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Nonlinear conductance of a quantum contact containing single impurities
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The conductance of a quantum contact containing single point defects and a potential barrier is
investigated theoretically. The dependence of the conductanceG on the applied voltageU
is obtained for the model of a quantum wire connecting massive banks. The comparative values
of the different nonlinear contributions to the conductance due to the interference of
electron waves scattered by defects and by defects and the barrier are analyzed. The latter
contribution becomes dominant even at extremely small coefficients of reflection of electrons from
the barrier. It is shown that the dependence of the transmission coefficientT12 on the
electron energyE explains the experimentally observed suppression of oscillation of the
conductanceG(U) when its absolute value is close to the single-quantum valueG0

52e2/h. © 2004 American Institute of Physics.@DOI: 10.1063/1.1645168#
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INTRODUCTION

The physical characteristics of conductors with mes
copic dimensions, such as quantum contacts, wires, ri
and dots, for example, are extremely sensitive to the p
ence of single defects, which can substantially alter th
properties and give rise to new effects that are absent in
pure, ballistic objects. Diverse defects inevitably arise in
preparation of conducting structures, and the study of th
influence on the transport characteristics is important in c
nection with the intensive development of nanoelectron
On the other hand, the introduction of a controlled numbe
impurities having definite properties into mesoscopic s
tems opens up the possibility of varying their kinetic coe
cients. A study of the influence of individual impurities o
transport properties in mesoscopic systems is also intere
from the standpoint of basic physics, since in that case
scattering of electrons~e.g., Kondo scattering! manifests it-
self in the most explicit form, unobscured by averaging o
a large number of defects, so that detailed information can
obtained from it. These circumstances have attracted inte
in the experimental and theoretical study of the propertie
conductors of small size containing single defects.

One of the classes of mesoscopic conductors now b
studied intensively is that of quantum ballistic contac
Quantum contacts are microscopic constrictions or w
having diameters comparable to the electron de Bro
wavelength and connecting massive metallic ‘‘banks.’’ T
conductanceG ~the first derivative of the current–voltag
characteristic,G5dI/dU) of such systems is determined b
the numberN of transverse quantization levels of the ele
tron energy with «s,«F («F is the Fermi energy,s
51,...,N) or, as is often said, the number of quantum co
ducting modes. Each of those modes, according to the L
dauer theory,1,2 contributes to G a single quantumG0

52e2/h, so that the total conductanceG5NG0 . The value
of N can be varied, for example, by varying the diameted
of the contact. Here the functionG(d) is a step function with
a step equal to the quantum of conductanceG0 . This effect
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was first obtained in necks created on the basis of a t
dimensional electron gas and was later observed in th
dimensional contacts of ordinary metals~see, e.g., the
reviews3,4!. In real contacts the reflection of electrons can
taken into account with the aid of a transmission coeffici
of the sth mode,ts<1, and the conductance in the Ohm
law approximation (U→0) at low temperatures (T→0) is
described by the Landauer–Buttiker formula1,2

G5G0(
s51

N

ts . ~1!

The difference of the coefficientsts from unity is due to both
the shape of the contact and the scattering of electrons. H
if the conductance is determined by a small number of qu
tum modes, then the presence of single defects can lead
substantial change in the conductance. A number of pa
have been devoted to the theoretical study of t
question.5–12 However, effects nonlinear in the voltage
quantum contacts have been little studied. At the same ti
the small size of the contact and, hence, its large resista
make it possible to avoid heating effects at biaseseU of the
order of tenths of the Fermi energy, making it possible
study highly nonequilibrium electronic states.

The nonmonotonic dependence of the conductance
quantum contact on the voltageU was first observed experi
mentally in Ref. 13. This effect was subsequently obser
in the experiments of Ref. 14. It was conjectured in Ref.
that the cause of this nonmonotonicity might be interferen
of electron waves. The essence of this effect is as follows.
electron wave with wave vectorks incident on the contac
passes through it with a probabilityts or is reflected with a
probability r s . If a defect is located a distancezi from the
contact, the reflected wave after backscattering on it can
turn again to the contact. The two waves are coherent
interfere. The corresponding contribution of this process
the total transmission coefficientts depends in an oscillatory
manner on the relative phase shift 2kszi between the two
waves. Since the electron energy and, hence the wave
© 2004 American Institute of Physics
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tors ks depend on the applied voltageU, varying the latter
leads to a nonmonotonic dependence of the conducta
G(U). The influence of ‘‘dirty’’ banks on the nonlinear con
ductanceG(U) of ballistic contacts was examined theore
cally in Refs. 14 and 15. The authors of Ref. 15 predic
that conductance fluctuations will be suppressed near
edges of the steps of the functionG(d), and this effect was
subsequently observed experimentally.14 The study in Ref.
15 was based on a numerical simulation using definite va
of the parameters, and for that reason its results canno
used for analysis of concrete experimental data. In Ref.
the scattering-matrix formalism was used to obtain a qu
general expression for the nonlinear conductance. Bes
the scattering matrix for electrons in the contact the the
also took into account the scattering matrix for backscat
ing in the banks, and the total probabilityT12 of transmission
of an electron from one bank of the contact to another w
expressed in terms of the latter matrix. Because the conc
form of the scattering matrices in the formulas for the co
ductance which were obtained in Ref. 14 is indefinite, it
impossible to estimate the amplitude and characteristic p
ods of the nonmonotonicities of the functionG(U). At the
same time, the probability that an electron will again be
cident on the contact after scattering by an impurity locate
sufficient distance from it at a pointr i is small, of the order
of the solid angle within which the contact is viewed fro
the pointr i ~Ref. 16!. A more realistic situation, it seems,
the interference of electron waves reflected from defe
within the contact or in the direct vicinity of it. In Ref. 5 th
conductance of a long quantum contact~wire! containing
single point defects was analyzed theoretically, and the n
linear corrections oscillatory in the voltage were found. Su
a model ignores one important fact—the finite probability
reflection of electrons even in a pure ballistic contact. Su
reflection may be due, for example, to a mismatch of
Fermi velocities when different metals are brought into co
tact or to nonadiabaticity of the shape of the contact.

In this paper we consider the voltage dependence of
conductance of a quantum wire that contains single p
defects~for which no averaging over their positions is don!
and a potential barrier cutting across the wire. This mo
allows one to take into account both the reflection from
plane of the contact~which is described by the coefficient o
reflection from the barrier! and also scattering on impurities
The relative simplicity of the model makes it possible
obtain exact analytical expressions describing the dep
dence of the conductance on the position of the defects.

MODEL AND CALCULATION OF THE TRANSMISSION
COEFFICIENT OF ELECTRONS THROUGH THE CONTACT

Consider a contact in the form of a long, narrow chan
having a lengthL much greater than its diameterd52R. The
edge of the channel is smoothly~on the scale of the Ferm
wavelengthlF) connected to massive metallic ‘‘banks’’~the
adiabatic approximation17!, to which a voltageeU!«F is
applied~Fig. 1!. These conditions permit one to neglect t
reflection of electrons from the edges of the contact. At
center of the contact (z50) is a potential barrierV, near
ce
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which, at the pointsr i , are found several point impurities
The single-electron Hamiltonian of this system is written
the form

Ĥ5
p̂2

2m
1Vd~z!1g(

i
d~r2r i !, ~2!

wherep̂ andm are the momentum operator and the effect
mass of the electron, andg is the coupling constant of the
electron with the impurities.

Calculation of the conductance of a mesoscopic chan
~see, e.g., Ref. 18! reduces to determination of the scatteri
matrix t̂ (E) as a function of the electron energyE. The most
general expression for the electric current through the ch
nel has the form

I 5
2e2

h E
2`

`

dET12~E!F f FS E1
eU

2 D2 f FS E2
eU

2 D G ,
~3!

T125Tr~ t̂† t̂ !5(
ss8

Tss85(
ss8

utss8u
2, ~4!

whereTss8 is the probability that an electron belonging to th
quantum conducting mode of indexs in the left bank of the
contact will pass through it and belong to the mode w
index s8 in the right bank. The summation overs ands8 in
formula ~4! is restricted by the condition«s(s8),«F . One
can diagonalize the matrixt̂† t̂ and write the Landauer–
Buttiker formula~1! in terms of its eigenvaluests . At tem-
peratureT→0 the expression for the conductance takes
simple form

G5
e2

h FT12S «F1
eU

2 D1T12S «F2
eU

2 D G . ~5!

We note that at finite voltagesU the conductance of a bal
listic contact is determined by two fluxes of electrons mo
ing in opposite directions, with energies differing by a
amount eU.19 Accordingly, the energy of the transvers
quantum modes for these groups of electrons also differ
eU. Therefore with increasing diameter of the contact t
quantum mode becomes allowed for one direction of
wave vector first, viz., that with the lowest energy. As
result, the conductance jumps byG0/2.20,21

The probabilitiesTss8 can be expressed in terms of th
advanced Green’s functionsG1(r ,r 8,E) of the electrons~see
below!. In the adiabatic approximation~far from the edges!
the wave functionsca(r ) of the electrons in a ballistic chan

FIG. 1. Model of a quantum contact in the form of a channel of radiusR
connecting two massive ‘‘banks.’’ The barrier and the impurities inside
contact are shown schematically. The arrows indicate the direction of
tion of the electrons coming into the contact, reflected by the barrier,
transmitted through it;r i is the distance of the defect from the axis of th
contact.
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nel in the absence of the barrier (V5g50) can be written in
the form

ca~r !5
1

AL
c'b~R!eikzz, ~6!

wherea5(b,kz) is the complete set of quantum numbe
consisting of a set of two discrete numbersb5(m,n) which
specify the energy levels«b of the transverse quantization
and the continuous wave numberkz is the projection of the
wave vector of the electron on the axis of the conta
c'b(R) is the component of the electron wave function p
pendicular to the axis of the contact and can be chosen
andr5(R,z). Accordingly, the total energy of the electron
«a5«b1\2kz

2/2m. The functions c'b(R) satisfy zero
boundary conditions at the surface of the contact. In the
merical calculations presented below we have assumed
definiteness that the channel has a cylindrical shape. T
the wave functions and energy levels of the transverse q
tization of the electrons in a ballistic channel (L→`) with-
out the impurities and barrier have the form

c'nm~r,w,z!5
1

ApR2Jm11~gmn!
JmS gmn

r

RDeimw;

«nm5
\2gmn

2

2mR2 . ~7!

Here we have used the cylindrical coordinatesr5(r,w,z);
gmn is thenth zero of the Bessel functionJm(x).

By factorizing the wave function~6!, we can write
G1(r ,r 8,E) in the form of an expansion:

G1~r ,r 8,E!5(
bb8

c'b~R!c'b8~R8!Gbb8
1

~z,z8!. ~8!

In accordance with the results of Ref. 22, the transmiss
probabilitiesTbb8(E) are equal to

Tbb8~E!5
\4

m2 kbkb8uGbb8
1

~z,z8,E!u2, z→2`, z8→1`,

~9!

wherekb5A2m(E2«b)/\ is the electron wave vector cor
responding to the quantized energy level«b . In formula ~9!
we have gone from the classification of electron modes
cording to indexs @formulas~1! and ~4!#, for which the en-
es
r-
,

t,
-
al,

u-
or
en
n-

n

c-

ergies«s increase with that index, to a classification acco
ing to a set of discrete quantum numbersb.

The Green’s functionGb(r ,r 8) in a channel with a po-
tential barrier in the absence of impurities satisfies the eq
tion

Gb~r ,r 8!5G0~r ,r 8!

1VE dR9G0~r ,R9!Gb~R9,r 8!uz950 , ~10!

where

G0
1~r ,r 8!5 lim

h→0
(
a

ca~R!ca* ~R8!

E2«a2 ih
~11!

is the Green’s function in the absence of impurities and
barrier. From Eq.~10! we find the coefficients of the expan
sion ~9! of the functionGb(r ,r 8,E):

Gbbb8
1

~z,z8,E!52dbb8

im

\2kb
$eikbuz82zu1r beikb~ uzu1uz8u!%,

~12!
where the amplitude for reflection from the barrier,r b , is
equal to

r b52
imV

~\2kb1 imV!
52 i ur bueiwb. ~13!

The matrixTbb8 from ~9! can be written in the formTbb8
5Tb

bdbb8 , whereTb
b is expressed in terms of the amplitud

of the transmitted wavetb5r b115utbueiwb:

Tb
b5utbu25F11S mV

\2kb
D 2G21

. ~14!

In the presence of impurities the Green’s functi
G(r ,r 8,E) that determines the transmission probability~9!
must be found from the equation

G~r ,r 8!5Gb~r ,r 8!1g(
i

Gb~r ,r i !G~r i ,r 8!. ~15!

Equation~15! can be solved exactly for any finite num
ber of impuritiesi . For this it is necessary to write Eq.~15!
at all the valuesr5r i and solve the system ofi linear alge-
braic equations for the functionsG1(r i ,r 8). As examples,
let us solve Eq.~15! for one and two impurities.

For one impurity at the pointr1 :

G~1!~r ,r 8!5Gb~r ,r 8!1G1~r1!Gb~r ,r1!Gb~r1 ,r 8!.
~16!

For two impurities located at the pointsr5r1,2:
~17!
whereG1(r i)5 g/12gGb(r i ,r i).
For a rather large number of impurities the exact expr

sion for the functionG(r ,r 8) becomes extremely cumbe
some. If it is assumed that the coupling constantg is small,
the expression for the transmission probabilities~9! can be
obtained with the use of the Born expansion in powers ofg.
-
With accuracy to terms proportional tog2 we obtain

Tbb85Tb
bdbb81DT1bb81DT2bb8 . ~18!

The first-order correction is equal to
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FIG. 2. Schematic illustration of some possible types of electron trajectories in a quantum channel with a barrier and impurities.
de-
ies
DT1bb8522dbb8S m

\2DTb
bg

1

kb
(

i
Abb

~ i i !ur bucos~2kbzi1wb!,

~19!

whereAbb
( i j )

5c'b(Ri)c'b8(Rj ).
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The form of the second-order correctionDT2bb8 to the
transmission coefficient depends on the position of the
fects relative to the barrier. In the case when the impurit
are located on different sides of the barrier,DT2bb8 is given
by the formula (zi,0, zj.0)
~20!

or in the case when the impurities lie on one side of the barrier (zi,zj ):

~21!
tron
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These formulas are valid when the value of the to
energy of the electrons is not close in value to the ener
«b of the quantum modes. If that is not the case~i.e., kb

→0), then the transmission coefficient must be calcula
using the exact expression for the Green’s function.

DISCUSSION OF THE RESULTS

When the reflection of electrons from a barrier in t
contact is taken into account, the conductance becom
complicated nonmonotonic function of the voltage. If t
coupling constantg of an electron with the impurity is small
then the electron transmission probabilityTbb8 in ~18! can be
obtained in the Born approximation for an arbitrary numb
of defects~15!. In this case the terms in the probabilityTbb8
~18! with an oscillatory dependence on energy have a c
physical meaning and can be explained in terms of elec
trajectories. As we discussed in the Introduction, the pr
l
s

d

a

r

ar
n

s-

ence of such terms is due to the interference of the elec
wave passing through the contact without scattering~trajec-
tory 1 in Fig. 2! and the electron waves reflected by t
defects and barrier. As an example, Fig. 2 shows sev
possible electron trajectories. The first correctionDT1bb8
~proportional tog) corresponds to the interference betwe
the directly transmitted wave and the wave that underg
one reflection from an impurity and one reflection from t
barrier ~trajectory2 in Fig. 2a!. The interference of the tra
jectories illustrated in Fig. 2b and 2c corresponds to a cer
term in the second-order correctionDT2bb8 , while trajecto-
ries 3 and 5 contain two scatterings on impurities, and tr
jectories4 and6 also include two reflections from the barrie
The first and second terms in formula~21! are due to the
interference between trajectories1 and trajectories3 and4 in
Fig. 2b, respectively. Figure 2c shows trajectories5 and 6,
the interference between each of which and trajectory1 cor-
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FIG. 3. Dependence of the conductance oneU/2 ~in units of the Fermi energy! in the presence of two defects in the contact~impurities located on one side
~a! and on different sides~b! of the barrier!; r15|F , r251.5|F , g050.1, R53|F , V05mV/(\2kF), g05mg/(pR2\2kF).
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responds to the first and second terms in formula~20!. It is
interesting to note that the conductance of the contact c
tains a term proportional tog, which is absent when impurity
scattering processes are taken into account with the quan
analog of the collision integral, for example. Although th
term vanishes after averaging over positions of a large n
ber of impurities, in a mesoscopic contact with several
fects and a barrier it can play a decisive role. The additio
phase shift depends on the distance between impurities,
distribution relative to the barrier, the possible variation
the magnitude of the wave vectorkb ~the indexb of the
quantum mode! in scattering on an impurity and also in th
reflection of an electron from the barrier. We note that
interaction of an electron with the barrier in the framewo
of this model does not lead to mixing of the quantum mod
The contribution of the interference terms to the conducta
depends substantially on the position of the impurities re
tive to the axis of the contact,Ri , and is determined by the
local density of states for thebth mode at the pointRi :
nb(Ri ,E)5mc'b

2 (Ri)/(\
2kb(E)). Since the transvers

wave functionsc'b vanish at certain points, the scatterin
on impurities located near such points contributes little to
conductance of thebth mode. In particular, impurities on th
surface do not influence the conductance.

Figure 3 shows the voltage-dependent part of the c

FIG. 4. Dependence of the conductance oneU/2 ~in units of the Fermi
energy! calculated in the linear approximation in the coupling constantg;
r1[|F , r251.5|F , g050.1, R53|F .
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ductanceDG(U) for various values of the barrier potentialV
and for two impurities located on the same side or on diff
ent sides of the barrier~all the numerical calculations wer
done at zero temperature!. These curves show that even
relatively small values ofV the contribution corresponding
to a single act of scattering on an impurity and reflecti
from the barrier becomes dominant. For comparison Fig
shows the analogous dependenceDG(U) calculated in
second-order perturbation theory in the coupling constang.

Figure 5 shows the dependenceDG(U) for a single-
mode channelb5(0,1) at different values of its radius. A
R53|F the energy of the quantum mode«01 is quite far
from the Fermi level«F , while for R52.6|F it is found near
the Fermi level. These dependences clearly demonstrate
pression of the oscillations ofDG(U) near the steps wher
the conductance jumps occur; this agrees with the exp
mental result of Ref. 14. In the framework of our model th
decrease in the conductance oscillations has a natural p
cal explanation. The coefficient of transmission of an el
tron through the barrier,T01

b ~14!, depends on the mode en
ergy «b , which, according to formula~7!, decreases with
increasing radiusR. WhenR approaches the valueR2 cor-
responding to the entry of the next mode with a higher
ergy «11 in the channel, the coefficientT01

b increases and the
interference contribution due to reflection from the barrier

FIG. 5. Dependence oneU/2 ~in units of the Fermi energy! of the conduc-
tance of a single-mode channel (b5(0,1)) for different values of the radius
of the contact~the radius is indicated in units of|F); g050.1, V050.1.
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minimum. The conductance oscillations are small neaR
5R2 in the two-mode channel (R.R2) as well, sinceTb

b

→0 for E→«b , as can easily be seen from formula~14!.

CONCLUSION

In this paper we have investigated theoretically the n
linear conductanceG(U) of a quantum channel containin
single impurities and a barrier. It is shown that the additio
phase shift of the wave function, which depends on the
tances between impurities or between impurities and the
rier, leads to oscillations of the transmission probability of
electron through the contact as a function of the elect
energyE. Upon reflection of the electron from the barrier
transmission through it, the electron wave function also
quires a certain phasewb(E). Increasing the applied voltag
U alters the energies of the incoming electrons, leading
nonmonotonic dependence ofG(U). The functionG(U) is
aperiodic ~it cannot be represented by a finite number
Fourier harmonics with respect to the voltageU) because of
the complicated dependence of the phase of the wave f
tions on the energyE. The amplitude of the nonmonotonic
ties of the conductanceG(U) is determined by the distribu
tion of impurities relative to the axis of the contac
Impurities located at points where the local density of el
tron states for one of the quantum modes vanishes and
purities on the surface of the contact do not influence
contribution to the conductance from that mode. We ha
shown that the reflection of electrons from a barrier in
contact become the main cause of nonmonotonic behavio
G(U) already at extremely small amplitudes of that refle
tion ~the absolute value of the conductance is close to
value it has in a ballistic contact in the absence of a barri!.
The results obtained provide evidence that the energy de
dence of the probability of transmission of electrons throu
the barrier can account for the experimentally observe14

suppression of conductance oscillations of a single-m
contact having a diameter close to the value correspondin
the entry of the next quantum mode.
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