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The conductance of a quantum contact containing single point defects and a potential barrier is
investigated theoretically. The dependence of the conduci@nae the applied voltagé)

is obtained for the model of a quantum wire connecting massive banks. The comparative values
of the different nonlinear contributions to the conductance due to the interference of

electron waves scattered by defects and by defects and the barrier are analyzed. The latter
contribution becomes dominant even at extremely small coefficients of reflection of electrons from
the barrier. It is shown that the dependence of the transmission coeffigignh the

electron energ)E explains the experimentally observed suppression of oscillation of the
conductancés(U) when its absolute value is close to the single-quantum valge

=2e?/h. © 2004 American Institute of Physic§DOI: 10.1063/1.1645168

INTRODUCTION was first obtained in necks created on the basis of a two-

) o ) dimensional electron gas and was later observed in three-
The physical characteristics of conductors with mesosyimensional contacts of ordinary metalsee, e.g., the

copic dimensions, such as quantum contacts, wires, ring$eyiews4. In real contacts the reflection of electrons can be

and dots, for example, are extremely sensitive to the preéSayen into account with the aid of a transmission coefficient
ence of single defects, which can substantially alter theit¢ the sth mode r.<1. and the conductance in the Ohm'’s
y g™y

properties and give rise to new effects that are absent in thg,, approximation U —0) at low temperaturesT(—0) is

pure, ballistic objects. Diverse defects inevitably arise in theyagcribed by the Landauer—Buttiker formtfa
preparation of conducting structures, and the study of their

influence on the transport characteristics is important in con-
nection with the intensive development of nanoelectronics. G:GOZl Ts- €y
On the other hand, the introduction of a controlled number of .
impurities having definite properties into mesoscopic sys-The difference of the coefficients from unity is due to both
tems opens up the possibility of varying their kinetic coeffi- the shape of the contact and the scattering of electrons. Here
cients. A study of the influence of individual impurities on if the conductance is determined by a small number of quan-
transport properties in mesoscopic systems is also interestingm modes, then the presence of single defects can lead to a
from the standpoint of basic physics, since in that case theubstantial change in the conductance. A number of papers
scattering of electronée.g., Kondo scatteringmanifests it-  have been devoted to the theoretical study of this
self in the most explicit form, unobscured by averaging overuestior?*? However, effects nonlinear in the voltage in
a large number of defects, so that detailed information can bguantum contacts have been little studied. At the same time,
obtained from it. These circumstances have attracted intereite small size of the contact and, hence, its large resistance
in the experimental and theoretical study of the properties ofmake it possible to avoid heating effects at biasksof the
conductors of small size containing single defects. order of tenths of the Fermi energy, making it possible to
One of the classes of mesoscopic conductors now beingtudy highly nonequilibrium electronic states.
studied intensively is that of quantum ballistic contacts. = The nonmonotonic dependence of the conductance of a
Quantum contacts are microscopic constrictions or wiregjuantum contact on the voltage was first observed experi-
having diameters comparable to the electron de Broglienentally in Ref. 13. This effect was subsequently observed
wavelength and connecting massive metallic “banks.” Thein the experiments of Ref. 14. It was conjectured in Ref. 13
conductanceG (the first derivative of the current—voltage that the cause of this nonmonotonicity might be interference
characteristicG=dI/dU) of such systems is determined by of electron waves. The essence of this effect is as follows. An
the numbem of transverse quantization levels of the elec-electron wave with wave vectde incident on the contact
tron energy with e<er (ep is the Fermi energy,s  passes through it with a probability or is reflected with a
=1,...N) or, as is often said, the number of quantum con-probability rs. If a defect is located a distan@ from the
ducting modes. Each of those modes, according to the Larcontact, the reflected wave after backscattering on it can re-
dauer theory;? contributes toG a single quantumG, turn again to the contact. The two waves are coherent and
=2¢e?/h, so that the total conductan@=NG,. The value interfere. The corresponding contribution of this process to
of N can be varied, for example, by varying the diameter the total transmission coefficiem{ depends in an oscillatory
of the contact. Here the functidd(d) is a step function with  manner on the relative phase shifk;2, between the two
a step equal to the quantum of conductafige This effect waves. Since the electron energy and, hence the wave vec-
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tors ks depend on the applied voltagé, varying the latter k, L
leads to a nonmonotonic dependence of the conductance

G(U). The influence of “dirty” banks on the nonlinear con- ﬁﬂ =— o
ductanceG(U) of ballistic contacts was examined theoreti- \ }

N

N

cally in Refs. 14 and 15. The authors of Ref. 15 predicted
that conductance fluctuations will be suppressed near the )
edges of the steps of the functi@(d), and this effect was ~zil
subsequently observed experimentaflythe study in Ref.
15 was based on a numerical simulation using definite valug§C: 1. Model of a quantum contact in the form of a channel of ra@lus

. connecting two massive “banks.” The barrier and the impurities inside the
of the parameters, and for that reason its results cannot l:l%ntact are shown schematically. The arrows indicate the direction of mo-
used for analysis of concrete experimental data. In Ref. 14on of the electrons coming into the contact, reflected by the barrier, and
the scattering-matrix formalism was used to obtain a quitdransmitted through itp; is the distance of the defect from the axis of the
general expression for the nonlinear conductance. Besidé&§Mact
the scattering matrix for electrons in the contact the theory
also took into account the scattering matrix for backscatterwhich, at the points;, are found several point impurities.
ing in the banks, and the total probabilify, of transmission  The single-electron Hamiltonian of this system is written in
of an electron from one bank of the contact to another washe form
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expressed in terms of the latter matrix. Because the concrete o
form of the scattering matrices in the formulas for the con- = p—+V5(z)+gE S(r—r;), 2)
ductance which were obtained in Ref. 14 is indefinite, it is 2m i

impossible to estimate the amplitude and characteristic perWhereﬁ andm are the momentum operator and the effective
ods of the nonmonotonicities of the functi@(U). Atthe 555 of the electron, arglis the coupling constant of the
same time, the probability that an electron will again be in-gactron with the impurities.

cident on the contact after scattering by an impurity located @  c4jcyation of the conductance of a mesoscopic channel
sufficient distance from it at a poimt is small, of the order (see, e.g., Ref. Igeduces to determination of the scattering

of the solid angle within which the contact is viewed from matrixi(E) as a function of the electron energy The most

the pointr; (Ref. 16. A more realistic situation, it seems, is . .
. eneral expression for the electric current through the chan-
the interference of electron waves reflected from defect%eI has the form

within the contact or in the direct vicinity of it. In Ref. 5 the

conductance of a long quantum contdetire) containing 2e? (= eU eU
single point defects was analyzed theoretically, and the non- I= h jwdET12(E)[fF E+ 7) _fF( E- 7) '
linear corrections oscillatory in the voltage were found. Such 3)
a model ignores one important fact—the finite probability of

reflect!on of electrons even in a pure balllsnc_ contact. Such To=TrA)=> Tew=> |tes?, )
reflection may be due, for example, to a mismatch of the s ss

Fermi velocities when different metals are brought into con- : o .
. - whereT .y is the probability that an electron belonging to the
tact or to nonadiabaticity of the shape of the contact. SS P y ging

In this paper we consider the voltage dependence of thguantum conducting mode of indesdn the left bank of the

conductance of a quantum wire that contains single poinm(:jnéizt, \il\rqllth%arsi?;r::] g;?(h .Il_thznsclljnkii(;ggnt%\:ggnrg(g?nwnh
defects(for which no averaging over their positions is dpne ormula (4) is restricted b the condition ... < One
and a potential barrier cutting across the wire. This mode[ ) ) ¥ATA oSS F-

allows one to take into account both the reflection from thec@" diagonalize the matrix't and write the Landauer—

plane of the contadtwhich is described by the coefficient of BUttiker ]‘I_ormuli(l) in terms Off its ﬁlgenvzluess. At te|£n_ X
reflection from the barrig¢rand also scattering on impurities. peratureT—0 the expression for the conductance takes the

The relative simplicity of the model makes it possible to simple form
obtain exact analytical expressions describing the depen- e? e eU
dence of the conductance on the position of the defects. GC=1| Tad ert o | T Tad er = - ®)

We note that at finite voltagad the conductance of a bal-
listic contact is determined by two fluxes of electrons mov-

MODEL AND CALCULATION OF THE TRANSMISSION ing in opposite directions, with energies differing by an

19 H
COEFFICIENT OF ELECTRONS THROUGH THE CONTACT amounteU.™ Accordingly, the energy of the transverse
quantum modes for these groups of electrons also differ by

Consider a contact in the form of a long, narrow channekeU. Therefore with increasing diameter of the contact the
having a lengti. much greater than its diameté+ 2R. The  quantum mode becomes allowed for one direction of the
edge of the channel is smoothlgn the scale of the Fermi wave vector first, viz., that with the lowest energy. As a
wavelength\ ) connected to massive metallic “banké&he  result, the conductance jumps B/2.2%:2
adiabatic approximatidf), to which a voltageeU<egf is The probabilitiesTgy can be expressed in terms of the
applied(Fig. 1). These conditions permit one to neglect theadvanced Green’s functio®" (r,r’,E) of the electrongsee
reflection of electrons from the edges of the contact. At thebelow). In the adiabatic approximatiotiar from the edges
center of the contactz&0) is a potential barrieV, near the wave functiong,(r) of the electrons in a ballistic chan-
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nel in the absence of the barrief £ g=0) can be written in
the form
ho(r)= iz//l (R)€*z (6)
a \/E B ’
where a=(,k,) is the complete set of quantum numbers,
consisting of a set of two discrete numbgs (m,n) which
specify the energy levels, of the transverse quantization,

and the continuous wave numbesis the projection of the
wave vector of the electron on the axis of the contact

andr=(R,z). Accordingly, the total energy of the electron is
sa=sﬁ+ﬁ2k§/2m. The functions ¢, 5(R) satisfy zero

boundary conditions at the surface of the contact. In the nugjgp,
merical calculations presented below we have assumed for

definiteness that the channel has a cylindrical shape. Theg™*
the wave functions and energy levels of the transverse quan-

tization of the electrons in a ballistic channél-{ o) with-
out the impurities and barrier have the form

P\ .
Yiom(p9.2)= ——=—————Jn| ¥ —)e'm“’;
" VWRZJm+1('ymn) "R
hZ,YZ

Snm:Wgzn- (7
Here we have used the cylindrical coordinates(p, ¢,2);
Ymn IS thenth zero of the Bessel functiody,(x).

By factorizing the wave function6), we can write
G*(r,r’,E) in the form of an expansion:

G E)=2 4 s(R)Y.p(R)GLs(22). (8
BB’

In accordance with the results of Ref. 22, the transmission

probabilitiesT 55/ (E) are equal to
4
Tpp(E)= o kekg |Gy (2.2 E)?, 200, 2/ 42,
€)
wherekg= y2m(E—gg)/7% is the electron wave vector cor-
responding to the quantized energy lewgl. In formula(9)

we have gone from the classification of electron modes ac-

cording to indexs [formulas(1) and (4)], for which the en-
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ergiese increase with that index, to a classification accord-
ing to a set of discrete quantum numbgs

The Green’s functiorG,(r,r’) in a channel with a po-
tential barrier in the absence of impurities satisfies the equa-
tion

Gb(r!r,):GO(rirl)

+vf dR"Gy(r,R")Gy(R",1")| o,  (10)

where

¥, s(R) is the component of the electron wave function per-
pendicular to the axis of the contact and can be chosen real,

Ya(R) Y (R")

Gy (rr)=lim > —— e

n—0 «

11

is the Green’s function in the absence of impurities and the

barrier. From Eq(10) we find the coefficients of the expan-

(9) of the functionG(r,r’,E):

im . ,

bBB'(Z’Z,'E): — 5ﬁﬁ/ﬁ2—kﬁ{elkﬁlz 7Z‘+I'Belkﬁ(‘zl+|z ‘)},
(12)

where the amplitude for reflection from the barrieg,, is

equal to

imV

=— = o
] W ||rB|e' B. (13)

The matrixT g from (9) can be written in the fornT g4
=Tpds , whereTY is expressed in terms of the amplitude
of the transmitted waveg=r g+ 1=|t 5|€ %4

-1

1+ (14)

2
)
In the presence of impurities the Green’s function
G(r,r’',E) that determines the transmission probabiligy
must be found from the equation

G(r,r")=Gy(r,r'")+g>, Gp(r,r)G(r;,r').

Equation(15) can be solved exactly for any finite num-
ber of impuritiesi. For this it is necessary to write E(L5)
at all the values =r; and solve the system oflinear alge-
braic equations for the function*(r;,r’). As examples,
let us solve Eq(15) for one and two impurities.

For one impurity at the point; :

GO(r,1")=Gp(r,r")+Gy(r1)Gy(r,r1)Gy(ry,r).

Th=|tgl?=

(15

(16)
For two impurities located at the points=r, ,:

Gi(r) Gy (r,1) Gy (1, 1) + G (1)) G (1) Gy (11, 15) G (1, 1) Gy (1, 1)

G(z)(r, r) =Gy(r,1r) +

1 —Gb(rz,q )Gb(r1,l'2)G1(l'1)G1(f2)

. Gy (1)Gy (1, 15)G (19, 1) + G1(11)G(19) Gp (1,12 )Gy (1, 1 )G (1, 1)

(17

1~ Gy 1y, 11)Gp (11, 15) G (1)) G (15)

whereG4(r;)= g/1—gGy(r;,r;).

With accuracy to terms proportional ¥ we obtain

For a rather large number of impurities the exact expres-

sion for the functionG(r,r') becomes extremely cumber-
some. If it is assumed that the coupling constguis small,
the expression for the transmission probabiliti@s can be
obtained with the use of the Born expansion in powerg.of

_Tb

The first-order correction is equal to
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FIG. 2. Schematic illustration of some possible types of electron trajectories in a quantum channel with a barrier and impurities.

m 1 ) The form of the second-order correctidi 45/ to the
ATipp = 2555,(712) T%gk—Z Ag'[}|rﬁ|cos{2kﬁzi+goﬁ), transmission coefficient depends on the position of the de-
Bt (19 fects relative to the barrier. In the case when the impurities
- are located on different sides of the barri&f, 5/ is given
WhereAgjﬁ)F U g(R) ¥ g (Ry)- by the formula ¢,<0, z;>0)

2
gm 1 @) () b
h—zj Toky Hl%’”%lZAB'B' Agg” =T cos(ky + kg )(zj = 2,) + op + 9p)
i#]

Al = —(
+ |rﬁ|2 cos((kg + kg )(z; ~2;) + 20p) + IrB“rB'Icos((kB + kg )z +2;)))
+ Té’ZAéé{')z {TB’? + 2’rB|sin(2kﬁzi +0p) + ];’B”rﬁf|cos (kg + kg)z; +9p + o)} (20
i
or in the case when the impurities lie on one side of the barzer%;):

2

m\~ 1 P

ATppp = —(%2 J ol [-2TF z Aéé()AéL';) {—cos ((ky + ky)(z; —2;))
i#]

+ QIrB“rBr|cos((kﬁ +hg )z +2) +op +op)
= 2|rp|sinkg(z; +2;) + kg (zj —2;) + 9p) + [rBr|2 cos ((kg + kg )(z; = 2;))}

+ TéJZAééf){Téf + 2lrﬁ|sin(2kﬁzi +0p) — 2|7B”r‘3r|cos (kg + kg )z +op + @)}l (21
i

These formulas are valid when the value of the totalence of such terms is due to the interference of the electron
energy of the electrons is not close in value to the energiegave passing through the contact without scattefirgjec-
g of the quantum modes. If that is not the cdse., k;  tory 1 in Fig. 2 and the electron waves reflected by the
—0), then the transmission coefficient must be calculate@djefects and barrier. As an example, Fig. 2 shows several

using the exact expression for the Green’s function. possible electron trajectories. The first correctiti, g
(proportional tog) corresponds to the interference between
DISCUSSION OF THE RESULTS the directly transmitted wave and the wave that undergoes

one reflection from an impurity and one reflection from the

When the reflection of electrons from a barrier in theb rtier (trajectory 2 in Fig. 23. The interferen f the tr
contact is taken into account, the conductance becomes prrer {trajectory 9. - 'he interference of the fra

complicated nonmonotonic function of the voltage. If thelectories illustrated in Fig. 2b and 2c corresponds to a certain
coupling constang of an electron with the impurity is small, €M in the second-order correctidnyg,: , while trajecto-
then the electron transmission probabillty, in (18 canbe ries 3 and5 contain two scatterings on impurities, and tra-
obtained in the Born approximation for an arbitrary numberjectorieSA- and6 also include two reflections from the barrier.
of defects(15). In this case the terms in the probabilify,, ~ The first and second terms in formu{dl) are due to the
(18) with an oscillatory dependence on energy have a cleainterference between trajectoriégnd trajectorie$ and4 in
physical meaning and can be explained in terms of electrofig. 2b, respectively. Figure 2c shows trajectorteand 6,
trajectories. As we discussed in the Introduction, the presthe interference between each of which and trajeciocyr-
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FIG. 3. Dependence of the conductanceed2 (in units of the Fermi energyin the presence of two defects in the contactpurities located on one side
(@) and on different side) of the barriey; p;=Ag, p,=1.5k¢, go=0.1, R=3X¢, Vo=mV/(%%ks), go=mg/ (7R?%%ke).

responds to the first and second terms in form@@. It is  ductanceA G(U) for various values of the barrier potent\dl
interesting to note that the conductance of the contact corand for two impurities located on the same side or on differ-
tains a term proportional tg, which is absent when impurity ent sides of the barrigfall the numerical calculations were
scattering processes are taken into account with the quantudone at zero temperatyreThese curves show that even at
analog of the collision integral, for example. Although this relatively small values oV the contribution corresponding
term vanishes after averaging over positions of a large nunto a single act of scattering on an impurity and reflection
ber of impurities, in a mesoscopic contact with several defrom the barrier becomes dominant. For comparison Fig. 4
fects and a barrier it can play a decisive role. The additionashows the analogous dependena&(U) calculated in
phase shift depends on the distance between impurities, thesecond-order perturbation theory in the coupling conggant
distribution relative to the barrier, the possible variation of  Figure 5 shows the dependend&s(U) for a single-
the magnitude of the wave vectdy; (the indexs of the  mode channeff=(0,1) at different values of its radius. At
qguantum modgin scattering on an impurity and also in the R=3Xg the energy of the quantum modg; is quite far
reflection of an electron from the barrier. We note that thefrom the Fermi levek g, while for R=2.6X it is found near
interaction of an electron with the barrier in the frameworkthe Fermi level. These dependences clearly demonstrate sup-
of this model does not lead to mixing of the quantum modespression of the oscillations & G(U) near the steps where
The contribution of the interference terms to the conductancéhe conductance jumps occur; this agrees with the experi-
depends substantially on the position of the impurities relamental result of Ref. 14. In the framework of our model this
tive to the axis of the contacR;, and is determined by the decrease in the conductance oscillations has a natural physi-
local density of states for thgth mode at the poinR;: cal explanation. The coefficient of transmission of an elec-
V(R ,E)=m¢fﬁ(Ri)/(ﬁ2kB(E)). Since the transverse tron through the barrierTB1 (14), depends on the mode en-
wave functionsy, ; vanish at certain points, the scattering ergy ez, which, according to formuld7), decreases with
on impurities located near such points contributes little to thencreasing radiu®k. WhenR approaches the value, cor-
conductance of thgth mode. In particular, impurities on the responding to the entry of the next mode with a higher en-
surface do not influence the conductance. ergy €14 in the channel, the coe1‘ficieﬁt’5l increases and the
Figure 3 shows the voltage-dependent part of the coninterference contribution due to reflection from the barrier is

V,=0.5
6r 0. 141
2 af n 12k
= :0 1" E
: ! . ‘.
2 . v . S 1.0t
0 A < .
s ’ z : §
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FIG. 4. Dependence of the conductance edd/2 (in units of the Fermi FIG. 5. Dependence oaU/2 (in units of the Fermi energyof the conduc-
energy calculated in the linear approximation in the coupling constgnt  tance of a single-mode channgd+ (0,1)) for different values of the radius
p1=Xg, pp=1.5%k, gp=0.1, R=3A¢. of the contacfthe radius is indicated in units af¢); go=0.1, V=0.1.
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minimum. The conductance oscillations are small nRar In closing the authors expression their gratitude to A. N.
=R, in the two-mode channelR>>R,) as well, sinceTz Omel'yanchuk for a discussion of the results of this study
—0 for E—eg4, as can easily be seen from formuliad). and for helpful comments.
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