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Shubnikov-de Haas oscillations of the conductivity of a two-dimensional gas in
quantum wells based on germanium and silicon. Determination of the effective mass
and g factor
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The Shubnikov-de Haas oscillations of the conductivity of a two-dimensional gas of holes in
quantum wells consisting of pure germanium and silicon with low germanium content �13%� are
analyzed to determine the effective masses and the g factor in these regions. The magnetic-field
dependences of the resistivity �xx obtained at temperatures from 33 mK to 4 K in magnetic fields
up to 11 T are used for the analysis. © 2009 American Institute of Physics.
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It is necessary to know the characteristics of the mobile
charge carriers in order to develop electronic devices based
on systems with a two-dimensional electron gas. Some char-
acteristics �carrier concentration and mobility� are easily de-
termined from the conductivity and Hall’s constant. How-
ever, characteristics such as the effective mass of the carriers,
which determines the kinetic properties of the electronic sys-
tem and makes it possible to calculate the Fermi energy, the
Fermi velocity of the carriers, the density of states, and oth-
ers, as well as the effective g factor, which characterizes the
spin �Zeeman� splitting of the carrier states in a magnetic
field must be known in order to have a complete picture of
the properties of a two-dimensional electron gas. The
Shubnikov-de Haas oscillations of the conductivity �SdH� in
a magnetic field are used to determine these
characteristics.1,2

In the present work the SdH oscillations of the conduc-
tivity of a two-dimensional gas of holes in quantum wells of
pure germanium �in the heterostucture Si0.3Ge0.7 /Ge /
Si0.3Ge0.7� and silicon with low germanium content �in the
heterostructure Si /Si0.87Ge0.13 /Si� are studied. These hetero-
structures were obtained by different methods: sample A with
a quantum well consisting of pure Ge was obtained by low-
energy plasma deposition; sample B with a quantum well
Si0.87Ge0.13 was obtained by molecular-beam epitaxy. The
quantum well of sample A consists of a thin layer �15 nm
thick� of pure germanium sandwiched between to Si0.3Ge0.7

layers. The layer with acceptor boron atoms is separated
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from the quantum well by a 10 nm thick spacer. Similarly,
the quantum well of sample B consists of a 10-nnm thick
Si0.87Ge0.13 layer, sandwiched between two layers of pure
silicon, one of which is a 10-cm thick spacer and separates
the quantum well from the layer doped with boron atoms.

The experimental dependences of the change of the di-
agonal �xx and off-diagonal �xy components of the resistivity
of the structures investigated in a magnetic field at low tem-
peratures demonstrate Shubnikov-de Haas oscillations and a
quantum Hall effect �Fig. 1�. Some characteristic parameters
of the samples are presented in Table I.

The temperature and magnetic-field dependences of the
amplitude of the SdH oscillations1� were analyzed, by the
method described in Refs. 3 and 4, in order to find the effec-
tive mass m* and the quantum scattering time �q.

The variation of the conductivity of a two-dimensional
gas of charge carriers in the magnetic quantization region is
examined theoretically in Refs. 5 and 6. According to the
theory of Ref. 6, the variation of the resistivity is described
by the relation
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magnetic-field dependences of the amplitude of the oscilla-
tions, �c=eB /m* is the cyclotron frequency, �q is the quan-
tum �single-particle� relaxation times of the charge carriers,
which determines the collision broadening of the Landau
levels, and � is the phase. The Fermi energy in a two-
dimensional case is 	F=�q2n /m*, where n is the charge-
carrier concentration.2�

The functions ln���R /R0��sinh � /��� versus 1 /B �or
1 /�c�� were analyzed to determined the effective mass. The
argument of the exponential function in Eq. �1� becomes
−�� / ��c��, where �=� /�g and � is the transport relaxation
time. In this construction the points corresponding to ex-
trema with different quantum numbers � must lie on the
same straight line. The effective mass m* is an adjustable
parameter which ensures that the points referring to different
temperatures and magnetic fields on the same curve match
one another. We note that according to the relation �1�, for
extremely strong magnetic fields with 1 / ��c��→0, these de-
pendences should go to the value ln 4=1.386, since then
� /sinh �→1. The matching of the points on the same
curves �Figs. 2a and 2c� made it possible to determine the
effective mass of the holes m*=0.112m0 and m*=0.17m0

�m0 is the mass of a free electron� for samples A and B,
respectively.

For sample A, formed with m*=0.112m0, the common
line is not a straight line, as would follow from the relation

FIG. 1. Magnetic-field dependences of the diagonal �xx and off-diagonal �xy

�3�, 2 K �4�, 3 K �5� and sample B �c, d� at T=33 mK �1�, 0.3 K �2�, 0.7 K

TABLE I. Characteristic parameters of the samples.
�1�. This requires a special explanation. The nonlinearity of
the function constructed can be explained on the basis of the
ideas developed in Ref. 7. It is asserted in this work that the
potential and concentration of the carriers in a quantum
channel can exhibit spatial nonuniformity. This effect of this
is that the extrema of the oscillations on the magnetic field
scale do not match in different regions of the sample, as a
result of which the amplitude of the oscillations decreases
somewhat in magnitude as compared with its value in a uni-
form sample, which corresponds to an additional effective
broadening of the Landau levels, called “inhomogeneous
broadening.” The appearance of large-scale fluctuations of
the carrier concentration �in the plane of the two-dimensional
gas� could be due to natural thickness nonuniformity of the
quantum channel as a result of the appearance of vicinal
growth steps during the formation of the layer forming the
quantum well. The theoretical analysis in Ref. 7 of the for-
mation of SdH oscillations in the case where large-scale �in
the plane of the two-dimensional gas� Gaussian fluctuations
of the potential and concentration of the electrons exist
showed that the expression �1� for the amplitude of the os-
cillations acquires an additional exponential contribution, so
that the exponential factor in the relation �1� becomes

exp�−
�

�c�q
− ��2
�n

m*�c
�2	 ,

where �n is proportional to the fluctuations of the charge-
carrier concentration.

The first term in the exponent of the exponential func-
tion, describing the collision broadening of the Landau lev-
els, is inversely proportional to the magnetic field, and the
second term, which takes account of the inhomogeneous
broadening of the Landau levels, is inversely proportional to
the squared field. This makes it possible to describe the ex-
perimental dependence constructed in Fig. 2a by a quadratic
polynomial Y =−a1X−a2X2+const, where a1=�a and a2

= ��2
��p /m*�2. The theoretical model of Ref. 7 has made it

onents of the resistitivity of sample A �a, b� at T=52 mK �1�, 0.5 �2�, 0.9 K
0.89 K �4�, 1.63 K �5�.
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possible to describe quite accurately the experimental results
for sample A �Fig. 2a� and obtain �=5.34 and �p
=3.8·1010 cm−2. Thus a quantum well obtained by low-
energy plasma deposition is characterized by the thickness
nonuniformity of the quantum channel. It should be noted
that inhomogeneous broadening of the Landau levels occurs
in sample B also but it is much weaker. For this sample �
=1.02 and �p=4�109 cm−2.

The functions ln �R /R0 versus the temperature and mag-
netic field, in accordance with the relation �1� taking account
of �for sample A� the contribution of inhomogeneous broad-
ening of the Landau levels, are presented in Figs. 2b and 2d
for the samples A and B. It is evident that all experimental
points fit well on straight lines with slope angle tangent equal
to 1. We note that attempts to describe the experimental re-
sults presented in Fig. 2b without taking account of the in-
homogeneous broadening of the Landau levels have been
unsuccessful.

For magnetic fields which are not strong, the points for
sample B lie, in accordance with the relation �1�, on a
straight line passing through the value ln 4 on the abscissa in
the limit 1 / ��c��→0. However, for strong magnetic fields
�1 / ��c���1.3� a small deviation of the points downward is
observed; this is due to the decrease of the amplitude of the
oscillations when spin �Zeeman� splitting occurs �see below�.

The observation of spin splitting of the maxima �see Fig.
1� of the SdH oscillations makes it possible to determine the
magnitude of the effective Landé g* factor in the systems
studied. A calculation of the magnitude of the impurity

FIG. 2. Illustration of the procedure for determining the effective mass m*

magnetic fields �b� and sample B �c, d�, respectively. The solid lines corres
theory of Ref. 7. The slope of the solid lines in Figs. 2b and 2d equals 45°
broadening of the Landau levels �=
 /2�g gives 6.8 and
3.6 K for samples A and B, respectively. The inequality
g*BB��, where B is the Bohr magneton, must be satis-
fied in order to observe spin splitting. Taking the equality in
this expression, an approximate value can be obtained for g*.
For this, the value of the field B2 corresponding to the mini-
mum of the resistance on the experimental curves before the
appearance of any indications of spin splitting must be used
for B. This estimate gave g*=4.62 and 14, respectively, for
samples A and B �the field 0.41 T at which the experimental
points are observed to deviate from the straight line con-
structed in accordance with the relation �1� is taken as B2 for
sample B�.

Two methods were used to determine g* more accu-
rately. The first one is based on comparing the value of the
magnetic field for which SdH oscillations appear with the
value of the magnetic field at which spin splitting becomes
noticeable. An indication of the latter is not so much the
appearance of obvious splitting of the maxima but rather, as
shown above, a decrease of their height as compared with the
expected value �i.e., a change of the character of the mag-
netic field dependence of the amplitude of the ShD oscilla-
tions�. The ShD oscillations appear in a magnetic field B1 for
which the splitting 
�c between neighboring Landau levels
is greater than �. Similarly, the spin splitting of the ShD
peaks appear in a magnetic field B2 for which g*BB��.
Therefore 
eB1 /m*=g*BB2. Since B=e
 /2m0, we obtain
g*=2�B m /B m*�. Calculations using this relation gave g*

the parameter � for sample A at different temperatures �a� and in different
to the theory of Ref. 6 and the dashed line is plotted taking account of the
and
pond
1 0 2
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=4.31 and 8.32 for the samples A and B, respectively.
The second method for determining g* is based on the

assumption that the splitting of the Landau levels engenders
a contribution of activation processes, associated with tran-
sitions between Landau levels taking account of the spin
splitting, to the temperature dependence of the
conductivity.8,9 To describe this contribution with integral
values of the filling factor � we used the relation �xx�T�
=�xx

c / �1+exp�� /2kBT��, where �xx
c =�xx�1 /T=0�.9 Analysis

of the experimental data using this relation makes it possible
to determine the energy gap �=
�c−g*BB for different
values of � �and, therefore, different values of the magnetic
field�. Figure 3a displays the experimental curves of �xx ver-
sus 1 /T on a logarithmic scale for the experimental samples
and the fit of the relation presented above to these curves for
different values of �. Such a fit for both samples was found
to be successful for small values of � only at relatively
“high” temperatures for this sample �just as in Ref. 8�. Fig-
ures 3b and 3d display the curves of � and �xx

c obtained
versus the magnetic field. The values of � are present with
the impurity broadening � of the Landau levels subtracted
out, owing to which the dependences ��B� are straight lines
emanating from zero. The value of g* can be calculated from
the slope of these straight lines. The results are g*=4.3 and
8.3 for the samples A and B, respectively. The fact that the
characteristic values of �xx

c are different for the samples stud-
ied attracts our attention: for sample A these values lie in the
range e2
�1, while for the sample B the values range from
1.4e2 /
 to 2e2 /
. Theoretically,10,11 �xx

c =1e2 /
 should be
expected in the case where carriers are scattered by a short-
range potential,10 while for scattering by a long-range
potential,11 characteristically, �c =2e2 /
. The results ob-

FIG. 3. Temperature dependence of the values of �xx that correspond to the
and B �c� and different values of �. Solid lines—calculation according to Re
the constant �xx

c for different values of � for samples A �b� and B �d�. The
xx
tained for the experimental samples �Figs. 3b and 3d� make it
possible to conclude that the scattering by the nonuniformi-
ties of the boundaries of the quantum well, as found by de-
termining the effective mass, predominates in sample A pre-
pared by low-temperature plasma deposition, while
scattering of holes by the potential of the impurity atoms in
the doped layer lying far from the channel predominates in
sample B prepared by molecular-beam epitaxy.

In conclusion we note that the values found for the ef-
fective mass of the mobile charge carriers and the effective g
factor in the experimental samples turned out to be different
because of the difference of the composition of the quantum
wells. In addition, we note that they differ from the corre-
sponding characteristics in bulk silicon and germanium crys-
tals because the carriers comprise a two-dimensional hole
gas. All other characteristics which were found—the concen-
tration and mobility of the carriers and the transport and
quantum relaxation times, information about the structure of
the boundaries of the quantum wells, and so forth—reflect
the specific structural features of the quantum wells studied
and their fabrication technology.

a�E-mail: andrievskii@ilt.kharkov.ua
1�We take the amplitude of the oscillations to mean the deviation of the

resistivity at the maximum or minimum from the monotonic variation of
the average value of the resistivity.

2�For a real situation, it is sufficient to use the harmonic with s=1 in the
relation �1�.
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