncon
ventional superconductors and experimental tests for or
parameter symmetry. In Sec. 3~and Appendix II! the theory
of coherent current states in Josephson junctions betw
d-wave superconductors and between triplet superconduc
is considered. The current–phase relations for the Josep
and spontaneous currents, as well as the bistable states
analyzed. Section 4 is devoted to Josephson phase q
based ond-wave superconductors. It contains a review of t
basics of superconducting qubits with emphasis on spe
properties ofd-wave qubits. Recent results in the problem
decoherence ind-wave qubits, which is the major concer
for any qubit realization, are presented.

2. UNCONVENTIONAL SUPERCONDUCTIVITY

2.1. Order-parameter in unconventional superconductors.
s -wave, d -wave, p -wave ... pairing

The classification and description of unconventional
perconducting states can be found, for example, in
book18 and review articles.19–23In our review we do not aim
to discuss this problem in detail. We present only gene
information on the unconventional superconductors and t
most likely model descriptions.

It is well known1 that a Cooper pair has zero orbit
momentum, and its spin can be eitherS50 ~singlet state! or
S51 ~triplet state!. It follows from the Pauli exclusion prin-
ciple that the matrix order parameter of the supercondu
Dab(k) ~a,b are spin indices! changes sign under permut
tion of particles in the Cooper pair:Dab(k)52Dba(2k).
Hence, the even parity state is a singlet state with zero
moment,S50:

D̂~singlet!~k!5g~k!i ŝy ;

g~k!5g~2k!. ~1!

The odd parity state is a triplet state withS51, which is
in general a linear superposition of three substates with
ferent spin projectionSz521,0,1:

D̂~ triplet!~k!5~d~k!s!ŝy ;

d~2k!52d~k!. ~2!
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Here theŝ i are Pauli matrices (i 5x,y,z); d~k! and s
5(ŝx ,ŝy ,ŝz) are vectors in the spin space. The compone
of the vectord~k! are related with the amplitudesgSz

(k) of
states with different spin projectionsSz5(21,0,1) on the
quantization axis:

g152dx1 idy ; g05dz ; g215dx1 idy . ~3!

The functionsg(k) andd~k! are frequently referred to a
an order parameter of the superconductor. For the isotro
model g(k)5const the paring state is singlet. In a tripl
superconductor the order parameterd~k! is a vector~some
authors call it the gap vector! in the spin space and in an
case it depends on the direction on the Fermi surface. T
vector defines the axis along which the Cooper pairs h
zero spin projection.

The angular dependence of the order parameter is
fined by the symmetry groupG of the normal state and th
symmetry of the electron interaction potential, which c
break the symmetryG. In a model of an isotropic conducto
the quantum states of the electron pair can be describe
terms of an orbital momentuml and itsz projectionm. The
singlet ~triplet! superconducting state is the state with
even~odd! orbital momentuml of Cooper pairs. The respec
tive states are labeled by letterss,p,d,... ~similar to the la-
beling of electron orbital states in atom! and are called
s-wave,p-wave,d-wave, . . . states. In the general case t
superconducting state may be a mixture of states with dif
ent orbital momental .

The spherically symmetrical superconducting sta
which now is frequently called the conventional one, cor
sponds tos-wave singlet pairingl 5m5S50. In this case of
isotropic interaction, the order parameter is a single comp
function g5const. Fortunately, this simple model satisfac
rily describes the superconductivity in conventional meta
where the electron–phonon interactions leads to spin-sin
pairing with s-wave symmetry. The simplest triplet supe
conducting state is the state withp-wave pairing and orbital
momentum of a Cooper pairl 51. In the case ofp-wave
pairing different superconducting phases with differentm5
21,0,1 are possible. A Cooper pair in ap-wave supercon-
ductor has internal structure, because forl 51 it is intrinsi-
cally anisotropic. The next singletd-wave state has the or
bital momentum of Cooper pairsl 52.

In unconventional superconducting states the Coo
pairs may have a nonzero expectation value of the orbitaL
or ~and! spin S momentum of a pair. States withSÞ0 (S
50) are usually called nonunitary~unitary! triplet states.

The gapD~k!

D2~k!5 1
2 TrD̂†~k!D̂~k! ~4!

in the energy spectrum of elementary excitations is given
the relations

D~singlet!~k!5ug~k!u; ~5!

D~ triplet!~k!5A@ ud~k!u26ud~k!3d* ~k!u#. ~6!

In unconventional superconductors the gap can be equa
zero for some directions on the Fermi surface, and for n
unitary states (SÞ0, so-called magnetic superconductors! the
energy spectrum has two branches.
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In the absence of magnetic field the transition to a
perconducting state is a second-order phase transition.
cording to the Landau theory24 of second-order phase trans
tions, the order parameter of such a state must transf
according to one of the irreducible representations of
point symmetry groupG of the normal phase, i.e., the sym
metry group of the superconducting state is a subgroup of
symmetry group of the normal state. The symmetry grouG
of the normal state contains the symmetry operati
Gspin-orbit in spin and orbital~coordinate! spaces, the opera
tion of time reversalT, and the gauge transformationU(1):

G5U~1!3T 3Gspin-orbit.

The transition to a superconducting state breaks
gauge symmetryU(1), andstates with different phases o
the order parameter become distinguishable. The con
tional superconducting state is described by the symm
groupH5T 3Gspin-orbit. If another point symmetry propert
of the superconducting state is broken, such a super
ductor is termed an unconventional one. The order param
of different superconducting states can be expanded on b
functions of different irreducible representations of the po
symmetry groupG. For non-one-dimensional represent
tions the order parameter is a sum of a few complex fu
tions with different phases, and such an order paramete
called a multicomponent one.

In real crystalline superconductors there is no classifi
tion of Cooper pairing by angular momentum (s-wave,
p-wave,d-wave,f -wave pairing, etc.!. However, these term
are often used for unconventional superconductors, mea
that the point symmetry of the order parameter is the sam
that for the corresponding representation of theSO(3) sym-
metry group of an isotropic conductor. In this terminolo
conventional superconductors can be referred to ass-wave.
If the symmetry ofD̂ cannot be formally related to any irre
ducible representation of theSO(3) group, these states ar
usually referred to as hybrid states.

2.2. Pairing symmetry in cuprate and triplet superconductors

Cuprate superconductors. All cuprate high-temperature
superconductors (La22xSrxCuO4, Tl2Ba2CaCu2O8,
HgBa2CaCu2O6, YBa2Cu3O7, YBa2Cu3O72d ,
Bi2Sr2CaCu2O8 and others! have a layered structure with th
common structural ingredient—the CuO2 planes. In some
approximation these compounds may be considered as q
two-dimensional metals having a cylindrical Fermi surfa
It is generally agreed that superconductivity in cuprates
sically originates from the CuO2 layers. Knight shift
measurements25 below Tc indicate that in the cuprate supe
conductors pairs form spin singlets, and therefore ev
parity orbital states.

The data of numerous experiments~see, for example, the
review article19!, in which the different properties of cuprat
superconductors had been investigated, and the absen
multiple superconducting phases attests that the super
ducting state in this compounds is most probably descri
by a one-component nontrivial order parameter of the fo

g~k!5D~T!~ k̂x
22 k̂y

2!, ~7!
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whereD(T) is a real scalar function, which depends only
the temperatureT, andk̂5( k̂x ,k̂y). This type of pairing is a
two-dimensional analog of the singlet superconducting s
with l 52 in an isotropic metal and usually is calle
‘‘ d-wave’’ ~or dx22y2) pairing. The excitation gapug(k)u has
four line nodes on the Fermi surface atwn5(p/4)(2n11),
n50,1,2,3 ~Fig. 1!, and the order parameterg(k) changes
sign in momentum space.

Triplet superconductivity, an analog of triplet superfluid
ity in 3He, was first discovered in the heavy-fermion com
pound UPt3 more than ten years ago.26,27Other triplet super-
conductors have been found recently: Sr2RuO4 ~Refs. 28, 29!
and (TMTSF)2PF6 ~Ref. 30!. In these compounds, the triple
pairing can be reliably determined, e.g., by Knight sh
experiments.31–33 It is, however, much harder to identify th
symmetry of the order parameter. Apparently, in crystall
triplet superconductors the order parameter depends on
direction in momentum space,k̂, in a more complicated way
than the well-knownp-wave behavior of the superfluid
phases of3He. While numerous experimental and theoretic
works have investigated various thermodynamic and tra
port properties of UPt3 and Sr2RuO4, the precise order-
parameter symmetry is still to be determined~see, e.g., Refs
34–37 and references therein!. Symmetry considerations al
low considerable freedom in the choice of irreducible rep
sentation and its basis. Therefore numerous authors~see, for
example, Refs. 34–40! consider different models~so-called
scenarios! of superconductivity in UPt3 and Sr2RuO4, based
on possible representations of crystallographic point grou
A conclusion as to the symmetry of the order parameter
be reached only after a comparison of the theoretical res
with experimental data.

Pairing symmetry inSr2RuO4. In experiment, Sr2RuO4

shows clear signs of triplet superconductivity below the cr
cal temperatureTc51.5 K. Investigation of the specific
heat,41 penetration depth,42 thermal conductivity,43 and ultra-
sound absorption44 shows a power-law temperature depe
dence, which is evidence of line nodes in the energy gap
the spectrum of excitations. The combination of these res
with the Knight shift experiment32 led to the conclusion tha
Sr2RuO4 is an unconventional superconductor with sp
triplet pairing. A layered perovskite material, Sr2RuO4 has a
quasi-two-dimensional Fermi surface.45

The first candidate for the superconducting state
Sr2RuO4 was the ‘‘p-wave’’ model45–47

FIG. 1. The modulus of the order parameterug(k)u ~7! in momentum space
for a d-wave superconductor.



in

c-

r-

,
be

ity
u

ce

v

ce

l

-

it

e
(

-

-

s

fec-

e-

he
-
e-

538 Low Temp. Phys. 30 (7–8), July–August 2004 Kolesnichenko et al.
d~k!5D ẑ~ k̂x6 i k̂y!. ~8!

The order parameter of the form~8! is a two-dimensional
analog (k̂5( k̂x ,k̂y)) of the order parameter in theA phase of
3He. Thed vector pointing along thez direction implies that
the spin part of the Cooper pair wave function is the sp
triplet state withSz50, i.e., in-plane equal-spin pairing~thez
direction is along thec axis of Sr2RuO4). In a system with
cylindrical symmetry the orbital part of the pair wave fun
tion is a state with finite angular momentum along thez axis,
Lz561.

However, the model~8! does not describe the whole co
pus of the experimental data. Recently36,37 it was shown that
the pairing state in Sr2RuO4 most likely has lines of nodes
and some others models of the order parameter have
proposed:36,37

d~k!5D ẑk̂xk̂y~ k̂x6 k̂y!. ~9!

d~k!5D ẑ~ k̂x
22 k̂y

2!~ k̂x6 i k̂y!. ~10!

In unitary states~8!–~10! the Cooper pairs haveL561 and
S50.

Theoretical studies of specific heat, thermal conductiv
and ultrasound absorption for different models of triplet s
perconductivity show considerable quantitative differen
between calculated dependences for ‘‘p-wave’’ and
‘‘ f -wave’’ models.34–36,40

Heavy fermion superconductorUPt3 . One of the best-
investigated heavy fermion superconductors is the hea
fermion compound UPt3 ~Refs. 34 and 35!. The weak tem-
perature dependence of the Knight shift,31 multiple
superconducting phases,26 unusual temperature dependen
of the heat capacity,48 thermal conductivity,49,50 and sound
absorption51 in UPt3 show that it is a triplet unconventiona
superconductor with a multicomponent order parameter.

The heavy-fermion superconductor UPt3 belongs to the
hexagonal crystallographic point groupD6h . The models
which have been successful in explaining the properties
the superconducting phases in UPt3 is based on the odd
parity two-dimensional representationE2u . These models
describe the hexagonal analog of spin-tripletf -wave pairing.

One of the models corresponds to the strong spin–orb
coupling with vector d locked along the latticec axis
(ci ẑ).34,35 For this modeld5 ẑ@h1Y16h2Y2#, where Y1

5kz(kx
22ky

2) andY252kxkykz are the basis functions of th
representation. For the high-temperature polar phaseh1

51,h250)

d~k!5D ẑk̂z~ k̂x
22 k̂y

2!, ~11!

and for the low-temperature axial phase (h151,h25 i )

d~k!5D ẑk̂z~ k̂x6 k̂y!2, ~12!

wherek̂5( k̂x ,k̂y ,k̂z).
Both are unitary states. The state~11! has zero expecta

tion value of orbital momentum, while in the state~12! ^L&
562. For the polar phase~11! the gap in the energy spec
trum of excitationsud~k!u has an equatorial nodal line atu
5p/2 and longitudinal nodal lines atwn5(p/4)(2n11),
n50,2,3,4 ~Fig. 2!. In the axial state~12! the longitudinal
-

en

,
-
s

y-

of

al

line nodes are closed and there is a pair of point nodeu
50,p ~Fig. 3!.

Other orbital state candidates, which assume weak ef
tive spin–orbital coupling in UPt3 , are the unitary planar
state

d~k!5D k̂z@ x̂~ k̂x
22 k̂y

2!12kxkyŷ#, ~13!

and the nonunitary bipolar state

d~k!5D k̂z@ x̂~ k̂x
22 k̂y

2!12ikxkyŷ#. ~14!

More models for the order parameter in UPt3 are dis-
cussed in Refs. 21, 34 and 35. The models~8!–~10!, ~12!,
~14! are interesting in that they spontaneously break tim
reversal symmetry~T -breaking!, which we discuss in the
next Section.

2.3. Breaking of the time-reversal symmetry in
unconventional superconductors. Spontaneous magnetic
fields and currents

Time-reversal symmetry means that the HamiltonianH
5H* , because ifc~r ! is a solution of the Schro¨dinger equa-
tion, thenc* (r ) is also a solution of the same equation. T
time-reversal operationT is equivalent to complex conjuga
tion TĈ5Ĉ* . The simplest example, when both the tim

FIG. 2. The modulus of the order parameterud~k!u ~11! in momentum space
for the polar phase in anf -wave superconductor.

FIG. 3. The modulus of the order parameterud~k!u ~12! in momentum space
for the axial phase in anf -wave superconductor.
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reversal symmetryT and parityP are broken, is a charge
particle in an external magnetic fieldH, wherec~r ,H! and
c* (r ,2H) are solutions of the Schro¨dinger equation, while
c(r ,2H) and c* (r ,H) describe different degenerate stat
of the system. This fact is crucial for understanding of t
appearance of nondissipative~persistent! currents in mesos
copic rings, that reflects the broken clockwise
counterclockwise symmetry of electron motion along t
ring, caused by the external vector potential.

Unconventional superconductivity allows for a large v
riety of possible phases. In some of themT andP are vio-
lated; such superconductors are frequently calledchiral ones.
~The word ‘‘chiral,’’ literally ‘‘handed,’’ was first introduced
into science by Lord Kelvin~William Thomson! in 1884.!
The time reversal~that is, complex conjugation! of a one-
component order parameter is equivalent to its multiplicat
by a phase factor and does not change the observa
Therefore only in unconventional superconductors with
multicomponent order parameter can theT-symmetry be bro-
ken. In particular, all superconducting states possessing
zero orbital or/and spin momenta are chiral ones.

If the T-symmetry is broken, the superconducting pha
is determined not only by the symmetry of the order para
eter but also by the topology of the ground state. The latte
characterized by the integer-valued topological invarianN
in momentum space.52–58Among the various implications o
chirality, perhaps the most striking is the set of chiral qua
particle states, localized at the surface. These chiral st
carry spontaneous dissipation-free currents along the sur
They are gapless, in contrast to bulk quasiparticles of
superconductor.55

Volovik and Gor’kov52 have classified chiral supercon
ducting states into two categories, the so-called ‘‘ferrom
netic’’ and ‘‘antiferromagnetic’’ states. They are distin
guished by the internal angular moment of the Cooper pa
In the ‘‘ferromagnetic’’ state the Cooper pairs possess a fi
orbital or ~for nonunitary states! spin moment, while in the
‘‘antiferromagnetic’’ state they have no net moments.

In high-temperature superconductors with the order
rameter~7! the time reversalT-symmetry is preserved in th
bulk. However, it has been shown theoretically~see the
review22 and references therein! that the puredx22y2 pair
state is not stable against theT-breaking states, such a
dx22y21 idxy or dx22y21 is, at surfaces and interfaces, ne
impurities, or below a certain characteristic temperature (dxy

or s means an admixture of thed-wave state withg(k)
;2kxky or the s-wave state withg(k)5const. It turns out
that such states have larger condensation energy.
dx22y21 idxy-wave state represents a ferromagnetic pair
state, while thedx22y21 is-wave state is antiferromagnetic

Among the heavy-fermion superconductors there are
well-known systems which haveT-violating bulk supercon-
ducting phases: UPt3 and U12xThxBe13 (0.017,x,0.45).
These materials show double superconducting transition
decreasing temperature, andT-violation is associated with
the second of them. The proposed models~12! and ~14! of
the order parameter in UPt3 correspond to theT-violating
states. A more recent candidate forT-violating superconduc-
tivity is Sr2RuO4. The ‘‘p-wave’’ and ‘‘f -wave’’ unitary
models~8!–~10! describe theT-violating bulk superconduct
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ing phases with finite orbital moments of the Cooper pair
T-breaking leads to interesting macroscopic physics i

superconductor. Local currents generating orbital angu
momenta flow in the bulk. In general, superconductivity a
magnetism are antagonistic phenomena, but in this case
superconducting state generates its own magnetism.
Meissner–Ochsenfeld effect, however, prevents unifo
magnetization inside the superconductor, and magnetism
restricted to areas of inhomogeneities—that is, around im
rities and domain walls or at interfaces and surfaces. In th
regions, spontaneous supercurrents flow. The surface cu
generates a spontaneous magnetic moment.59,60 In triplet su-
perconductors all nonunitary models break time-rever
symmetry. For these states Cooper pairs have finite sp
while the magnetization in the bulk is negligible. It was dem
onstrated that chiral superconductors could show quan
Hall-like effects even in the absence of an external magn
field:61 a transverse potential difference would appear in
sponse to the supercurrent.

2.4. Tests for order parameter in unconventional
superconductors

The simplest way to test the unconventional superc
ducting state is to investigate the effect of impurity scatter
on kinetic and thermodynamic characteristics. Fors-wave
superconductors, nonmagnetic impurities have no effects
Tc ~Anderson’s theorem!. In superconductors with uncon
ventional pairing the nonmagnetic impurities induce pa
breaking and suppress superconductivity. Increasing impu
concentration leads to the isotropization of the order para
eter. In the state with broken spatial symmetry the only w
to achieve it is make the order parameter to zero over en
Fermi surface. This happens ifD0t;1, whereD0 is of the
order of the average gap magnitude in the absence of im
rities at T50, and t is the quasiparticles’ mean fre
time.62–64

The Knight shiftdv of the nuclear magnetic resonanc
~NMR! frequency~for details, see Ref. 65! is the most suit-
able instrument for determining the spin structure of the
perconducting state. Because it results from electron inte
tion with nuclear magnetic moments,dv is proportional to
the Pauli paramagnetic susceptibilityx of normal electrons,
the temperature dependence ofdv(T) depends strongly on
whether the pairing is singlet or triplet. In singlet superco
ductors the Cooper pair spinS50, and the density of norma
electrons goes to zero atT→0. Thereforedv→0 as well. In
triplet superconductors both Cooper pairs and excitati
contribute to the susceptibilityx, which changes little with
decreasing temperature.

The presence of point and line nodes of the order par
eter in unconventional superconductors may be determ
from the temperature dependence of thermodynamic qua
ties and transport coefficients. In fully gapped (D5const)
s-wave superconductors they display thermally activated
havior (;exp(2D/T)). In a superconductor with nodes in th
gap of the elementary excitation spectrum the thermo
namic and kinetic quantities have power-law temperature
pendence.

The most-detailed information on the order parame
can be obtained from phase-sensitive pairing symmetry te
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These are based on Josephson tunneling and flux quan
tion: SQUID interferometry, tricrystal and tetracrystal ma
netometry, magnetic flux imaging, and thin-film SQUI
magnetometry ~for review see Ref. 19 and referenc
therein!.

3. JOSEPHSON EFFECT AND SPONTANEOUS CURRENTS
IN JUNCTIONS BETWEEN UNCONVENTIONAL
SUPERCONDUCTORS

3.1. Superconducting weak links

The Josephson effect8 arises in superconducting wea
links—the junctions of two weakly coupled superconduct
~massive banks! S1 andS2 . The coupling~contacting! allows
the exchange of electrons between the banks and establ
the superconducting phase coherence in the system
whole. The weakness of the coupling means that the su
conducting order parameters of the banks are essentially
same as for separate superconductors, and they are ch
terized by the phases of the order parametersx1 andx2 . The
Josephson weak link could be considered as the ‘‘mixer’
two superconducting macroscopic quantum states in
banks. The result of the mixing is a phase-dependent curr
carrying state with current flowing from one bank to anoth
This current ~Josephson current! is determined ~param-
etrized! by the phase differencew5x22x1 across the weak
link.

Classification. General properties. According to the type
of coupling, Josephson junctions can be classified as follo
1! Tunnel junctions~originally considered by Josephson!,
S–I–S~I is an insulator layer!. Weak coupling is provided by
quantum tunneling of electrons through a potential barrier!
Junctions with direct conductivity,S–c–S~c is a geometrical
constriction!. These are the microbridges or point contac
To have the Josephson behavior the constriction size mu
smaller than the superconducting coherence lengthj
;\vF /D. 3! Junctions based on the proximity effec
S–N–S~N is a normal metal layer!, S–F–S~F is a ferro-
magnetic metal layer!. The different combinations of thes
types of junctions are possible, e.g., S–I–N–I–S or S–I–
c–S structures. Another type of Josephson weak links are
multiterminal Josephson microstructures, in which the s
eral banks~more than two! are coupled simultaneously wit
each other.66–69

An important characteristic of a Josephson junction
the current–phase relation~CPR! I s(w). It relates the dc su-
percurrent flowing from one bank to another with the diffe
ence of the phases of the superconducting order parame
the banks. The maximum value ofI s(w) determines the criti-
cal currentI c in the system. The specific form of the CP
depends on the type of weak link. Only in a few cases d
it reduce to the simple formI s(w)5I c sin(w) that was pre-
dicted by Josephson for the case of a S–I–S tunnel junct
In the general case the CPR is a 2p-periodic function. For
conventional superconductors it also satisfies the rela
I s(w)52I s(2w). The latter property of CPR is violated i
superconductors with broken time-reversal symmetry.70–73

For general properties of the CPR and its form for differe
types of weak links the reader is referred to the books
reviews.66,74–76
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Unconventional Josephson weak links. The properties of
the current-carrying states in the weak link depend not o
on the manner of coupling but also on the properties of
banks states. For example, the S–c–S junction with
banks subjected to external transport current was consid
in Ref. 77. In such a system the time-reversal symmetry
artificially broken, which leads to some interesting featu
in the junction properties~the appearance of vortex-lik
states and a surface current flowing opposite to the tange
transport current in the banks!. In this review we consider the
junctions formed by unconventional (d-wave and triplet! su-
perconducting banks, which we call unconventional Jose
son weak links. The most striking manifestation of the u
conventional symmetry of the order parameter in t
junction is the appearance of a spontaneous phase differ
and spontaneous surface current in the absence of cu
flowing from one bank to the other.

3.2. Junctions between d -wave superconductors

Measurements of the characteristics of unconventio
Josephson weak links give information about the symme
of superconducting pairing~see the review78!. There are sev-
eral approaches to the calculation of coherent current st
in unconventional Josephson junctions. These include
Ginzburg–Landau treatment,22 description in the language o
Andreev bound states,79 and the numerical solution of th
Bogoljubov–de Gennes equations on a tight bind
lattice.80 A powerful method of describing inhomogeneo
superconducting states is based on the quasiclassical E
berger equations for the Green’s functions integrated o
energy.81 It was first used in Ref. 9 to describe the dc Jose
son effect in a ballistic point contact between conventio
superconductors. The Eilenberger equations can be gen
ized to the cases ofd-wave and triplet pairing~Appendix II!.
In this Section we present the results of quasiclassical ca
lations for the Josephson and spontaneous currents in
grain boundary junction between d-wave
superconductors.12,16,17

3.2.1. Current –phase relations

We consider a Josephson weak linkS1
(d) –S2

(d) which is
formed by the mismatching of the orientations of the latt
axes in the banksS1

(d) and S2
(d) , as shown in Fig. 4. Thex

axis is perpendicular and they axis is parallel to the interface
between two superconducting 2D half-spaces with differ

FIG. 4. Interface between twod-wave superconductorsS1 and S2 with
different orientationsx1 andx2 of the lattice axesa–b.
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a–b axis orientations~anglesx1 andx2 in Fig. 4!. Far from
the interface (x→7`) the order parameter is equal to th
bulk valuesD1,2(vF). In the vicinity of the interfacex50, if
the anglesx1 andx2 do not coincide, the value ofD deviates
from D1,2. To describe the coherent current states in
system, the Eilenberger equations~A4! for the Green’s func-
tions must be solved simultaneously with the equation foD
~A5!. The equation of self-consistency~A5! determines the
spatial distribution ofD~r !. The problem of solving the
coupled equations~A4! and~A5! can be treated by numerica
calculations. Analytical solutions can be obtained for t
model ~non-self-consistent! distribution ofD~r !:

D~vF ,r !5H D1~vF!exp~2 iw/2!, x,0,

D2~vF!exp~ iw/2!, x.0.
~15!

The phasew is the global phase difference between sup
conductorsS1 andS2 . In the following we consider the cas
of an ideal interface with transparencyD51. For the influ-
ence of interface roughness and effect of surface reflecta
(DÞ1) as well as the numerical self-consistent treatmen
the problem, see Ref. 16.

Analytical solutions in the model with the non-sel
consistent order-parameter distribution~15! are presented in
Appendix II. Using the expressions~A9!, ~A12! and ~A13!,
we obtain the current densitiesj x(x50)[ j J and j y(x50)
[ j S :

j J54peN~0!vFT (
v.0

K D1D2ucosuu
V1V21v21D1D2 cosw L sinw,

~16!

j S54peN~0!vFT (
v.0

K D1D2 sinusign~cosu!

V1V21v21D1D2 cosw L sinw.

~17!

We denote byj J the Josephson current flowing fromS1

to S2 and by j S the surface current flowing along the inte
face boundary. Expressions~16! and ~17! are valid ~within
the applicability of the model~15!! for arbitrary symmetry of
the order parametersD1,2. In particular, fors-wave super-
conductors from Eq.~16! we have the current–phase relatio
for the Josephson current in a conventional (s-wave! 2D bal-
listic S–c–Scontact:9

j J52eN~0!vFD0~T!sin
w

2
tanh

D0~T!cos~w/2!

2T
.

The surface currentj S ~17! equals zero in this case.
For aS1

(d) –S2
(d) interface~DD junction! betweend-wave

superconductors, the functionsD1,2(vF) in ~16! and ~17! are
D1,25D0(T)cos 2(u2x1,2). In Appendix I the temperature
dependence of the maximum gapD0(T) in d-wave super-
conductors is presented for reference. The results of the
culations ofj J(w) and j S(w) for a DD junction are displayed
in Fig. 5 for different mismatch anglesdx between the crys-
talline axes across the grain boundary and at tempera
T50.1Tc ~assuming the same transition temperature on b
sides!. The interface is between twod-wave superconductor
S1 andS2 with differenta–b lattice axis orientationsx1 and
x2 .

In these figures, the left superconductor is assumed t
aligned with the boundary, while the orientation of the rig
e

e

r-

cy
f

al-

re
th

be
t

superconductor varies. The Josephson current–phase rel
~Fig. 5a! demonstrates a continuous transition from
p-periodic ~sawtooth-like! line shape atdx545° to a 2p-
periodic one for smalldx, as expected in the case of a cle
DND junction.82 The phase dependence of the surface c
rent ~Fig. 5b! is also in qualitative agreement with results f
SND and DND junctions.83

3.2.2. Spontaneous currents and bistable states

In contrast to the weak link between two convention
superconductors, the currentj S is not identically equal to
zero. Moreover, in some region of anglesx1 andx2 a value
of the equilibrium phase differencew5w0 exists at which
(d jJ(w)/dw)w5w0

.0 and j J(w0)50 but j S(w0)Þ0. These
spontaneous phase differencew0 and spontaneous curren
j S(w0)[ j spon correspond to the appearance of time-rever
symmetry breaking states in the system~in fact, two values
6w0 of the phase and corresponding spontaneous curr
6 j spon appear!. The region ofT-breaking states~as a func-
tion of temperature and mismatch angle! is shown in Fig. 6.
In Figs. 6 and 7 we also present the self-consistent nume
result,16 for comparison. Only in the asymmetricdx545°
junction does the degeneracy~at w56p/2) survive at all
temperatures, due to its special symmetry which leads
complete suppression of all odd harmonics ofI (w); gener-

FIG. 5. Josephson current (a) and spontaneous current (b) versus the phase
difference in a clean DD grain boundary junction calculated in a non-s
consistent approximation. Current densities are in units ofj 0

54peN(0)vFT and T50.1Tc . The mismatch angles arex150 and x2

545° ~1!, 40° ~2!, 34° ~3!, and 22.5°~4!.
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ally, w0→0 at some temperature that depends on the or
tation. The equilibrium value of the spontaneous curren
nonzero in a certain region of angles and temperatures~Fig.
7!, which is largest in the case of the asymmetricdx545°
junction.

The Josephson currentI J(w) is related to the Josephso
energy of the weak linkEJ(w) through I J(w)5(2e/\)
3(]EJ(w)/dw). The Josephson energy for DD junction
function of phase difference is shown schematically in F
8. The arrows indicate two stable states of the system. Th
are two macroscopic quantum states which can be used
d-wave qubit design~see Sec. 4 below!.

3.3. Junctions between triplet superconductors

The Josephson effects in the case of triplet pairing w
first discovered84,85 in weak links in3He. It was found that at
low temperatures the mass current–phase dependenceJ(w)
can essentially differ from the case of a conventional sup
conductor, and a so-called ‘‘p-state’’ (J8(p).0) is
possible.85,86 In several theoretical papers the Josephson
fect has been considered for a pinhole in a thin wall sepa
ing two volumes of3He-B.10,11,13,87–90The discovery of
metal superconducting compounds with triplet pairing
electrons has made topical the theoretical investigation of
Josephson effect in these superconductors. The Josep
effect is much more sensitive to dependence ofD~k! on the

FIG. 6. Equilibrium phase difference in a clean DD grain boundary junct
as a function ofdx5x22x1 ~keeping x150), at different values oft
5T/Tc . The circles and triangles correspond to non-self-consistent~NSC!
and self-consistent~SC! calculations, respectively. For nonzerow0 the
ground state is twofold degenerate (w56w0).

FIG. 7. Spontaneous current in the junction of Fig. 6.
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momentum direction on the Fermi surface than are the th
modynamic and kinetic coefficients. In this Section the co
sideration of the Josephson effect in point contacts is ba
on the most favorable models of the order parameter in U3

and Sr2RuO4, which were presented in Sec. 2.

3.3.1. Current density near an interface of misoriented
triplet superconductors

Let us consider a model of the Josephson junction a
flat interface between two misoriented bulk triplet superco
ductors~Fig. 9!. In this Section we follow the results of Re
15. In order to calculate the stationary Josephson cur
contact we use ‘‘transport-like’’ equations forj-integrated
Green’s functions80 ~see Appendix II.3!. Here we consider
the simple model of a constant order parameter up to
surface. The pair breaking and the electron scattering on
interface are ignored. For this non-self-consistent model
current–phase relation of a Josephson junction can be ca
lated analytically. This makes it possible to analyze the m
features of the current–phase relations for different scena
of ‘‘ f -wave’’ superconductivity. We believe that under th
strong assumption our results describe the real situa
qualitatively, as was justified for point contacts betwe
‘‘ d-wave’’ superconductors12 and pinholes in3He.91

n
FIG. 8. Josephson energy of a DD junction.

FIG. 9. Josephson junction as interface between two unconventional s
conductors misorienated by an anglea and with order parameterd~k!.
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Knowing the componentğ1(0) ~A29! of the Green’s
function ğ( k̂,r ,«m), one can calculate the current density
the interface,j ~0!:

j ~0!54peN~0!vFT (
m50

`

dk̂k̂ Re~ ğ1~0!!, ~18!

where

Re~ ğ1~0!!5
D1D2

2 (
6

sin~6u!

m
2 1V1V21D1D2 cos~6u!

.

~19!

The real vectorsD1,2 are related to the gap vecto
d1,2( k̂) in the banks by the relation

dn~ k̂!5Dn~ k̂!exp~ icn!. ~20!

The angle u is defined by D1( k̂)•D2( k̂)
5D1( k̂)D2( k̂)cosu, and (k)5c2( k̂)2c1( k̂)1w.

Misorientation of the crystals would generally result
the appearance of a current along the interface,17 as can be
calculated by projecting the vectorj on the corresponding
direction.

We consider a rotationR in the right superconducto
only ~see Fig. 9!, ~i.e., d2( k̂)5Rd1(R21k̂)). We choose the
c axis in the left half-space along the partition between
superconductors~along thez axis in Fig. 9!. To illustrate the
results obtained by computing the formula~18!, we plot the
current–phase relation for different below-mentioned s
narios of ‘‘f -wave’’ superconductivity for two different ge
ometries corresponding to different orientations of the cr
tals to the right and to the left at the interface~see Fig. 9!: ~i!
The basal planeab to the right is rotated about thec axis by
the anglea; ĉ1i ĉ2 . ~ii ! Thec axis to the right is rotated abou
the contact axis (y axis in Fig. 9! by the anglea; b̂1i b̂2 .

Further calculations require a definite model of the v
tor order parameterd.

3.3.2. Current –phase relations and spontaneous surface
currents for different scenarios of ‘‘f-wave’’
superconductivity

Let us consider the models of the order parameter
UPt3 which are based on the odd-parityE2u representation of
the hexagonal point groupD6h . The first of them corre-
sponds to the axial state~12! and assumes the strong spin
orbital coupling, with the vectord locked along thec axis of
the lattice. The other candidate to describe the orbital sta
which imply that the effective spin–orbital coupling in UP3

is weak, is the unitary planar state~13!. The coordinate axes
x,y,z here and below are chosen along the crystallograp
axesâ,b̂,ĉ as at the left in Fig. 9. These models describe
hexagonal analog of spin-tripletf -wave pairing.

In Fig. 10 we plot the Josephson current–phase rela
j J(w)5 j y(y50) calculated from Eq.~18! for both the axial
@with the order parameter given by Eq.~12!# and the planar
@Eq. ~13!# states for a particular value ofa under the rotation
of the basal planeab to the right @the geometry~i!#. For
simplicity we use a spherical model of the Fermi surface.
the axial state the current–phase relation is just a sla
sinusoid, and for the planar state it shows a ‘‘p-state.’’ The
t

e
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-

n
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r
ed

appearance of thep-state at low temperatures is due to t
fact that different quasiparticle trajectories contribute to
current with different effective phase differences (k̂) @see
Eqs. ~18! and ~19!#.11 Such a different behavior can be
criterion for distinguishing between the axial and the plan
states, taking advantage of the phase-sensitive Josephso
fect. Note that for the axial model the Josephson curr
formally does not equal zero atw50. This state is unstable
~does not correspond to a minimum of the Josephson
ergy!, and the state with a spontaneous phase differe
~value w0 in Fig. 10!, which depends on the misorientatio
anglea, is realized.

The remarkable influence of the misorientation anglea
on the current–phase relation is shown in Fig. 11 for
axial state in the geometry~ii !. For some values ofa ~in Fig.
11 it is a5p/3) there are more than one state which cor
spond to minima of the Josephson energy (j J50 and
d jJ /dw.0).

The calculatedx andz components of the current, whic
are parallel to the surface,jS(w), are shown in Fig. 12 for the
same axial state in the geometry~ii !. Note that the current
tangential to the surface as a function ofw is nonzero when
the Josephson current~Fig. 11! is zero. This spontaneou
tangential current is due to the specific ‘‘proximity effect
similar to spontaneous current in contacts between ‘‘d-wave’’
superconductors.17 The total current is determined by th
Green’s function, which depends on the order parameter
both superconductors. As a result, for nonzero misorienta

FIG. 10. Josephson current densities versus phasew for axial ~12! and
planar ~13! states in the geometry~i!; misorientation anglea5p/4; the
current is given in units ofj 05p/2eN(0)vFD0(0).

FIG. 11. Josephson current versus phasew for the axial state~12! in the
geometry~ii ! for different a.
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angles a current parallel to the surface can be generate
the geometry~i! the tangential current for both the axial an
planar states atT50 is absent.

The candidates for the superconducting state in Sr2RuO4

are the ‘‘p-wave’’ model~8! and the ‘‘f -wave’’ hybrid model
~10!. Taking into account the quasi-two-dimensional electr
energy spectrum in Sr2RuO4, we calculate the current~18!
numerically using the model of a cylindrical Fermi surfac
The Josephson current for the hybrid ‘‘f -wave’’ model of the
order parameter~Eq. ~10!! is compared to thep-wave model
~Eq. ~8!! in Fig. 13 ~for a5p/4). Note that the critical cur-
rent for the ‘‘f -wave’’ model is several times smaller~for the
same value ofD0) than for the ‘‘p-wave’’ model. This dif-
ferent character of the current–phase relation enables u
distinguish between the two states.

In Figs. 14 and 15 we present the Josephson current
the tangential current for the hybrid ‘‘f -wave’’ model for
different misorientation anglesa ~for the ‘‘p-wave’’ model it

FIG. 12. z component (a) and x component (b) of the tangential current
versus phasew for the axial state~12! in the geometry~ii ! for different a.

FIG. 13. Josephson current versus phasew for hybrid ‘‘ f -wave’’ ~10! and
‘‘ p-wave’’ ~8! states in the geometry~i!; a5p/4.
In

n

.

to

nd

equals zero!. Just as in Fig. 10 for the ‘‘f -wave’’ order pa-
rameter~12!, in Fig. 14 for the hybrid ‘‘f -wave’’ model ~9!
the steady state of the junction with zero Josephson cur
corresponds to a nonzero spontaneous phase difference
misorientation angleaÞ0.

Thus, in this Section the stationary Josephson effect
planar junction between triplet superconductors is cons
ered. The analysis is based on models with ‘‘f -wave’’ sym-
metry of the order parameter belonging to the tw
dimensional representations of the crystallograp
symmetry groups. It is shown that the current–phase r
tions are quite different for different models of the ord
parameter. Because the order parameter phase depen
the momentum direction on the Fermi surface, the misori
tation of the superconductors leads to a spontaneous p
difference that corresponds to zero Josephson current an
the minimum of the weak-link energy. This phase differen
depends on the misorientation angle and can possess
value. It has been found that in contrast to the ‘‘p-wave’’
model, in the ‘‘f -wave’’ models the spontaneous current m
be generated in a direction which is tangential to the orifi
plane. Generally speaking this current is not equal to zer
the absence of the Josephson current. It is demonstrated
the study of the current–phase relation of a small Joseph
junction for different crystallographic orientations of ban
enables one to judge the applicability of different models
the triplet superconductors UPt3 and Sr2RuO4.

It is clear that such experiments require very clean
perconductors and perfect structures of the junction beca
of pair-breaking effects of nonmagnetic impurities and d
fects in triplet superconductors.

4. JOSEPHSON PHASE QUBITS BASED ON d-WAVE
SUPERCONDUCTORS

4.1. Quantum computing basics

As we have seen, unconventional superconductors s
port time-reversal symmetry breaking states on a mac
scopic, or at least, mesoscopic scale. An interesting poss
ity arises then to apply them in quantum bits~qubits!, basic
units of quantum computers~see, e.g., Refs. 92–94!, using
T-related states of the system as basic qubit states.

A quantum computer is essentially a set ofN two-level
quantum systems which, without loss of generality, can
represented by spin operatorsŝ ( i ), i 51...N. The Hilbert
space of the system is spanned by 2N statesus1& ^ us2& ^ ...

FIG. 14. Josephson current versus phasew for the hybrid ‘‘f -wave’’ state~9!
in the geometry~i! for different a.
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^usN&, si50,1. The information to be processed is contain
in complex coefficients$a% of the expansion of a given stat
in this basis:

uC&5 (
sj 50,1

as1s2 ...sN
us1& ^ us2& ^ ...^ usN&. ~21!

The unitary operations on states of the qubits are ca
gates, like in the classical case. Single qubit gates areSU(2)
rotations. An example of a two-qubit gate is aconditional
phase shift, CP(g), which, being applied to a two-qub
wave function, shifts its phase byg if and only if they are in
the same ~‘‘up’’ or ‘‘down’’ ! state. In the basis$u0&
^ u0&,u0& ^ u1&,u1& ^ u0&,u1& ^ u1&% it is

CP~g!5S eig 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eig

D . ~22!

Obviously, if CP(g) is applied to a factorized state of tw
qubits, uC&5(a1u0&1b1u1&) ^ (a2u0&1b2u1&), in the gen-
eral case we will obtain anentangledstate. Up to an unim-
portant global phase factor,CP(g) results from the free
evolution of two qubits, generated by the Hamiltoni
H5Jŝz

(1)
•ŝz

(2) , for a timeT5\g/(2J).
Another nontrivial example is thecontrolled-not gate

CN12, which, acting onus1& ^ us2&, leavess1 intact and flips
s2 (1→0,0→1) if and only if s151. The combination
SW125CN12CN21CN12 swaps~exchanges! the states of two
qubits.

It can be shown that a universal quantum computer~that
is, one that can realize any possible quantum algorithm,
way a Turing machine can realize any possible classica
gorithm! can be modeled by a chain of qubits with on
nearest-neighbor interactions:

H5(
i 51

N

$uisz
~ i !1D isx

~ i !%1 (
i 5 j 11

Ji j sz
~ i !
•sz

~ j ! . ~23!

Further simplifications are possible,95 but this would be irrel-
evant for our current discussion.

The operations of a quantum computer require that
parameters of the above Hamiltonian be controllable~more
specifically, one must be able toinitialize, manipulate, and
read out qubits!. For the unitary manipulations discusse
above, at least some of the parametersu, D, J of the Hamil-
tonian must be controllable from the outside during the e

FIG. 15. Tangential current density versus phasew for the hybrid ‘‘f -wave’’
state~9! in the geometry~i! for different a.
d

d

e
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e
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lution. Initialization and readout explicitly require nonunita
operations~projections!. Therefore any practical implemen
tation of a quantum computer must satisfy contradictory
quirements: qubits must be isolated from the outside world
allow coherent quantum evolution~characterized by a deco
herence timetd) for long enough time to allow an algorithm
to run, but they must be sufficiently coupled to each oth
and to the outside world to permit initialization, control, an
readout.94 Fortunately, quantum error correction allows o
to translate a larger size of the system into a longer effec
decoherence time by coding each logical qubit in seve
logical ones~currently it is accepted that a system withtd /tg

in excess of 104 can run indefinitely, wheretg is the time of
a single gate application~e.g., the timeT in the example of
CP(g)).

Note that the operation of a quantum computer based
consecutive application of quantum gates as described a
is not the only possible, or necessarily the most efficie
way of its use. In particular, it requires a huge overhead
quantum error correction. Alternative approaches have b
suggested~e.g., adiabatic quantum computing96–98! which
may be more appropriate for the smaller-scale quantum
isters likely to be built in the immediate future.

4.2. Superconducting qubits

The size of the system is crucial not only from the po
of view of quantum error correction. It is mathematical
proven that a quantum computer is exponentially faster t
a classical one in factorizing large integers; the number
known quantum algorithms is still small, but an active sea
for more potential applications is under way~see the above
reviews and, e.g., Refs. 96–98!. Nevertheless the scale o
which its qualitative advantages over classical computers
gin to be realized is about a thousand qubits. This indica
that solid-state devices should be looked at for the solut
The use of some microsopic degrees of freedom as qu
e.g., nuclear spins of31P in a Si matrix, as suggested b
Kane,99 is attractive due to both the largetd and well-defined
basis states. The difficulties in fabrication~due to small
scale! and control and readout~due to weak coupling to the
external controls! have not allowed realization of the schem
so far.

Among mesoscopic qubit candidates, superconduct
more specifically Josephson systems have the advantage
coherent ground state and the absence or suppression of
energy excitations, which increases the decoherence t
Together with well-understood physics and developed
perimental and fabrication techniques, this makes them
natural choice.

The degree of freedom which is coupled to the cont
and readout circuits determines the physics of a qubit. In
superconducting case, one can then distinguishchargeand
phasequbits, depending on whether the charge~number of
particles! or phase~Josephson current! of the superconducto
is well defined.

The simplest example of a Josephson qubit is an
SQUID,100 with the Hamiltonian

Hq5
Q̂2

2C
1

F0
2

8p2L
~w2wx!

22
I cF0

2p
cos~w!, ~24!
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whereL is the self-inductance of the loop, andI c andC are
the critical current and capacitance of the Josephson ju
tion. The charge on the junction,Q̂522ie]w , is conjugate
to the phase differencew across it. The external flux throug
the loop isFx5wxF0 /(2p). If it equalsexactlyF0/2 (wx

5p) the T-symmetry is broken. The potential part in~24!
acquires a symmetric two-well structure, with tunneling b
tween the wells possible due to the derivative term in~24!,
which reflects quantum phase uncertainty in a Joseph
junction with finite capacitance. The tunneling rate is of t
order ofvp exp(2U(0)/vp), where the frequency of oscilla
tions in one of the potential wellsvp;AEJEQ, and the
height of the potential barrier between themU(0);EJ .

The states in the right and left wells differ by the dire
tion of the macroscopic persistent current and can be use
qubit statesu0& and u1&. The dynamics of the system is dete
mined by the interplay of the charging energyEQ52e2/C
and Josephson energyEJ5hIc /(2e). Here EJ /EQ@1, and
charging effects are responsible for the tunneling splitting
the levels. Coherent tunneling between them has actu
been observed100 in a Nb/AlOx /Nb SQUID at 40 mK; the
magnetic flux difference was approximatelyF0/4, which
corresponded to currents of about 2mA. ~The actual design
was a little more complicated than the simple rf SQUID!
Fine tuning of the external flux is essential to allowresonant
tunnelingthrough the potential barrier.

In the case of small loop inductance the phase will
fixed by flux quantization. For phase to tunnel, one has
introduce extra Josephson junctions in the loop. In the th
junction design,101 two junctions are identical, each with
Josephson energyEJ , and the third one has a little smalle
energyaEJ , a,1. In the presence of external fluxwx , the
energy of the system as a function of phases on the iden
junctionsw1 ,w2 is

U~w1 ,w2!

EJ
52cosw12cosw22a cos~wx1w12w2!.

~25!

As before, ifwx5p, the system has degenerate minima. D
to the two-dimensional potential landscape, tunneling
tween them does not require a large flux transfer of or
F0/2, as in the previous case. Tunneling is again poss
due to charging effects, which give the system an effec
‘‘mass’’ proportional to the Josephson junction capacitan
C. Coherent tunneling between the minima has be
observed.102 The potential landscape~25! was recovered
from measurements on a classical 3-junction loop~with C
too large to allow tunneling!.103 Rabi oscillations were ob
served both indirectly, using the quantum noi
spectroscopy104 ~the observed decay time of Rabi oscillatio
observed in these experimentstRabi52.5 ms), and directly,
in time domain105 (tRabi5150 ns).

The above limitEJ /EQ@1 can be reversed. Then th
design must include a mesoscopic island separated from
rest of the system by two tunnel junctions~a superconducting
single electron transistor, SSET!. The Hamiltonian becomes

Hq5
~Q̂2Qx!

2

2C
2

I cF0

2p
cosw, ~26!
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where this time the role of externalT-symmetry breaking
parameter is played by the chargeQx induced on the island
by a gate electrode. The working states are eigenstate
charge on the island; at appropriateQx the states withQ
52ne and Q52(n11)e are degenerate due to a pari
effect,106 wheren is the number of Cooper pairs in the SSE
Quantum coherence in an SSET has been observed no
through the observation of level anticrossing near the deg
eracy point, as in Refs. 100 and 102, but also in the ti
domain.107 The system was prepared in a superposition
statesun&,un11&, kept at a degeneracy point for a controlle
time t, and measured. The probabilityP(t) of finding the
system in staten exhibited quantum beats.

A ‘‘hybrid’’ system, with EJ /EQ.1, so-called ‘‘quantro-
nium,’’ was fabricated and measured in the time domain
CEA-Saclay,108 with an extraordinary ratiotd /t t'8000~the
tunneling timet t can be considered as the lower limit of th
gate application timetg). Quantronium can be described as
charge qubit, which is read out through the phase varia
and is currently the best superconducting single qubit.

An interesting inversion of the quantronium design109 is
also a hybrid qubit, this time a flux qubit read out through t
charge variable. It promises several advantages over o
superconducting qubits, but has not yet been fabricated
tested.

Finally, a single current-biased Josephson junction
also be used as a qubit~phase qubit!.110,111The role of basis
states is played by the lowest and first excited states in
washboard potential. Rabi oscillations between them h
been successfully observed.

The charge, hybrid, and phase qubits are mentioned
only for the sake of completeness, since unconventional
perconductors are more naturally employed in flux qub
Various Josephson qubits are reviewed in Ref. 112.

4.3. Application of d -wave superconductors to qubits

One of the main problems with the above flux qub
designs is the necessity of artificially breaking t
T-symmetry of the system by putting a fluxF0/2 through it.
Estimates show that the required accuracy is 1025– 1026.
The micron-size qubits must be positioned close enough
each other to make possible their coupling; the dispersion
their parameters means that applied fields must be loc
calibrated; this is a formidable task given such sources
field fluctuations as fields generated by persistent current
qubits themselves, which depend on the state of the qu
field creep in the shielding; captured fluxes; magnetic im
rities. Moreover, the circuitry which produces and tunes
bias fields is an additional source of decoherence in the
tem.~Similar problems arise in charge qubits, where the g
voltages must be accurately tuned.!

These problems are avoided if the qubit isintrinsically
bistable. The most straightforward way to achieve this is
substitute the external flux by a static phase shifter, a Jos
son junction with unconventional superconductors with no
zero equilibrium phase shiftw0 . From ~25!, one sees that
e.g., a three-junction qubit would require an extrap-junction
(w05p).113 In the same way ap-junction can be added to
multiterminal phase qubit.114 The only difference compared
to the case of external magnetic field bias is in the decoh
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ence time: instead of noise from field generating circuits
will have to take into account decoherence from nodal q
siparticles~see below!.

A more interesting possibility is opened up if the bistab
d-wave system is employed dynamically, that is, if its pha
is allowed to tunnel between the degenerate values. In a
called ‘‘quiet’’ qubit113 an SDS8 junction ~effectively two SD
junctions in the~110! direction! is put in a low-inductance
SQUID loop in parallel with a conventional Josephson jun
tion and large capacitor. One of the SD junctions plays
role of ap/2-phase shifter. The other junction’s capacitan
C is small enough to make possible tunneling betweenp/2
and2p/2 states due to the charging termQ2/2C. Two con-
secutive SD junctions are effectively a single junction w
equilibrium phases 0 andp ~which are chosen as workin
states of the qubit!. The control mechanisms suggested
Ref. 113 are based on switchesc ands. Switch c connects
the small S8D junction to a large capacitor, thus suppress
the tunneling. Connectings for the durationDt creates an
energy differenceDE betweenu0& and u1&, because in the
latter case we have a frustrated SQUID with 0- a
p-junctions, which generates a spontaneous fluxF0/2. This
is a generalization of applying the operationsz to the qubit.
Finally, if switch c is open, the phase of the small junctio
can tunnel between 0 andp. Entanglement between qubits
realized by connecting them through another Josephson j
tion in a bigger SQUID loop. The suggested implementat
for switches is based on a low-inductance dc-SQUID des
with a conventional and ap-junction in parallel, withI c,0

5I c,p . In the absence of external magnetic field the Jose
son current through it is zero, while at external fluxF0/2 it
equals 2I c . Instead of external flux, another SDS8 junction,
which can be switched by a voltage pulse between th
~closed! and p ~open! states, is put in series with th
p-junction.

The above design is very interesting. Due to the abse
of currents through the loop during tunneling betweenu0&
and u1& the authors called it ‘‘quiet,’’ though, as we hav
seen, small currents and fluxes are still generated near th
boundaries.

Another design based on the same bistability115 only re-
quires one SD or DD boundary. Here a small island conta
a massive superconductor, and the angle between the o
tation of d-wave order parameter and the direction of t
boundary can be arbitrary~as long as it is compatible with
bistability!. The advantage of such a design is that the pot
tial barrier can to a certain extent be controlled and s
pressed; moreover, in general there are two ‘‘workin
minima 2w0 ,w0 ; the phase of the bulk superconduct
across the boundary is zero will be separated from each o
by a smaller barrier than from the equivalent states differ
by 2pn. This allows us to disregard the ‘‘leakage’’ of th
qubit state from the working space spanned by~u0&,u1&!,
which cannot be done in a ‘‘quiet’’ design with exa
p-periodicity of the potential profile. A convenient way o
fabricating such qubits is to use grain-boundary DD jun
tions, where a two-well potential profile has indeed be
observed.104 Operations of such qubits are based on the t
able coupling of the islands to a large superconducting ‘‘b
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and would allow the realization of a universal set of quant
gates.116

A more advanced design was fabricated and tested in
classical regime in Ref. 117. Here two bistabled-wave grain-
boundary junctions with a small superconducting island
tween them are set in a SQUID loop.~The junctions them-
selves are also small, so that the total capacitance of
system allows phase tunneling.! In the case when the two
junctions have the same symmetry but different critical c
rents, in the absence of external magnetic field there is
current passing through the big loop, and therefore the q
is decoupled from the electromagnetic environment~‘‘si-
lent’’ !. The second-order degeneracy of the potential pro
at the minimum drastically reduces the decoherence du
coupling to the external circuits.

4.4. Decoherence in d -wave qubits

Decoherence is the major concern for any qubit imp
mentation, especially for solid-state qubits, due to the ab
dance of low-energy degrees of freedom. In superconduc
this problem is mitigated by the exclusion of quasipartic
excitations due to the superconducting gap. This also
plains why the very fact of existence of gapless excitations
high-Tc superconductors long served as a deterrent aga
serious search for macroscopic quantum coherence in t
systems. An additional source of trouble may be zero-ene
states~ZES! in DD junctions.

Nevertheless, recent theoretical analysis of D
junctions,118,119 all using quasiclassical Eilenberger equ
tions, shows that the detrimental role of nodal quasipartic
and ZES could be exaggerated.

Before turning to these results, let us first do a sim
estimate of dissipation due to nodal quasiparticles in b
d-wave superconductors.120

Consider, for example, a three-junction~‘‘Delft’’ ! qubit
with d-wave phase shifters. Theu0& and u1& states support,
respectively, clockwise and counterclockwise persistent c
rents around the loop, with superfluid velocityvs . Tunneling
between these states leads to nonzero average^ v̇s

2& in the
bulk of the superconducting loop.

The time-dependent superfluid velocity produces a lo
electric field

E52
1

c
Ȧ5

m

e
v̇s , ~27!

and quasiparticle currentjqp5sE. The resulting average en
ergy dissipation rate per unit volume is

Ė5sE2'mtqp̂ n̄~vs!v̇s
2&. ~28!

Heretqp is the quasiparticle lifetime, and

n̄~vs!5E
0

`

d«N̄~«!@nF~«2pFvs!1nF~«1pFvs!# ~29!

is the effective quasiparticle density. The angle-avera
density of states inside thed-wave gap is121

N̄~«!'N~0!
2«

mD0
, ~30!
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wherem5D0
21duD(u)u/du, andD0 is the maximal value of

the superconducting order parameter. Substituting~30! in
~29!, we obtain

n̄~vs!'N~0!
2

mD0
~2T2!@Li2~2exp~2pFvs /T!!

1Li2~2exp~pFvs /T!!#, ~31!

where Li2(z) is the dilogarithm. Expanding for smallpFvs

!T, we obtain

n̄~vs!'
N~0!

mD0
S p2T2

3
1~pFvs!

2D . ~32!

The two terms in parentheses correspond to thermal ac
tion of quasiparticles and their generation by a curre
carrying state. Note that a finite quasiparticle density by
self does not lead to any dissipation.

In the opposite limit (T!pFvs) only the second contri-
bution remains,

n̄~vs!'
N~0!

mD0
~pFvs!

2. ~33!

The energy dissipation rate gives the upper limitt« for
the decoherence time~since dissipation is a sufficient but no
necessary condition for decoherence!. Denoting by I c the
amplitude of the persistent current in the loop, byL the in-
ductance of the loop, and byV the effective volume of the
d-wave superconductor in which persistent current flows,
can write

t«
215

2ĖV

LI c
2 '

2mtqpN~0!VS p2T2

3
^v̇s

2&1pF
2^vs

2v̇s
2& D

mD0LI c
2 .

~34!

Note that the thermal contribution tot«
21 is independent of

the absolute value of the supercurrent in the loop (}vs),
while the other term scales asI c

2 . Both contributions are
proportional toV and ~via v̇s) to v t , the characteristic fre-
quency of current oscillations~i.e., the tunneling rate be
tween clockwise and counterclockwise current states!.

It follows from the above analysis that the intrinsic d
coherence in ad-wave superconductor due to nodal qua
particles can be minimized by decreasing the amplitude
the supercurrent through it, and the volume of the mate
wheretime-dependentsupercurrents flow.

Now let us estimate the dissipation in a DD junctio
First, following Refs. 115 and 122, consider a DND mod
with ideally transmissive ND boundaries. Due to tunnelin
the phase will fluctuate, creating a finite voltage on the ju
tion, V5(1/2e)ẋ, and a normal currentI n5GV. The corre-
sponding dissipative function and decay decrement are

F5
1

2
Ė5

1

2
GV25

Gẋ2

2 S 1

2eD 2

; ~35!

g5
2

MQẋ

]F
]ẋ

5
G

4e2MQ
5

4N'EQ

p
. ~36!

Here EQ5e2/2C, MQ5C/16e251/32EQ , and N' are the
Coulomb energy, effective ‘‘mass,’’ and number of quantu
channels in the junction, respectively. The last is related
a-
t-
-

e

-
f

al

.
l
,
-

o

the critical Josephson currentI 0 and spacing between An
dreev levels in the normal part of the system,ē5vF/2L, via

I 05N'e«̄. ~37!

We require thatg/v0!1, wherev05A32N'EQē/p is
the frequency of small phase oscillations about a local m
mum. This means that

N'!
«̄

EQ
. ~38!

The above condition allows a straightforward physical int
pretation. In the absence of thermal excitations, the only
sipation mechanism in the normal part of the system
through transitions between Andreev levels, induced by fl
tuation voltage. These transitions become possible iē

,2eV̄;Ax̄̇2;v0 , which brings us back to~38!. Another
interpretation of this criterion arises if we rewrite it asv0

21

@(vF /L)21 ~Ref. 115!. On the right-hand side we see th
time for a quasiparticle to traverse the normal part of
junction. If it exceeds the period of phase oscillations~on the
left-hand side!, Andreev levels simply do not have time t
form. Since they provide the only mechanism for coher
transport through the system, the latter is impossible, un
our ‘‘no dissipation’’ criterion holds.

For a normal-layer thicknessL;1000 Å and vF

;107 cm/s this criterion limitsv0,10212 s21, which is a
comfortable two orders of magnitude above the tunnel
splitting usually obtained in such qubits (;1 GHz) and can
be accommodated in the above designs. Nevertheless, w
presenting a useful qualitative picture, the DND model is n
adequate for the task of extracting quantitative prediction

A calculation123 using the model of a DD junction inter
acting with a bosonic thermal bath gave an optimistic e
mate for the quality of the tricrystal qubit,Q.108.

The role of size quantization of quasiparticles in sm
DD and SND structures was suggested in Refs. 113 and
The importance of this effect is that it would exponentia
suppress the quasiparticle density and therefore the diss
tion below the temperature of the quantization gap, estima
as 1–10 K. Recently this problem was investigated fo
finite-width DD junction. Contrary to expectations, the si
quantization as such turned out to be effectively absent o
scale exceedingj0 ~that is, practically irrelevant!. From the
practical point of view this is a moot point, since the dec
herence time due to the quasiparticles in the junction, e
mated in Ref. 119, already corresponds to a quality fac
tw /tg;106, which exceeds by two orders of magnitude t
theoretical threshold allowing a quantum computer to r
indefinitely.

The expression for the decoherence time obtained
Ref. 119,

tw5
4e

dw2I ~Dt/e!
, ~39!

where dw is the difference between equilibrium phases
degenerate minima of the junction~i.e., dw52x0 in other
notation!, contains the expression for the quasiparticle c
rent in the junction at finite voltage,D t /e ~whereD t is the
tunneling rate between the minima!. This agrees with our
back-of-the-envelope analysis: phase tunneling leads to fi
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voltage in the system through the second Josephson rela
and with finite voltage comes quasiparticle current and de
herence. The quality factor is defined asQ5twD t/2\, that is,
we compare the decoherence time with the tunneling ti
Strictly speaking, it is the quality factor with respect to t
fastest quantum operation realized by the natural tunne
between the minima at the degeneracy point. For the R
transitions between the states of the qubit this numbe
much lower~10–20 versus 8000; Ref. 108! on account of the
relatively low Rabi frequency.

A much bigger threat is posed by the contribution fro
zero-energy bound states, which can be at least two orde
magnitude larger. We can see this qualitatively from~39!: a
large density of quasiparticle states close to zero energy~i.e.,
at the Fermi level! means that even small voltages crea
large quasiparticle currents, which sit in the denominator
the expression fortw . Fortunately, this contribution is sup
pressed in the case of ZES splitting, and such splitting
always present due, e.g., to the finite equilibrium phase
ference across the junction.

A similar picture follows from the analysis presented
Ref. 124. A specific question addressed there is espec
important: it is known that theRC constant measured in DD
junctions is consistently 1 ps over a wide range of junct
sizes,125 and it is tempting to accept this value as the dis
pation rate in the system. It would be a death knell for a
quantum computing application of high-Tc structures, and
nearly that for any hope to see some quantum effects th
Nevertheless, it is not quite that bad. Indeed, we saw that
ZES play a major role in dissipation in a DD junction but a
sensitive to phase differences across it. Measurements o
RC constant are made in the resistive regime, when a fi
voltage exists across the junction, so that the phase di
ence grows monotonically in time, forcing the ZES to a
proach the Fermi surface repeatedly. ThereforetRC reflects
some averaged dissipation rate. On the other hand, in a
junction with not too high a tunneling rate the phase diff
ence obviously tends to oscillate aroundx0 or 2x0 , its equi-
librium values, and does not spend much time near zer
p; therefore the ZES are usually shifted from the Fer
level, and their contribution to dissipation is suppressed.

This qualitative picture is confirmed by a detailed calc
lation. The decoherence time is related to the pha
dependent conductance via

tw5
1

aF~x0!2dE
tanh

dE

2T
. ~40!

Here a is the dissipation coefficient,dE is the interlevel
spacing in the well, and

G~x!54e2a@]xF~x!#2. ~41!

For a realistic choice of parameters Eq.~40! gives a
conservative estimatetw51 – 100 ns, and quality factorQ
;1 – 100. This is, of course, too little for quantum compu
ing, but quite enough for observation of quantum tunnel
and coherence in such junctions.

5. CONCLUSION

We have reviewed one of the most intriguing aspects
unconventional superconductivity, the generation of spon
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neous currents in unconventional Josephson weak links.
mixing of the unconventional order parameters from t
junction banks leads to the formation of aT-breaking state in
the weak link. A consequence of the time-reversal symme
breaking is the appearance of a phase difference acros
Josephson junction in the absence of current through the
tact. This phenomenon, not present in conventional juncti
between standard superconductors, radically changes
physics of weakly coupled superconductors. The curre
phase relations for unconventional Josephson weak lin
which we have discussed forS(d) –S(d) andS(triplet)–S(triplet)

junctions, are quite different from the conventional one. D
pending on the angle of misorientation of thed-wave order
parameters in the banks, the current–phase relationI J(w) is
changed from a sin(w)-like curve to a2sin(2w) dependence
~Fig. 5!. Clearly, it determines new features in the behav
of such a Josephson junction in applied voltage or magn
field. We have discussed the simple case of an ideal inter
between clean superconductors in which the spontane
current generation effect is the most pronounced. Remain
beyond the scope of this review are a number of fact
which complicate the simple models. They are the influen
on the spontaneous current states of the interface roughn
potential barriers~dielectric layer!, and scattering on impuri-
ties and defects in the banks. For the case of a diffus
junction see the article of Tanakaet al. in this issue. For the
detailed theory of spontaneous currents in DD junctions
Ref. 16. The spatial distribution of spontaneous current
particular, the effect of superscreening, is considered in R
12 and 16. An important and interesting question conce
the possible induction of a subdominant order parameter n
the junction interface and its influence on the value of sp
taneous current. It was shown in Ref. 17 that the spontane
currents decrease when there is interaction in the subdo
nant channel. This statement, which may seem paradox
can be explained in the language of current-carrying Andr
states~see Fig. 5 in Ref. 17!. As a whole, the theory of
unconventional Josephson weak links with breaking oT
symmetry, in particular, the self-consistent consideration
nonstationary behavior, needs further development.
spontaneous bistable states in Josephsond-wave junctions
attract considerable interest also from the standpoint
implementation of qubits, the basic units of quantum co
puters. In Sec. 4 we analyzed the application ofd-wave su-
perconductors to qubits. Unlike the Josephson charge
flux qubits based on conventional superconductors,
d-wave qubits have not yet been realized experimenta
Nevertheless, the important advantages ofd-wave qubits,
e.g., from the point of view of scalability, not to mention th
fundamental significance of theT-breaking phenomenon, de
mand future experimental investigations of unconventio
weak links and devices based on them.

APPENDIX I. TEMPERATURE DEPENDENCE OF THE
ORDER PARAMETER IN A d-WAVE SUPERCONDUCTOR

In a bulk homogeneousd-wave superconductor the BC
equation for the order parameterD(vF) takes the form
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D~vF!52pN~0!T (
v.0

K V~vF ,vF8 !
D~vF8 !

Av21uD~vF8 !u2L
v

F8

~A1!

Or, writing V(vF ,vF8 )5Vd cos 2u cos 2u8, ld5N(0)Vd ,
D5D0(T)cos 2u, we have forD0(T)

D0~T!5ld2pT (
v.0

vc E
0

2p du

2p

D0~T!cos2 2u

Av21D0~T!2 cos2 2u
~A2!

(v5(2n11)pT, wherevc is the cutoff frequency!.
At zero temperatureT50, in the weak coupling limit

ld!1, for D0(T50)5D0(0) it follows from ~A2! that

D0~0!52vcb exp~22/ld!, ln b5 ln 221/2'1.21.

The critical temperatureTc is

Tc5
2

p
vcg exp~22/ld!, ln g5C50.577, g'1.78.

Thus,D0(0)/Tc5pb/g'2.14.
In terms ofTc , Eq. ~A2! can be presented in the form

ln
T

Tc
52pT (

v.0

` S 2E
0

2p du

2p

cos2 2u

Av21D0~T!2 cos2 2u
2

1

v D .

~A3!

In the limiting cases, the solution of equation~A3! has the
form

D0~T!5H D0~0!F123§~3!S T

D0~0! D
2G , T!Tc .

S 32p2

21§~3! D
1/2

TcS 12
T

Tc
D 1/2

, T;Tc .

For arbitrary temperatures 0<T<Tc the numerical solu-
tion of equation~A3! is shown in Fig. 16.

FIG. 16. Temperature dependence of the order parameterD0(T) in ad-wave
superconductor.
APPENDIX II. QUASICLASSICAL THEORY OF COHERENT
CURRENT STATES IN MESOSCOPIC BALLISTIC
JUNCTIONS

II.1. Basic equations

To describe the coherent current states in a superc
ducting ballistic microstructure we use the Eilenberg
equations80 for the j-integrated Green’s functions

vF•
]

]r
Ĝv~vF ,r !1@vt̂31D̂~vF ,r !,Ĝv~vF ,r !#50,

~A4!

where

Ĝv~vF ,r !5S gv f v

f v
1 2gv

D
is the matrix Green’s function, which depends on the M
subara frequencyv, the electron velocity on the Fermi su
facevF , and the coordinater ; here

D̂5S 0 D

D1 0 D
is the superconducting order parameter. In the general ca
depends on the direction of the vectorvF and is determined
by the self-consistent equation

D~vF ,r !52pN~0!T (
v.0

^V~vF ,vF8 ! f v~vF8 ,r !&v
F8
. ~A5!

Solution of the matrix equation~A4! together with the self-
consistent order parameter~A5! determines the current den
sity j (r ) in the system:

j ~r !524p ieN~0!T (
v.0

^vFgv~vF ,r !&vF
. ~A6!

In the following we will consider the two-dimensiona
case; N(0)5m/2p is the 2D density of states and̂...&
5*0

2pdu/2p... is the averaging over directions of the 2
vectorvF .

Supposing the symmetryD(2vF)5D(vF), from the
equation of motion~A4! and equation~A5! we have the fol-
lowing symmetry relations:

f * ~2v!5 f 1~v!; g* ~2v!52g~v!;

f * ~v,2vF!5 f 1~v,vF!; g* ~v,2vF!5g~v,vF!;

f ~2v,2vF!5 f ~v,vF!; g~2v,2vF!52g~v,vF!;

D15D* .

On the phenomenological level the different types
symmetry of the superconducting pairing are determined
the symmetry of the pairing interactionV(vF ,vF8 ) in Eq.
~A5!. For conventional (s-wave! pairing, the function
V(vF ,vF8 ) is constant,Vs , and the corresponding BCS inte
action constant isl5N(0)Vs . In the case ofd-wave pairing
V(vF ,vF8 )5Vd cos 2u cos 2u8, ld5N(0)Vd . The anglesu
andu8 determine the directions of vectorsvF andvF8 in the
a–b plane.
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II.2. Analytical solutions of Eilenberger equations in the
model with non-self-consistent order parameter distribution

The solutions of equation~A5! for the Green’s function
Ĝv(v f ,r ) can be easily obtained for model distribution~15!
of D~r !. For x<0:

f ~x,u!5
D1e2 iw/2

V1
1

e2 iw/2

D1
~hV12v!e2xV1 /uvzuC1 ;

~A7!

f 1~x,u!5
D1e1 iw/2

V1
1

e1 iw/2

D1
~2hV12v!e2xV1 /uvzuC1 ;

~A8!

g~x,u!5
v

V1
1e2xV1 /vzC1 . ~A9!

For x>0:

f ~x,u!5
D2e1 iw/2

V2
1

e1 iw/2

D2
~2hV22v!e22xV2 /uvzuC2 ;

~A10!

f 1~x,u!5
D2e2 iw/2

V2
1

e2 iw/2

D2
~hV22v!e22xV2 /uvzuC2 ;

~A11!

g~z,u!5
v

V2
1e22zV2 /uvzuC2 . ~A12!

Matching the solutions atx50, we obtain

C15
D1

V1

v~D12D2 cosw!1 ihD2V1 sinw

~V1V21v21D1D2 cosw!
,

C25
D2

V2

v~D22D1 cosw!1 ihD1V2 sinw

~V1V21v21D1D2 cosw!
. ~A13!

HereV1,25Av21uD1,2u2, h5sign(vx).

II.3. Quasiclassical Eilenberger equations for triplet
superconductors

The ‘‘transport-like’’ equations for thej-integrated
Green’s functionsǧ( k̂,r ,«m) can be obtained for triplet su
perconductors:

@ i«mť32Ď,ǧ#1 ivFk̂¹ǧ50. ~A14!

The functionǧ satisfies the normalization condition

ǧǧ521. ~A15!

Here «m5pT(2m11) are discrete Matsubara energies,vF

is the Fermi velocity, andk̂ is a unit vector along the electro
velocity, andť35t3^ Î , andt̂ i ( i 51,2,3) are Pauli matrice
in a particle–hole space.

The Matsubara propagatorg can be written in the
form:96

ǧ5S g11g1ŝ ~g21g2ŝ !i ŝ

i ŝ2~g31g3ŝ ! g42ŝ2g4ŝŝ2
D , ~A16!

as can be done for an arbitrary Nambu matrix. The ma
structure of the off-diagonal self-energyD in Nambu space is
x

Ď5S 0 idŝŝ2

i ŝ2d* ŝ 0 D . ~A17!

Below we consider so-called unitary states, for whichd
3d* 50.

The gap vectord has to be determined from the sel
consistency equation:

d~ k̂,r !5pTN~0!(
m

^V~ k̂,k̂8!g2~ k̂8,r ,«m!&, ~A18!

whereV( k̂,k̂8) is the pairing interaction potential;^...& stands
for averaging over directions of the electron momentum
the Fermi surface;N(0) is the electron density of states.

Solutions of Eqs.~A14!, ~A18! must satisfy the condi-
tions for the Greens’s functions and the vectord in the banks
of superconductors far from the orifice:

ǧ~7`!5
i«mť32Ď1,2

A«m
2 1ud1,2u2

; ~A19!

d~7`!5d1,2~ k̂!expS 7
iw

2 D , ~A20!

where w is the external phase difference. Equations~A14!
and ~A18! have to be supplemented by the boundary co
nuity conditions at the contact plane and conditions of refl
tion at the interface between superconductors. Below we
sume that this interface is smooth and the electron scatte
is negligible. In a ballistic case the system of 16 equatio
for the functionsgi andgi can be decomposed into indepe
dent blocks of equations. The set of equations which ena
us to find the Green’s functiong1 is

ivFk̂¹g11~g3d2g2d* !50; ~A21!

ivFk̂¹g212i ~d3g31d* 3g2!50; ~A22!

ivFk̂¹g322i«mg322g1d* 2 id* 3g250; ~A23!

ivFk̂¹g212i«mg212g1d2 id3g250, ~A24!

whereg25g12g4 . For the non-self-consistent model (D1,2

does not depend on the coordinates up to the interface!, Eqs.
~A21!–~A24! can be solved by integrating over ballistic tr
jectories of electrons in the right and left half-spaces. T
general solution satisfying the boundary conditions~A19! at
infinity is

g1
~n!5

i«m

Vn
1 iCn exp~22sVnt !; ~A25!

g2
~n!5Cn exp~22sVnt !; ~A26!

g2
~n!5

22Cndn2dn3Cn

22shVn12«m
exp~22sVnt !2

dn

Vn
; ~A27!

g3
~n!5

2Cndn* 1dn* 3Cn

22shVn22«m
exp~22sVnt !2

dn*

Vn
, ~A28!

where t is the time of flight along the trajectory, sign(t)
5sign(z)5s; h5sign(vz); Vn5A«m

2 1udnu2. By matching
the solutions~A25!–~A28! at the orifice plane (t50), we
find the constantsCn andCn . The indexn numbers the left
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(n51) and right (n52) half-spaces. The functiong1(0)
5g1

(1)(20)5g1
(2)(10), which determines the current de

sity in the contact, is

g1~0!5
i«m~V11V2!cos§1h~«m

2 1V1V2!sin§

D1D21~«m
2 1V1V2!cos§2 i«mh~V11V2!sin§

.

~A29!

In formula ~A29! we have taken into account that fo
unitary states the vectorsd1,2 can be written as

dn5Dn expicn , ~A30!

whereD1,2 are real vectors.
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