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Abstract

Quantum mechanics was initially constructed to describe objects
on atomic and subatomic scales. However, in the last decades,
quantum mechanics has been revisited and its use extended to
the study and description of macroscopic distinct states. This is
accomplished by modeling basic objects of mesoscopic physics, such
as superconducting quantum circuits and low-dimensional structures
derived from a two-dimensional electronic gas. In recent years, these
devices support the study of fundamental systems such as a two-
level quantum system, or qubit, as an object for manipulations and
applications. This book will provide an introduction to quantum
computation and quantum information, based on quantum physics,
solid-state theory, and theory of computing. We will become familiar
with this important field and explore how it is inseparably linked
to basic notions of physics such as superposition, entanglement,
and quantum dynamics. Then we will consider superconducting
and mesoscopic systems, as well as a series of phenomena, where
important are the spectra quantization, interference, and charge
discreteness.

The contents of this book are based on several sources. The
references are cited as footnotes in the text, while the most important
references (recommended for further reading) for this course are given
as a separate list at the end. An asterisk (*) indicates paragraphs
which contain supplementary information and can be omitted for a
first reading. Problems are listed at the end of each chapter, and

v

 M
es

os
co

pi
c 

Ph
ys

ic
s 

m
ee

ts
 Q

ua
nt

um
 E

ng
in

ee
ri

ng
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 B

.V
E

R
K

IN
 I

L
T

PE
 O

F 
N

A
SU

 o
n 

11
/1

6/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



July 4, 2019 14:14 Mesoscopic Physics meets Quantum Engineering 9in x 6in b3513-fm page vi

vi Mesoscopic Physics meets Quantum Engineering

these can be used for either homework or self-study. The difficulty
of these problems is indexed by the number of asterisks, from one
to five.

The lecture course from which this book derives its content is
intended for graduate students and postdocs who are acquainted
with quantum mechanics and statistical physics. In particular, it
was developed while delivering lectures to the 5th year students of
the Department of Physics and Technology in Kharkov National
University.

The aims of this book are:

• To expand and deepen readers’ understanding of quantum mechan-
ics and solid-state physics. In particular, to teach the theoretical
basics in fields such as quantum computation, quantum engineer-
ing, and circuit quantum electrodynamics;

• To familiarise readers with common topical problems in mesoscopic
physics and mesoscopic objects, such as superconducting quantum
circuits, low-dimensional conductors, electric and nanomechanical
resonators;

• To examine simple models that describe realistic systems in
quantum engineering.
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Chapter 0

QUANTUM ENGINEERING

“Today there is a substantial white spot in the
physical picture of the world, namely: a bridge
is absent between the submicroscopic level of
quantum mechanics and macroscopic world of
classic physics.”

[Penrose 2003]

0.1. Mesoscopics: why it is important

In this lecture course, we are mostly concerned with objects of size
much larger than that of microscopic atomic systems but smaller
than that of the usual macroscopic things around us. We are
used to the fact that phenomena in microscopic atomic world are
described by quantum mechanics while those on macroscopic scales
are described by classical physics. But where exactly is the border
between them and how do we describe the intermediate region?
Numerous modern researches are devoted to such questions, forming
the basis of so-called mesoscopic physics, or mesoscopics, for brevity.
The formulation and solution of new problems in quantum mechan-
ics, which is more than a century old, is a “quantum challenge” for
contemporary researchers [Greenstein and Zajonc 2006].

Accordingly, we face the necessity of introducing a new lecture
course into university programs for students in physics. To date,
there is no established and standard lecture course in mesoscopic
physics; the issue of which phenomena and effects should be included
is still left to the lecturer’s discretion. Therefore, usually the lecturers

1
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2 Mesoscopic Physics meets Quantum Engineering

of their respective courses focus on the fields in which they are
experts, e.g.,1 [Moskalets 2010] and [Zagoskin 2011]. Alternatively,
other standard courses of physics may be modified to include the
study of mesoscopic systems. The author of the present course, albeit
also based on personal experience and understanding, has included
the descriptions of phenomena, problems, and techniques which are
useful for the education and further research work of students in
physics, and which are topical to date. The following subsection
describes several examples of mesoscopic phenomena.

Now, let us try to build an impression about mesoscopics. This
word originates from the Greek “μεσoζ” — intermediate.2 This
is the field of physics which describes phenomena on intermediate
scales between the microscopic and macroscopic. Namely, mesoscopic
physics studies the appearance of quantum effects in many-particle
systems (in condensed media) when the system phase coherence is
relevant. Here quantum coherence assumes continuous wave-function
phase changes, which result in quantum interference phenomena.
Losing the phase results in decoherence. Until there is phase coher-
ence, the system containing any number of particles is quantum
in behavior. Characteristic scales are the decoherence length Lϕ

and the decoherence time Tϕ. The success of countless experiments
in increasing these values has led to the possibility for observing
and discussing mesoscopic phenomena. Of course, the values of
these characteristic parameters depend on a physical system, but
in general, we can call a system mesoscopic if its size (at least in one
dimension) is much larger than the atomic size and much smaller
than the decoherence length Lϕ, and a characteristic evolution
time is much smaller than the decoherence time Tϕ. As an initial
approximation, Lϕ and Tϕ values are on the scale of a micrometer
and microsecond, respectively.

In relation to the topicality of studying mesoscopic systems, in
addition to the above citation from the Penrose book, we quote

1Y. Imry, Introduction to Mesoscopic Physics, Oxford University Press (2001).
2N. G. van Kampen, The expansion of the master equation, Adv. Chem. Phys.

34, 245 (1976).

 M
es

os
co

pi
c 

Ph
ys

ic
s 

m
ee

ts
 Q

ua
nt

um
 E

ng
in

ee
ri

ng
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 B

.V
E

R
K

IN
 I

L
T

PE
 O

F 
N

A
SU

 o
n 

11
/1

6/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



July 4, 2019 14:13 Mesoscopic Physics meets Quantum Engineering 9in x 6in b3513-ch00 page 3

Quantum Engineering 3

[Nielsen and Chuang 2010]: “What is it that separates the quantum
and the classical world? What resources, unavailable in a classical
world, are being utilized in a quantum computation? Existing
answers to these questions are foggy and incomplete; it is our hope
that the fog may yet lift in the years to come, and we will obtain
a clear appreciation for the possibilities and limitations of quantum
information processing.” And even though much time has passed
since the formation of quantum mechanics, this thesis has something
in common with Niels Bohr’s statement: “Anyone who is not shocked
by quantum theory has not understood it.”

0.2. About the structure of this lecture course

(i) In his most cited paper,3 the most famous physicist, A. Einstein,
together with B. Podolsky and N. Rosen, discusses the quantum
correlations and the entanglement. Another famous physicist,
R. Feynman, in his most cited article4 proposes to use these
correlations for simulating quantum processes and for building
a quantum computer. The experimental possibilities in the last
two decades allow such speculative discussions to be translated
to detailed and concrete scientific research. Quantum mechan-
ics becomes a working tool of physicists when dealing with
mesoscopic-size systems. . . Usually, standard university courses
in physics do not mention this, when in fact even what we
have discussed should be enough stimulus for introducing new
separate lecture courses. In our case, such speculations justify
Chapter 1.

(ii) Motivations of research in mesoscopic physics are multifaceted:
they arise from the necessity of developing the elementary
basics for microelectronics as well as by the desire to find
answers for gnosiological questions. The study of mesoscopic
systems allows quantum mechanics to be understood more

3A. Einstein, B. Podolsky, and N. Rosen, Can quantum-mechanical description
of physical reality be considered complete?, Phys. Rev. 47, 777 (1935).

4R. P. Feynman, Simulating physics with computers, Int. J. Theor. Phys. 21,
467 (1982).
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deeply and broadly. With that, what is most important here
is the dynamic behaviour of such systems, as stated in the
conclusion of the review article [Valiev 2005]: In addition to well-
studied statics of quantum systems, mesoscopic physics adds
new aspects of dynamics to the field of quantum mechanics, such
as the regime of strong driving and weak measurements. Besides,
while it is important to have fine control and measurements
over mesoscopic systems, these are inevitably connected to the
dissipative environment. We will discuss the dynamic behaviour
of driven dissipative quantum systems in Chapter 2.

(iii) We should note that the coherent effects in quantum systems
have already been known for quite a long time. One of the
most interesting phenomena, where quantum laws appear at
the macroscopic scale, is superconductivity. Moreover, in effects
such as flux quantization and the Josephson effect, the wave-
function phase of the superconducting condensate is important.
Therefore, such effects are called “macroscopic” quantum or
coherent effects. We have to separate these effects from “really
quantum” effects, where instead the superposition of macroscop-
ically distinct states is important. We will consider these issues
in Chapter 3, beginning with basic classical superconducting
systems and ending with their quantum counterparts, the
superconducting qubits.

(iv) One of the most striking quantum effects is the Aharonov–Bohm
effect, where the changes of a wave function are defined by the
magnetic-field vector-potential and not by the magnetic field
itself. For multiply-connected mesoscopic normal samples, this
results in the oscillatory dependence of the conductance on the
magnetic flux. In particular, this results in the appearance of
the so-called persistent current in a normal-metal ring pierced
by magnetic flux. Such interference can bear both constructive
and destructive character. This means that the current through
the circuit of several mesoscopic conductors cannot be described
by the aggregation of successive and parallel resistances. Such
a classical interpretation does not take inteference into account.
Also, the conductance itself does not follow Ohm’s law, but
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rather is described in terms of the conductance quantum. Thus,
the engineering of mesoscopic normal circuits differs in principle
from electronics of classical circuits. We will discuss this in
Chapter 4.

(v) Mesoscopic systems are interesting because they have param-
eters which are tunable over a wide range, and also because
they can be integrated with other systems. These could be
diverse systems: researchers study the connection of mesoscopic
systems with single atoms, with other mesoscopic systems, or
with macroscopic circuits. Then they form compound systems.
They are also called hybrid systems, if the subsystems are
diverse. Here an important example is the connection with a
measuring circuit. In Chapter 5 we will consider coupling with
characteristic systems such as electric and nanomechanical res-
onators. The manner by which such systems can be described —
in terms of the dressed states when the resonator is quantum,
or in the framework of the semiclassical approximation when it
is classical — will be shown.

0.3. Fundamental and applied aspects of mesoscopics

As stated above, to a large degree, the emergence and the devel-
opment of mesoscopics may be attributed to progress in technology
and measurement techniques at the nano- and micro-scales. On the
other hand, these mesoscopic systems are an interesting avenue for
the creation of new electronic devices. That is why the field of study
of mesoscopic systems is also called quantum engineering.

It is interesting that new technological achievements of the
previous century were built also on the laws of quantum physics,
but are exploited as classical devices: lasers and transistors are
based on knowledge of the quantum spectra of gases and solids;
atomic energetics is based on quantum atomic physics. At that, the
phenomena and values which are observed and utilized (the current of
electrons and the flow of photons) include large numbers of quantum
particles, of which the averaged behaviour is described by classical
currents, voltages, and electromagnetic waves. The progress of the
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last decades allows for the discussion of the concept of quantum
devices, which are not only based on the laws of quantum physics,
but also function in the quantum regime.

At present, a great many quantum technologies are being devel-
oped, and we will cover them in the following chapters. To date,
some of them have resulted in the creation of commercial devices,
for example, in quantum cryptography. Another important example
(to date, arguably hypothetical) is the quantum computer. Will it
be realized and for what will it be used? This is an open question
(which will also be touched on in the next Chapter). But for us, and
researchers in general, it is more important to note that such ideas
have stimulated and continue to stimulate deeper and broader study
of fundamental physical phenomena.

Of less interest to the public, but more interesting for physicists
are the devices, which use new research findings and create the basis
for further exploration. In this sense, mesoscopic devices open up
unique possibilities: they work according to quantum laws, but have
variable parameters and can be connected to macroscopic systems.
One of such illustrative tools, which we will consider in detail,
is Landau–Zener–Stückelberg–Majorana interferometry. It will be
shown how the effects, which at the advent of quantum mechanics
were considered by the classicists for microscopic quantum systems,
can be realized with modern means and used to widen the quantum
toolbox.
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Chapter 1

SUPERPOSITION, ENTANGLEMENT,
AND QUANTUM COMPUTATION

“One of the goals of quantum computation and
quantum information is to develop tools which
sharpen our intuition about quantum mechan-
ics, and make its predictions more transparent
to human minds.”

[Nielsen and Chuang 2010]

The last three decades bore witness to the emergence of the new
research field, Quantum Computations (also known as Quantum
Information). Quantum Computations assumes the study of problems
related to the processing and transfer of information using the
laws and objects of quantum mechanics. The theory of quantum
information appeared at the intersection of earlier fields such as
information theory, computer sciences, and quantum mechanics. The
formalism and methodology of quantum optics, condensed matter
theory, and cryptography are also incorporated.

As we will discuss below in more detail, the long-standing goal of
the theory of quantum computations is the development of a quan-
tum computer.5 The realizations of the quantum search algorithm,
quantum cryptography, and quantum simulators are intermediate-
scale problems researchers are considering.6

5T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L.
O’Brien, Quantum computers, Nature 464, 45 (2010).

6I. Buluta and F. Nori, Quantum simulators, Science 326, 108 (2009);
I. Georgescu, S. Ashhab, and F. Nori, Quantum Simulation, Rev. Mod. Phys.
86, 153 (2014).

7
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On the other hand, tasks and problems formulated by quantum
computation theory stimulate the development and broadening
understanding of quantum physics laws. It is this last thesis of
quantum information theory that is the locomotive of the present
lecture course. In this chapter we will give an introduction to
quantum information theory, and, using the language of this theory,
show how the basic notions of quantum mechanics can be described.

1.1. Quantum computers

Even though different aspects of quantum information theory are
present in quantum physics from its very foundation, it is common
to consider the R. Feynman talk at the conference some 35 years ago
to be the beginning (see Footnote 4 on page 3; note that the idea
of quantum computations was proposed by Yu. Manin in 19807). In
that speech, Feynman discussed principal difficulties with simulating
quantum-mechanical systems with a usual (classical) computer. For
that, he proposed to construct principally new computers, based
on the laws of quantum mechanics. This thesis was later strictly
grounded and developed. Maybe, it will be this very application —
the simulation of quantum systems — that will become an important
realization of quantum computations (see Footnote 6 on page 7).

Another reason leading to the search for new principles of
calculations, is the shift in size of manufacturing elements of classical
computers to nanometer scales, where the laws of quantum mechanics
are relevant. Impressively, the development of computer technology
during the last fifty years obeyed Moore’s law with high accuracy.
This law predicted the doubling of computation power for the same
price every two years. To date, the progress was mainly due to
miniaturization of the elements. And now, when the characteristic
scales have shrunk down to the order of a few nanometers, quan-
tum phenomena must inevitably be taken into account. However,
quantum interference and fluctuations are ruinous for the operation
principles of a classical computer. Thus the necessity in searching

7Yu. I. Manin, Computable and Noncomputable, Moscow, Soviet Radio, 1980.
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for new models of informatization arises, and so the paradigm of a
quantum computer appeared. Despite the existing series of problems
of principle, many specialists believe that a quantum computer (if
ever created) will be more powerful than any imaginable computer
running on classical principles (see Footnote 5 on page 7).

The supremacy of a quantum computer, to date, is rather a tech-
nological issue. But there is another cause for studying the supremacy
of quantum computations. There are problems which a quantum
computer can solve effectively and a classical computer cannot. In
this context, the term effective calculations assumes the algorithms
which are realized for the times that grow polynomially with an
increase in the system; non-effective algorithms are realized on the
exponentially growing times. To date, three classes of problems have
been developed where the quantum computer is most effective. First
is the aforementioned quantum simulation. (For more information
on the recent progress in this direction of applications to quantum
chemistry, see Footnote 8.)

The second class of problems for quantum computers is the
decomposition of integer numbers in prime factors. The foundation for
this was proposed by D. Deutsch, and the corresponding algorithms
were developed by P. Shor. The third circle of problems for a quantum
computer was described by L. Grover — these relate to the search in
non-structured environment [Valiev 2005].

In the present course we will deal only shortly with algorithms
for quantum computers and we will not address many problems of
quantum information, such as error corrections. The goal of our intro-
duction is to consider conceptual points of quantum computation
theory.

So, what is a quantum computer? In the simplest approach, a
quantum computer contains a register of n qubits, controlled by
means of external classical pulses [Valiev 2005], see Fig. 1.1. The
controlled evolution of qubits state corresponds to the execution of
algorithms. This evolution from a state ψi to a state ψf is described
mathematically by a unitary matrix U of dimensionality 2n × 2n.

8A. Kandala et al., Nature 549, 242 (2017).
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Fig. 1.1. Schematic of a quantum computer.

After execution of an algorithm, the solution of the original problem
is defined from the measured state. In the following we will consider
this in more detail, but let us first discuss the notion of a qubit.

1.2. Qubits and superposition

A quantum bit, or a qubit, is in principle any quantum system with
two possible states. The general theory of quantum computation
and information is built on the notion of an abstract qubit, without
detailing its physical origin.

Analogously to how a bit is described by states 0 and 1, a qubit
is described by vector-states |0〉 and |1〉 . The qualitative distinction
is the ability of a qubit to be in a superposition state:

|ψ〉 = α |0〉 + β |1〉 . (1.1)

This can be interpreted as the ability of a qubit to be in states 0 and 1
simultaneously. Two qubits can simultaneously take four values —
00, 01, 10 and 11. Each additional qubit doubles the number of pos-
sible states. For n qubits there are 2n possible states. And a quantum
register of only 350 qubits can support 2350 values simultaneously.
This is more than the number of atoms in the visible part of the
universe, and more than the so-called googol, quantifying 10100.

The basis states of a qubit can be written in the form

|0〉 =

(
1

0

)
, |1〉 =

(
0

1

)
, (1.2)
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and then |ψ〉 = (α, β)T. As a graphic illustration, we can use the
so-called Bloch sphere, expressing the coefficients α and β through
the angles:

α = cos
θ

2
, β = eiφ sin

θ

2
. (1.3)

(The common phase factor is not written here since it does not result
in any observable consequence.) We can see that the poles, θ = 0, π,
correspond to basis states and the equatorial plane is described with
θ = π/2, which corresponds to the states equidistant from the poles,
where |α| = |β|. Then the vector-state evolution is described by
showing the trajectory on a sphere of unit radius in terms of the polar
and azimuthal angles, Fig. 1.2. A given state |ψ〉 can be described
as a consequence of two rotations from an initial state, say, from a
“north pole”:

|ψ〉 =

(
1 0

0 eiφ

)⎛⎜⎜⎝ cos
θ

2
− sin

θ

2

sin
θ

2
cos

θ

2

⎞⎟⎟⎠ |0〉 . (1.4)

The complex coefficients α and β can, in principle, take any two
values. From such a wealth of possibilities follows practical interest in

Fig. 1.2. Bloch sphere, demonstrating values of the vector-state.
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qubits. But can we make qubits macroscopic? This problem will be
discussed later. Now, in relation to the essence of superposition and
in relation to using quantum mechanics for description of classical
systems, let us consider the famous Schrödinger’s cat paradox.
This describes a cat in a box where there is a poison linked to a
radioactive atom. The cat is assumed to be alive until the atom
spontaneously decays, triggering the poison which kills the cat. In
such a formulation, according to the laws of quantum mechanics, a
system (the cat plus the atom) isolated from the external world is in
the quantum superposition of the two states:

|Ψ〉 = α |0, ↑〉 + β |1, ↓〉 . (1.5)

Here the states |↓/↑〉 correspond to the “ground” (dead) or “excited”
(alive) state of the cat at the decomposed atom (|1〉) and not-
decomposed atom (|0〉), correspondingly. Opening the box and
executing the measurement, we observe either a live or dead cat. The
vector-state is reduced to one of the components of the superposition
state. The paradox is whether the cat is alive or dead before
the measurement of the system state. From the point of view of
quantum mechanics (in its Copenhagen interpretation) there is no
paradox. The question of which state the system is in before the
measurement is forbidden. In the example of Schrödinger, formulated
so dramatically, the uncertainty was initially limited by the atom size
and then was extended to the macroscopic level, and this uncertainty
is resolved by direct observation. Even Schrödinger recognizes that
such a model of reality does not contain anything ambiguous or
controversial.

The fundamental problem is whether we can extend the principle
of quantum superposition to the macroscopically distinct states.
Applying classical description to a quantum system and ignoring
fundamental non-classical states result in paradoxical conclusions. At
present, it is clear that these paradoxical conclusions characterize an
unusual quantum reality that, nevertheless, takes place. And indeed,
recently the macroscopically distinct superposition states, also known
as the Schrödinger-cat states, were observed in diverse systems. We
will also discuss these later.
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Let us now discuss some possible physical realizations of qubits
on the basis of microscopic quantum systems.

1.3. Physical realizations of qubits

1.3.1. Requirements for the candidates in qubits

A physical system which is considered as a candidate for the role
of a qubit has to fulfill some criteria, compactly formulated as the
DiVincenzo criteria:

(1) Scalability. We need to have a scalable system of qubits with well-
defined parameters and with the ability to create the entangled
states. In particular, this means that the upper levels of the
physical realization of the qubit device are well separated from
the operational two levels.

(2) Initialization. There should be the ability to prepare given states.
For computations, this initial state can be the ground state.
Then, this can be reached by the cooling in practice.

(3) Isolation. Good isolation from the environment and large deco-
herence times are needed. These times should be at least three
orders of magnitude larger than a characteristic time needed for
an operation, to have the ability to work with the information
before it is lost, to transmit the information and to initialize the
quantum error correction algorithms.

(4) Control. We should have the ability to make one- and two-qubit
unitary operations. It was proven that these are sufficient for all
the problems on multi-qubit systems.

(5) Measurement. For finalizing quantum algorithms, we need the
capability to reliably measure the states of individual qubits.

In practice, however, we have to strike a balance among full
realizations of each criterion, since, for example, the last criterion
requires the read-out electronics, while the third criterion assumes
maximal isolation from the environment.

To date, there is a large number of different systems proposed
for the role of qubits. These systems can be microscopic two-level
systems, such as electronic states or photon polarizations, as well
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as artificial mesoscopic systems such as quantum dots and super-
conducting circuits. All these systems possess their own advantages
and disadvantages from the point of view of realizing controllable
two-level systems.

Microscopic systems have long coherence times, but it is difficult
to control them individually, to write and read out information.
Parameters of such systems, as a rule, are defined during the
manufacture of these systems and cannot be changed in the working
process of the device. Mesoscopic artificial circuits can be prepared
with the predetermined parameters, while their working parameters
can be changed during their deployment by means of external control-
ling currents or voltages. We will consider this in more detail using
the example of superconducting qubits. In contrast to microscopic
qubits, there are difficulties with isolating their mesoscopic analogues
from the environment.

1.3.2. About the control and manipulation

of individual quantum systems

Here it is appropriate to become familiar with two formulations
of problems related to modern prospects of working with micro-
scopic systems. Namely, consider the works of two groups of the
2012 Nobel Laureates — Serge Haroche and David Wineland. The
former studies the states of photons by means of atoms, while
the latter studies the states of atoms by means of photons. Such
formulation is characteristic of quantum optics, which is the field
studying the interaction of atoms and fields, matter and light.
The Nobel prize was awarded “for ground-breaking experimental
methods that enable measuring and manipulation of individual
quantum systems”. Here we can clarify that this refers to microscopic
quantum systems. And in the present course, we will largely con-
sider how to probe and manipulate individual mesoscopic quantum
systems.

Of interest in our current discussion is an opinion expressed by the
Nobel committee regarding the prospects of this research. Quoted
verbatim: “Their methods have enabled this field of research to
take the very first steps towards building a new type of super-fast
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computer based on quantum physics. Perhaps the quantum computer
will change our everyday lives in this century in the same radical way
as the classical computer did in the last century.”

At present, researchers study not only individual qubits of
different kinds, but also hybrid systems, which include subsystems of
diverse types.9 In such composite systems, diverse elements can be
used for writing, saving, treating and reading-out the information.

Among the realizations of two-level systems we can single out
such fundamental objects as spins, photons and two-level atoms. We
shall now briefly consider such microscopic realizations of qubits as
a repetition of what is known, while the mesoscopic systems will be
considered later in detail, in the following chapters.

1. Spin and photon

Let us give a refresher on particle spin in magnetic field, known from
the course of quantum mechanics (see Chapters 8 and 15 in [Landau
and Lifshitz 1977]).

The Hamiltonian of a particle with a spin in the electromagnetic
field has the form

Ĥ =
1

2m

(
�̂p− e

c
�A
)2

+ eϕ− �̂μ �H, (1.6)

where ϕ and �A are the scalar and vector potentials of the field,
�H stands for the magnetic field, �̂μ is the magnetic-moment operator,
corresponding to the spin, �̂μ = μ

s �̂s, with s and �̂s being the value
and the operator of the spin. In particular, for an electron, the
ratio μ/s equals − |e| �/mc, which means that the electron intrinsic
magnetic moment equals, up to the sign, to the Bohr magneton, μB =
� |e| /2mc. This can be rewritten, introducing the Landé g-factor,
which for an electron equals approximately to 2: μ = −gμBs = −μB.

Usually we can factorize a particle wave function into the
coordinate and spin parts. Being not interested in the free-motion

9Z.-L. Xiang, S. Ashhab, J.-Q. You, and F. Nori, Hybrid quantum circuits:
superconducting circuits interacting with other quantum systems, Rev. Mod.
Phys. 85, 623 (2013).
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wave function, we consider only the spin part of the Hamiltonian.
For a particle with spin s = 1/2, the spin operator is given by the
Pauli matrices, �̂s = 1

2 �̂σ, and the Hamiltonian equals (omitting the
hats, here and below):

H =
1
2
gμB�σ �H, (1.7)

�σ = (σx, σy, σz), σx =

(
0 1

1 0

)
,

σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
.

(1.8)

In the general case, it is interesting to formulate the problem,
when there are constant and alternating components of the magnetic
field. Choosing the former along the x axis and the latter along the
z axis and introducing an evident change in notations, we obtain

H = −Δ
2
σx − ε(t)

2
σz. (1.9)

So, we have obtained the Hamiltonian describing spin 1/2 particle.
The spin wave function — the spinor — is the two-component
column vector. As the basis, we can take, for instance, the eigen-
vectors of the σz operator. We can also find eigen-values of the
Hamiltonian; there are two of them and they describe our two-level
system, the qubit. We will consider this in more detail in the next
Chapter.

An analogous Hamiltonian can be used to describe other two-
level systems. Then the Hamiltonian is called pseudo-spin one. One
example involves the energy levels of a two-atom molecule, e.g. the
ammonia molecule. This is nicely described in §79 of [Landau and
Lifshitz 1977] and in Chapter 7 of the Feynman lectures.10

Consider now another (flying) qubit — a photon. As we will see,
this also can be considered as a particle with pseudo-spin 1/2, see

10R. Feynman, R. B. Leighton, and M. L. Sands, The Feynman Lectures on
Physics, Vol. III, Quantum Mechanics, Addison-Wesley, MA (1965).
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for more detail §1.2 in [Blum 1981] and in the review article by
Klyshko.11

Let us start here from the electromagnetic field of a plane
monochromatic wave travelling along the z axis:

E = ReAe exp (ikz − iωt), (1.10)

where A is the wave amplitude and k is the wave number, which is
related to the wavelength Λ, k = 2π/Λ. Polarization unit vector
(Jones vector) e is perpendicular to the direction of the wave
propagation, so it can be decomposed into two components:

e = αex + βey,

α = cos
θ

2
, β = eiϕ sin

θ

2
.

(1.11)

We have presented the wave as a superposition of two plane-polarized
waves, described by the unit vectors ex and ey. The coefficients are
chosen so that the absolute value of the vector e is unity, ee∗ = 1. In
particular, at α = β = 1/

√
2, the photon is polarized at angle π/4 to

the x axis, and with α = 1/
√

2 and β = ±i/√2 it has right and left
polarizations, respectively. The latter case corresponds to ϕ = ±π/2
and θ = π/2, and it gives e = (ex ± iey) /

√
2. In the general case we

have elliptic polarization.
For a single photon, one can define the state vector |e〉, which

can be decomposed in the basis vectors, corresponding to the
polarizations along the x and y axes:

|e〉 = cos
θ

2
|ex〉 + eiϕ sin

θ

2
|ey〉. (1.12)

This vector is fully analogous to a qubit, which is a system with
the vector-state defined in Eq. (1.1). One can visualize a state
of a photon-qubit by choosing the parameters ϕ and θ as the
azimuthal and polar angles, respectively. Then the states with
different polarizations will be described by points on the unit sphere

11D. N. Klyshko, Basic quantum mechanical concepts from the operational
viewpoint, Phys. Usp. 41, 885 (1998).
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which is called Poincaré sphere. This is analogous to the Bloch sphere
considered above.

Here we have to clarify that, strictly speaking, a photon cannot
be ascribed a notion of spin as the full angular momentum at
rest, since its mass at rest equals to zero. Formally, however, a
spin equal to unity can be ascribed to a photon, since its wave
function is described by the vector (1.10). But since the magnetic
field is perpendicular to the propagation direction, which is along
the z axis, the projection of spin in perpendicular direction is
excluded, and there are only two possible values for the spin
direction, along and against the propagation. These are characterized
by the value λ = ±1, which is called the spirality of a photon.
The spirality equals the projection of a full moment J = L + S,
consisting of the orbital moment and the spin, to the z axis: Jez =
(L + S) ez = Sez = λ. From quantum electrodynamics we know
that the states with λ = ±1 correspond to the light with circular
polarization, which is called right/left polarization respectively, and
they are described by the vector-state |±1〉. As we have seen,
|±1〉 = ∓ (|ex〉 ± i |ey〉) /

√
2.

So, formally one can match the states of definite spirality |±1〉
with the spin 1/2 particle. These vectors can be described by the
two-component columns, see Eq. (1.2). This basis can be used to
decompose an arbitrary state: |e〉 = α |+1〉+ β |−1〉. Thus, a photon
can be a (flying) qubit, of which the role of the quasi-spin is fulfilled
by the polarization.

1.4. Quantum logic operations

1.4.1. One-qubit operations

The coefficients α and β in (1.1) satisfy the condition of the
normalization |α|2 + |β|2 = 1. This condition also has to be satisfied
by |ψ′〉 = U |ψ〉 = α′ |0〉 + β′ |1〉. From here it follows that 〈ψ′ |ψ′〉 =
〈ψ|U †U |ψ〉 = 1. That is why the evolution is described by a unitary
operator: U †U = I, where U † =

(
UT
)∗. The unitarity is the only

restriction for the quantum operations. This means that any unitary
matrix defines some quantum operation. This is in contrast with the
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classical case, where there is only one nontrivial one-bit operation,
NOT (0 → 1 and 1 → 0).

To the most important quantum operations we can attribute the
following: X (or NOT), Y , Z — they coincide with the respective
Pauli matrices —

X ≡ σx =

(
0 1

1 0

)
, Y ≡ σy =

(
0 −i
i 0

)
,

Z ≡ σz =

(
1 0

0 −1

)
,

(1.13)

and also the Hadamard operation (H), phase shift (S) and the
so-called π/8 element (T ):

H =
1√
2

(
1 1

1 −1

)
, S =

(
1 0

0 i

)
, T =

(
1 0

0 eiπ/4

)
. (1.14)

One can see that H = X+Z√
2

, S = T 2, and the name of the T matrix

becomes clear, if we take the factor eiπ/8 out of it. The Hadamard
operation is also called “square root from NOT”, since it transforms
|0〉 → (|0〉 + |1〉) /√2 — half-way between |0〉 and |1〉 (albeit H2 =
I 
= X). Note that the i-th basis vector has 1 in the i-th position.
That is why the effect of the matrices on the basis vector |0〉 is defined
by the first column, on the vector |1〉 by the second column, etc. The
result of making the logic operations is illustrated in Fig. 1.3.

Fig. 1.3. Logic NOT, Z, and Hadamard operations.
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1.4.2. Controlled-NOT operation

Any one-qubit operation can be realized using a finite set of quantum
operations. More generally, arbitrary quantum computation on any
number of qubits can be realized, using a final set of operations, which
is called the universal set of operations for quantum calculations.
There is the statement (In [Nielsen and Chuang 2010] §4.5) that
arbitrary operation on the space of states of n qubits can be realized
using only one-qubit elements together with the controlled-NOT
(CNOT) element. We will consider the latter below. One of the
possible universal sets — the so-called standard set — consists of
the Hadamard, phase shift, π/8, and CNOT elements.

*In the theory of classical calculations there are 5 basic multi-bit
classical operations: AND, OR, XOR (exclusive-OR), NAND (AND
and NOT), and NOR (OR and NOT). These operations act on two
bits and give one bit at the output. There is the statement: any
function on bits can be calculated from the combination of only
NAND operation, which is then called the universal gate (operation).

So, even though there are many interesting gates (operations), any
multi-qubit operation can be composed from one-qubit operations
and the CNOT operation. This latter two-qubit operation is defined
by the impact of the first (control) qubit on the second (target)
qubit, so that the value of the latter is changed only if the value of
the former is 1. To be more specific, this reads:

|00〉 → |00〉 , |01〉 → |01〉 , |10〉 → |11〉 , |11〉 → |10〉 . (1.15)

Or, shortly: |A,B〉 → |A,B ⊕A〉, where the symbol ⊕ denotes
summation modulo 2; see Fig. 1.4.

It is useful also to write down the matrix presentation of this
operation, UCNOT. For this, let us first define the basis. Note that

Fig. 1.4. Controlled-NOT (CNOT) operation.
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the vector-state for the two-qubit system is constructed by rules of
the tensor product:

|ψ1, ψ2〉 ≡ |ψ1〉 |ψ2〉 ≡ |ψ1〉 ⊗ |ψ2〉 =

(
α

β

)
⊗
(
γ

δ

)

=

⎛⎜⎜⎜⎜⎝
α

(
γ

δ

)

β

(
γ

δ

)
⎞⎟⎟⎟⎟⎠ ≡

⎛⎜⎜⎜⎜⎝
αγ

αδ

βγ

βδ

⎞⎟⎟⎟⎟⎠. (1.16)

This means that the basis vectors have the form

|00〉 ≡ |0〉 |0〉 ≡ |0〉 ⊗ |0〉 =

⎛⎜⎜⎜⎜⎝
1

0

0

0

⎞⎟⎟⎟⎟⎠,

|01〉 =

⎛⎜⎜⎜⎜⎝
0

1

0

0

⎞⎟⎟⎟⎟⎠, |10〉 =

⎛⎜⎜⎜⎜⎝
0

0

1

0

⎞⎟⎟⎟⎟⎠, |11〉 =

⎛⎜⎜⎜⎜⎝
0

0

0

1

⎞⎟⎟⎟⎟⎠. (1.17)

Again, the i-th basis vector has 1 in the i-th position. That is why
the effect of UCNOT on the first basis vector is defined by the first
column, etc. We have

UCNOT =

⎛⎜⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞⎟⎟⎟⎟⎠. (1.18)

*We can remark that the CNOT operation is the generalization
of the XOR operation. But the other classical operations do not
have any quantum analogue since they are the irreversible oper-
ations. Then, say, having A ⊕ B at the input, we cannot restore
A and B from the output.
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Fig. 1.5. Controlled U -operation (a) and its particular case, CNOT
operation (b).

*Generalization of the CNOT operation on the three-qubit system
with two control qubits and one target qubit realizes the Toffoli
gate. This operation allows irreversible logic operations to be made
and in this way classical calculations are realized on a quantum
computer. So, a quantum computer can simulate (work as) a classical
computer.

We can also introduce the generalization for the CNOT operation
for the case of many qubits. In Fig. 1.5 the U -operation is demon-
strated, with the particular case being the CNOT operation.

1.5. Quantum schemes

1.5.1. Measurement and swap

We consider the simplest quantum schemes, both to familiarize
ourselves with the quantum calculations, and to understand the
important link of this field to the foundations of quantum mechanics.

In Fig. 1.6 we present some of the basic quantum schemes, the ones
for the measurement and for the swap operation. The measurement
operation gives a classical bit M . For the state |ψ〉 = α |0〉 + β |1〉
this bit is 0 with the probability |α|2 and 1 with the probability |β|2.
The scheme of the swap operation consists of triple CNOT operation

Fig. 1.6. (a) Operation of measurement and (b) the swap operation and its
symbol.
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and is described by exchanging the qubit’s states, |a, b〉 → |b, a〉:
|a, b〉 → |a, a⊕ b〉 → |a⊕ (a⊕ b), a⊕ b〉

= |b, a⊕ b〉 → |b, (a⊕ b) ⊕ b〉 = |b, a〉. (1.19)

1.5.2. No-cloning theorem

Classical copying of a bit can be realized by means of the CNOT
operations, as is shown in Fig. 1.7(a).

Let us now try to analogously copy the state |ψ〉 = α |0〉 + β |1〉.
Then we get

[α |0〉 + β |1〉] |0〉 = α |00〉 + β |10〉 → α |00〉 + β |11〉. (1.20)

If we have |ψ〉 = |0〉 or |ψ〉 = |1〉, then this would give copying, but,
in the general case, we expect at the output

|ψ〉 |ψ〉 = α2 |00〉 + αβ |01〉 + αβ |10〉 + β2 |11〉. (1.21)

It turns out that it is impossible to copy an arbitrary quantum
state. (More precisely, the cloning operation can copy only orthogonal
states, here – |0〉 and |1〉.) This statement is known as the no-cloning
theorem.

Consider a simple proof of the theorem. Let the first qubit be in
the state |ψ〉, and the second qubit be in some state |s〉. Let us assume
that by means of a certain unitary transformation U it is possible
to copy the desirable state: |ψ〉 ⊗ |s〉 → U (|ψ〉 ⊗ |s〉) = |ψ〉 ⊗ |ψ〉 .
Next, let us perform the same copying procedure with the state |φ〉.
Then we have U |ψ〉 |s〉 = |ψ〉 |ψ〉 and U |φ〉 |s〉 = |φ〉 |φ〉. We take the
inner product of the two equalities. This means that we multiply the
former with the conjugate of the latter, 〈s| 〈φ|U † = 〈φ| 〈φ|, and we
obtain 〈ψ |φ〉 = 〈ψ |φ〉2. This equation has the form x = x2, and its

Fig. 1.7. Classical circuit for copy operation (a) and its quantum analogue (b).
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solution is either 0 or 1. So, we can clone only orthogonal (basic)
states, and not an arbitrary state.

1.5.3. Bell states

In quantum information it is important to consider the so-called Bell
states. These can be introduced as the states derived from the basis
states by making use of the Hadamard operation and the controlled-
NOT operation, as shown in Fig. 1.8.

Then we obtain:

|00〉 → |00〉 + |11〉√
2

≡ |B00〉 , |01〉 → |01〉 + |10〉√
2

≡ |B01〉 ,

|10〉 → |00〉 − |11〉√
2

≡ |B10〉 , |11〉 → |01〉 − |10〉√
2

≡ |B11〉 .
(1.22)

These states are maximally entangled. This means that they are
significantly far from the separable states of the form |00〉 + |01〉 =
|0〉 (|0〉 + |1〉). The entangled states are defined as the states which
cannot be rewritten in the form of a tensor product of one-particle
states. The states above are called the Bell states or EPR pairs.
Indeed, consider a separable state

(α1 |0〉 + β1 |1〉) (α2 |0〉 + β2 |1〉)
= α1α2 |00〉 + α1β2 |01〉 + β1α2 |10〉 + β1β2 |11〉 . (1.23)

From this, to obtain, say, |B00〉, it is necessary to make the factors
α1β2 and β1α2 zero, but then we cannot obtain nontrivial factors
before |00〉 and |11〉.

Here EPR stands for the names Einstein, Podolsky, and Rosen,
who, in relation to the interpretation of such states, formulated
the known paradox (see Footnote 3 on page 3). Their paradox

Fig. 1.8. Preparation of the Bell states |Bxy〉.
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expresses the hesitation in the existence of quantum correlations.
However, since the existence of these correlations has been proven,
it is probably correct to refer to this as the effect rather than the
paradox. In this relation it is “astonishing that in standard textbooks
of quantum mechanics the notion of the entanglement in quantum
systems is often even not mentioned” [Valiev 2005].

So, consider the EPR paradox in its simplified formulation. Let
the pair of quantum particles be prepared in an entangled state, say,
in the singlet state |B11〉. Assume that these particles are separated
in space. The particles continue to stay in the entangled state with
the total spin being 0. Because of the quantum correlation of these
two particles (which are in the entangled state), the measurement
of one of them immediately defines the value of another — in our
case, with the opposite spin. Namely, if the measurement of the first
particle state gives |0〉, then the second particle is in the state |1〉;
and if for the first particle we have |1〉, then for the second one we
know that its state is |0〉. But there is no contradiction, if one takes
into account the nonlocality of quantum correlations, which explains
this “immediate long-range interaction”. Note that the information
about the measurement should be transferred via a classical channel
and there is no contradiction that the information is travelling faster
than the light velocity (which was assumed by the EPR paradox).
EPR claimed that quantum mechanics is not complete and there
are “hidden parameters” which define the result of a measurement
and do not contradict the physical principle of locality. Later this
dilemma was formulated in the form of the so-called Bell inequalities.
Convincing experimental proofs of the Bell inequalities gave the
answer to these questions: the quantum mechanics is complete, it
does not contain hidden parameters, and the quantum correlations
bear nonlocal character.

Now, before we consider the Bell inequalities, in addition to what
was said, it is appropriate to review how measurements are described.

1.5.4. Projective measurements

Measurements are described by the measurement operators {Mm}
(they are also called the projectors on the proper subspace of the
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operator M). If a system is in the state |ψ〉, then the probability of
measuring the result m equals p(m) = 〈ψ|M †

mMm |ψ〉, and after the
measurement, the system can be found in the state Mm |ψ〉 /√p(m).
(At that, the completeness condition is fulfilled,

∑
M †

mMm = I,
which means that

∑
p(m) = 1.)

In particular, for one qubit in the calculation basis, that is in
the basis {|0〉 , |1〉}, we have Mm = |m〉 〈m|, and there are relations
M †

m = Mm and M2
m = Mm. For example, consider the state |ψ〉 =

α |0〉 + β |1〉 and the measurement result of the state |0〉 with the
operator M0 = |0〉 〈0|; this appears with the probability p(0) = |α|2,
and the state after the measurement will be α |0〉 / |α|.

Consider now the probability of measuring the first qubit in
the |0〉 state for a system of two qubits in the state |B11〉: with
the operator M (1)

0 =
∑ |0j〉 〈0j| = |00〉 〈00| + |01〉 〈01| we obtain

p(1)(0) =
〈
M

(1)
0

〉
= 〈B11|M (1)

0 |B11〉 = 1/2 and the wave function
after the measurement M (1)

0 |B11〉 /
√
p(1)(0) = |01〉 ≡ |0〉 |1〉. For

an arbitrary state |ψ〉 = α00 |00〉 + α01 |01〉 + α10 |10〉 + α11 |11〉
the probability of the first qubit to be in the state |0〉 equals
p(1)(0) = |α00|2 + |α01|2, and after the measurement we obtain
|ψ′〉 = (α00 |00〉 + α01 |01〉) /

√
p(1)(0).

An arbitrary projective measurement is described by the operator
M =

∑
mMm =

∑
m |m〉 〈m|. Then for the expectation value we

have E(M) =
∑
mp(m) =

∑
m 〈ψ|Mm |ψ〉 = 〈ψ|∑mMm |ψ〉 =

〈ψ|M |ψ〉. For example, let the problem be formulated to define one
of the Bell states. We enumerate them by the number m, from 1 to 4,
so that {|m〉} = {|B00〉, |B01〉, |B10〉, |B11〉}. Then the projective
measurement of a certain state |k〉 gives

M = 〈M〉 = 〈k|
(∑

m

m |m〉 〈m|
)
|k〉 =

∑
m

mδmk = k. (1.24)

In conclusion of this excursus into quantum mechanics, we note
that the measurement of one of the basis states does not change this
state. This means that if we measure a basis state |k〉 in this basis,
then we obtain p(m) = 〈k|M †

mMm |k〉 = δmk, which in turn means
that with the probability p(k) = 1 we find the system in the state |k〉.
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At the same time, after the measurement, the system can be found in
the state Mm |k〉 /√p(m) = |k〉. Hence, such measurement does not
change the system state and is called the quantum non-demolition
measurement (QND).

1.5.5. Bell inequalities

Let us compare correlations in classical and quantum cases using the
example of the measurement series of a two-qubit system.12,13 Let
the system be initially prepared in the singlet state |B11〉 = |01〉−|10〉√

2
.

The measurement of a spin in a certain direction of a vector �a is
given by the projection of the spin operator �σ = (σ1, σ2, σ3) on this
selected direction, σa = σiai; the eigenvalues of the spin-projection
operator are ±1. Let the measurable value be the projection of the
first spin on �a and the projection of the second spin be on �b. One can
demonstrate the following:

〈B11| �σ�a⊗ �σ�b |B11〉 = −ā�b. (1.25)

This can be done, for example, by considering this correlator
component-wise:

〈B11|�σ�a⊗ �σ�b |B11〉 = aibj 〈B11|σ(1)
i σ

(2)
j |B11〉

= aibj
1
2

(
σ

(1)
i,00σ

(2)
j,11 + · · ·

)
= −aibi. (1.26)

Here σ
(1)
i = σi ⊗ σ0 and σ

(2)
i = σ0 ⊗ σi are the spin matrices

corresponding to the operators of the first and the second qubits;
σ0 is the unity matrix. Indeed,

�σ�a⊗ �σ�b = �σ�a · σ0 ⊗ σ0 · �σ�b = �σ(1)�a · �σ(2)�b, (1.27)

where it was taken into account that A⊗B · C ⊗D = AC ⊗BD.

12A. S. Holevo, Introduction to the quantum theory of information: Moscow,
lectures in the Russian Quantum Center (2013).
13N. V. Evdokimov, D. N. Klyshko, V. P. Komolov, V. A. Yarochkin, Bell’s
inequalities and EPR-Bohm correlations: working classical radiofrequency model,
Phys.–Uspekhi 39, 83 (1996).
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Let us define the so-called Bell observable as a result of the four
measurements:

Sq ≡
〈
σ(1)

a1
σ

(2)
b1

〉
+
〈
σ(1)

a1
σ

(2)
b2

〉
+
〈
σ(1)

a2
σ

(2)
b1

〉
−
〈
σ(1)

a2
σ

(2)
b2

〉
= −a1b1 − a1b2 − a2b1 + a2b2. (1.28)

Consider now the correlations in the classical model that satisfy
the locality principle. An analogous Bell observable for the random
values Xi and Yi, such that |Xi| , |Yi| ≤ 1, will be defined as

Scl ≡ E(X1Y1) + E(X1Y2) + E(X2Y1) − E(X2Y2). (1.29)

Here E(X) =
∑

m xmpm is the expectation of the value X, defined
by arbitrary probabilities pm. The Bell inequality can be written in
the form

Scl ≤ 2, (1.30)

which is known as the Clauser–Horne–Shimony–Holt (CHSH)
inequality. This follows from averaging the inequality

X1Y1 +X1Y2 +X2Y1 −X2Y2 ≤ 2. (1.31)

Here one can speculate more simply: let Xi = Yi = ±1. Then

X1Y1 +X1Y2 +X2Y1 −X2Y2

= X1(Y1 + Y2) +X2(Y1 − Y2) = ±2, (1.32)

and averaging this equality gives Eq. (1.30).
We return to the quantum correlations. Let us point the axes in

one plane with the following polar angles: 0 and π/2 for a1,2 and
5π/4 and 3π/4 for b1,2. We obtain, for the observable defined by
Eq. (1.27):

Sq = 2
√

2. (1.33)

So, classical description for the correlations of the spins of two
particles does not allow such value of correlation to be reached,
which corresponds to the predictions of quantum mechanics. And
as was pointed out above, multiple experimental verifications have
confirmed this latter statement: they observed the correlations,
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corresponding to the predictions of the quantum mechanics, assum-
ing violation of the Bell inequalities and non-local character of
the correlations; see, for example, the beautiful recent work in
Footnote 14.

1.5.6. Superdense coding

To illustrate a use of quantum mechanics, consider first the problem
on superdense coding [Nielsen and Chuang 2010]. In the simplest
approach, the problem is formulated as the transference of two bits
of information from, as they say, Alice to Bob. Quantum mechanics
allows this by transmitting only one qubit.

Consider Alice and Bob having, in the initial moment of time,
one qubit each out of the Bell pair |B00〉 = |00〉+|11〉√

2
. To solve the

formulated problem of transferring two bits of information, (i, j),
Alice makes the one-qubit operation with her qubit, which transfers
the qubit-pair state into the corresponding Bell state. Namely, if she
wants to transfer ij = 00, then she does not do anything (makes the
unitary transformation), and further

01 : |B00〉 X−→ |10〉 + |01〉√
2

= |B01〉 ,

10 : |B00〉 Z−→ |00〉 − |11〉√
2

= |B10〉 ,

11 : |B00〉 iY−→ − |10〉 + |01〉√
2

= |B11〉 .

(1.34)

Namely, this means that to transfer the bits (1,0), Alice makes the Z
operation with her qubit and so forth. As the result of the respective
operation, Alice changes the state of the pair: |B00〉 → |Bij〉. After
this, she sends her one qubit to Bob. Now, Bob has the whole EPR
pair. Making the measurement in the EPR basis, Bob gets the state
|Bij〉 with the unitary probability, as we discussed after Eq. (1.24).
So, after Alice transmits her one qubit, Bob receives two bits of
information.

14J. Handsteiner et al., Phys. Rev. Lett. 118, 060401 (2017).
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We note that to measure the Bell states, one can first change
them to the calculation-basis states. For this, Bob should dis-entangle
the Bell state by the circuit inverse to the one in Fig. 1.8. Making
CNOT and H1 gates, he would transform |B00〉 → |00〉, |B01〉 → |01〉,
|B10〉 → |10〉, |B11〉 → |11〉.

Moreover, such a way of transferring information is highly pro-
tected. Indeed, assume a malefactor intercepts a qubit sent by Alice.
She (let this be a woman) measures this qubit with some operator M .
But having only one qubit, she gets an identical result for the four
Bell states. Say, for |B10〉 she obtains:

〈B10|M ⊗ I |B10〉 =
1
2
(〈|00| − 〈|11|)M ⊗ I(|00〉 − |11〉)

=
1
2
(M00 +M11). (1.35)

And, as it is easy to check, she would obtain the very same result for
other |Bij〉 states. Here it is taken into account that the operator M
acts only on the first qubit, and that is why for the basis states we
have

〈i2i1|M |j1j2〉 = 〈i2| 〈i1|M |j1〉 |j2〉 = Mi1j1δi2j2 . (1.36)

1.5.7. Quantum teleportation

Consider transferring quantum information from Alice to Bob.
Assume they have one part from the EPR pair each. After this,
Alice, via classical channel, tells Bob the key, and he immediately
knows about the state of Alice’s qubit. So, we aim to consider
here the principle of quantum teleportation, which is the technique
of transferring quantum information in the absence of a quantum
information channel [Nielsen and Chuang 2010].

To solve this problem, Alice puts her principal qubit, of which the
state |ψ〉 needs to be transferred, into contact with her half of the
EPR pair, see Fig. 1.9. And then she measures the state of her two
qubits. She sends the information about her qubits’ states to Bob.
With this information Bob restores the state |ψ〉, using his half of the
EPR pair. Such a solution of the problem is illustrated in Fig. 1.9;
and this is described as follows.
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Fig. 1.9. Schematic of the qubit quantum teleportation.

Well, we need to transfer the state |ψ〉 = α |0〉+β |1〉. At the input
we have

|Ψ0〉 = |ψ〉 |B00〉 =
1√
2
[α |0〉 (|00〉 + |11〉) + β |1〉 (|00〉 + |11〉)],

(1.37)

where the first two qubits are at Alice’s disposal and the latter qubit
is what Bob has. Alice passes her pair through the controlled-NOT
gate,

|Ψ1〉 =
1√
2
[α |0〉 (|00〉 + |11〉) + β |1〉 (|10〉 + |01〉)]. (1.38)

Then she applies the Hadamard operation to the first qubit:

|Ψ2〉 =
1
2

[α (|0〉 + |1〉) (|00〉 + |11〉) + β (|0〉 − |1〉) (|10〉 + |01〉)]

=
1
2
[|00〉 (α |0〉 + β |1〉) + |01〉 (α |1〉 + β |0〉)

+ |10〉 (α |0〉 − β |1〉) + |11〉 (α |1〉 − β |0〉)]. (1.39)

It is worth reminding that we assume such notations: |0〉 |10〉 ≡
|010〉 ≡ |011203〉 ≡ |0112〉 |03〉 ≡ |01〉 |0〉. We can see from here that
as soon as Alice makes the measurement, Bob’s qubit is reduced to
one of the four states:

00 ⇒ |ψ3(00)〉 ≡ [α |0〉 + β |1〉] ,
01 ⇒ |ψ3(01)〉 ≡ [α |1〉 + β |0〉] , . . . . (1.40)
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After this Bob only needs to correct his result. In the first case,
he does not even have to do anything. In the second case he has to
make the X operation, and so forth. To be more precise, Bob has to
make the operation ZM1XM2 , where M1 and M2 stand for the values
measured by Alice on the first and second qubits.

Moreover, the quantum teleportation algorithm, considered here,
demonstrates the interchangeability of diverse resources in the quan-
tum mechanics: here, working with an EPR pair and transmission of
two classical bits of information was equivalent to the transmission
of one qubit of information.

1.5.8. Quantum parallelism — Deutsch algorithm

What differentiates a quantum computer from a classical computer,
in essence, is quantum parallelism. This assumes the ability to
simultaneously calculate a binary function f(x) for diverse values
x. For instance, assume the transformation Uf transfers the state
|x, y〉 into |x, y ⊕ f(x)〉. Then, if we prepare the first qubit in
the state |x〉= (|0〉 + |1〉)/√2 and the second qubit in the state
|y〉= |0〉, the operation Uf gives, at the output, the state (|0, f(0)〉+
|1, f(1)〉)/√2. This procedure is a prototype of the Deutsch algo-
rithm. This allows the two values of the function, f(0) and f(1),
to be probed with one measurement. To be more precise, we can
measure only one result, for example, f(0) ⊕ f(1). Thus, using
the state superposition, quantum parallelism can be realized as an
execution of the simultaneous calculation of n values of the function
f(x) on n qubits. Note that for this, a classical computer needs n
calculations.

Consider, for illustrative purposes, the problem of “how to see two
sides of a coin simultaneously.” Assume a binary variable x = (0, 1)
defines the coin side, and the function f(x) = (0, 1) defines the heads
or tails. If we define f(x) twice for the two values of x, we can get
four options for the answer: 0, 1, x, NOT(x). In the first two cases the
coin is false; in the last two cases the coin is not false. For definition
of the authenticity of a coin in a classical case, obviously, we need two
measurements, while in the quantum case one measurement suffices.
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Fig. 1.10. The algorithm, which realizes quantum parallelism. This demonstrates
solution of the problem, “how to see two sides of a coin simultaneously.”

The method of achieving this is demonstrated as a simple Deutsch
algorithm in Fig. 1.10.

At the input we feed the state |Ψ0〉 = |01〉 ≡ |0〉 |1〉. The
Hadamard operation changes this state to the following

|Ψ1〉 =
|0〉 + |1〉√

2
|0〉 − |1〉√

2
. (1.41)

Next, let us make the operation Uf such that |x, y〉 → |x, y ⊕ f(x)〉.
It can be demonstrated that this operation works as a phase
transformation:

|x〉 (|0〉 − |1〉) → |x〉 (|f(x)〉 − |1 ⊕ f(x)〉)
= (−1)f(x) |x〉 (|0〉 − |1〉). (1.42)

Here it was taken into account that |f(x)〉 − |1 ⊕ f(x)〉 = |0〉 − |1〉
for f(x) = 0 and |f(x)〉 − |1 ⊕ f(x)〉 = |1〉 − |0〉 for f(x) = 1. Then
we obtain

|Ψ2〉 =
1
2

(
(−1)f(0) |0〉 + (−1)f(1) |1〉

)
(|0〉 − |1〉) (1.43)

or

|Ψ2〉 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
±|0〉 + |1〉√

2
|0〉 − |1〉√

2
, f(0) = f(1),

±|0〉 − |1〉√
2

|0〉 − |1〉√
2

, f(0) 
= f(1).

(1.44)
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A subsequent Hadamard operation on the first qubit gives

|Ψ3〉 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
± |0〉 |0〉 − |1〉√

2
, f(0) = f(1),

± |1〉 |0〉 − |1〉√
2

, f(0) 
= f(1).

(1.45)

This is equivalent to the following

|Ψ3〉 = ± |f(0) ⊕ f(1)〉 |0〉 − |1〉√
2

, (1.46)

if we take into account that f(0) ⊕ f(1) = 0 for f(0) = f(1) and 1
for f(0) 
= f(1). So, the measurement of the first qubit’s state gives
the answer for the formulated question:

f(0) ⊕ f(1) = 0 ⇒ f(x) = const,

f(0) ⊕ f(1) = 1 ⇒ f(x) 
= const.
(1.47)

And thus, this algorithm allows definition of the global property of
the function after one measurement, namely to calculate f(0)⊕ f(1),
which requires one run here, instead of two runs as in the classical
case.

The problem considered demonstrates pictorially the advantages
of quantum correlations (entanglement), which do not reduce to
classical correlations. Also, one can consider here other exam-
ples, demonstrating “quantum supremacy”, including such beautiful
problems as the Merlin–Peres quantum telepathic game (§2.5 in
Footnote 12, page 27 of this book) and the Elitzur–Vaidman problem
about testing bombs (Chapter 2 in Footnote 15 below).

Conclusion to Chapter 1

In this chapter we pursued mainly two aims: to learn about quantum
information and to discuss related ideas in quantum mechanics,
which are both fundamental and important for applications.

We became familiar with ideas such as a qubit, quantum gates
and algorithms, the no-cloning theorem, quantum teleportation and

15R. Penrose, A. Shimony, N. Cartwright, S. Hawking, The Large, the Small and
the Human Mind, Cambridge, UK: Cambridge University Press (2000).

 M
es

os
co

pi
c 

Ph
ys

ic
s 

m
ee

ts
 Q

ua
nt

um
 E

ng
in

ee
ri

ng
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 B

.V
E

R
K

IN
 I

L
T

PE
 O

F 
N

A
SU

 o
n 

11
/1

6/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



July 4, 2019 14:13 Mesoscopic Physics meets Quantum Engineering 9in x 6in b3513-ch01 page 35

Superposition, Entanglement, and Quantum Computation 35

parallelism. On the other hand, we have considered microscopic real-
izations of qubits, such as spins and photons, as well as discussed the
superposition and entanglement of quantum states, Bell inequality
and other basic concepts in quantum mechanics.

In conclusion, it is appropriate to note that all these follow
from only several postulates, which describe the relation between
the physical world and the mathematical language of quantum
mechanics. That is why we will lay them out here, separately. Note
that in this Chapter, we have followed the textbook [Nielsen and
Chuang 2010] to a large degree.

Postulate 1. An isolated system is described fully by the vector-
state, which is defined in the space of the system states. In this space
the principle of superposition is satisfied.

Postulate 2. The time evolution of the state of a closed quantum
system is described by the Schrödinger equation i� d

dt |ψ〉 = H |ψ〉.
The solution of this equation is |ψ(t)〉 = exp

(− iH
�
t
) |ψ(0)〉; this

means that the evolution is described by a unitary transformation.
Postulate 3. Quantum measurements are described by a set

of measurement operators {Mm}. If before the measurement, the
system was in a state |ψ〉, then the probability of getting the result
m is p(m) =

〈
ψ
∣∣M †

mMm

∣∣ψ〉; after the measurement, the system will
be in the state Mm|ψ〉/√p(m).

Postulate 4. The space of states of a composite system is formed
by the tensor product of the subsystem subspaces. This postulate
can be interpreted as a generalization of the superposition principle
for the description of a composite system.

After reading this Chapter, we can see that Quantum Information
theory is largely based on the basic postulates of Quantum Mechan-
ics. On the other hand, we can see how the fundamental notions
of Quantum Mechanics become the working tools and language of
Quantum technologies.

Problems for independent work and for self-assessment

1.1. (*) Describe the action of the basic one-qubit operations,
Eqs. (1.13)–(1.14).

1.2. (*) Obtain the matrix for the CNOT operation.
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1.3. (*) Describe the swap operation.
1.4. (**) Prove the no-cloning theorem.
1.5. (*) Making use of the Hadamard and CNOT operations, obtain

the Bell states.
1.6. (**) Prove the relation (1.25), describing the measurement of

the two-spin system.
1.7. (***) Given the algorithm in Fig. 1.9, describe quantum

teleportation.
1.8. (***) Given the algorithm in Fig. 1.10, describe quantum

parallelism.
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Chapter 2

QUANTUM MECHANICS OF QUBITS

(Dynamical behaviour of a two-level system)

“In addition to the well-studied statics of
the quantum systems, mesoscopic physics adds
the new aspects of dynamics in quantum
mechanics.”

[Valiev 2005]

The problem of dynamical behaviour in a two-level system deserves
detailed discussion. First, this gives results for fundamental problems.
Second, it is very topical for mesoscopic systems, which have
parameters tunable in a wide range, and where the regimes of control
and interferometry are important. Third, it is a good example of the
accurate solution of a realistic problem. Fourth, this will allow us to
introduce useful formulas and approaches.

2.1. Two-level system

Consider a two-level system driven periodically. A two-level system
with the energy bias ε and the tunneling amplitude Δ is described
by the pseudospin Hamiltonian

H(t) = −Δ
2
σx − ε(t)

2
σz (2.1)

in terms of the Pauli matrices σx,z (we wrote about this above,
when we discussed Eq. (1.9)). Usually, the value Δ is assumed to
be constant, while the bias ε is considered to be a time-dependent

37
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controlling parameter. The most interesting is the situation with
monochromatic time dependence,

ε(t) = ε0 +A cosωt, (2.2)

with the amplitude A, frequency ω, and offset ε0.
We can split the one-qubit Hamiltonian into the time-independent

and time-dependent parts, H = H0 + V (t) with

H0 = −Δ
2
σx − ε0

2
σz, V (t) = −A cosωt

2
σz. (2.3)

First, let us define eigenvectors and eigenfunctions of the operator
H0 from the stationary Schrödinger equation H0|ψ〉 = E|ψ〉. Then
for |ψ〉 = α|0〉 + β|1〉 we have

(H0 − E)|ψ〉 = −1
2

(
ε0 + 2E Δ

Δ −ε0 + 2E

)(
α

β

)
= 0. (2.4)

Equating the determinant to zero, we obtain

E = E± ≡ ±1
2

√
Δ2 + ε20 ≡ ±1

2
ΔE, (2.5)

where we defined the distance between the qubit energy levels ΔE =
E+ − E− =

√
Δ2 + ε20.

Further we solve the system of equations (2.4); from the first
equation it follows

α = − Δ
ε0 + 2E

β, (2.6)

and from the normalization condition 1 = α2 + β2 we have

β2 =
1

1 + Δ2

(ε0+2E)2

=
(ε0 ± ΔE)2

(ε0 ± ΔE)2 + Δ2
=

(ΔE ± ε0)
2

2ΔE (ΔE ± ε0)

=
1
2

(
1 ± ε0

ΔE

)
≡ γ2

±. (2.7)

 M
es

os
co

pi
c 

Ph
ys

ic
s 

m
ee

ts
 Q

ua
nt

um
 E

ng
in

ee
ri

ng
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 B

.V
E

R
K

IN
 I

L
T

PE
 O

F 
N

A
SU

 o
n 

11
/1

6/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



July 4, 2019 14:13 Mesoscopic Physics meets Quantum Engineering 9in x 6in b3513-ch02 page 39

Quantum Mechanics of Qubits 39

Then we find α from the expression α2 = 1 − β2 and take into
account that from Eq. (2.6) we have sgn α = ∓sgn β. So, α± = γ∓
and β± = ∓γ±, and for the eigenfunctions of H0 we have

|E−〉 = γ+|0〉 + γ−|1〉,
|E+〉 = γ−|0〉 − γ+|1〉,

γ± =
1√
2

√
1 ± ε0

ΔE
.

(2.8)

This means, in particular, that at the point where the levels
maximally approach (or, as they say, at the point of the levels
quasicrossing), where ε0 = 0, we have

|E±〉 =
|0〉 ± |1〉√

2
, (2.9)

while far from this point: |E−〉 = |1〉 and |E+〉 = |0〉 at ε0 → −∞
and |E−〉 = |0〉 and |E+〉 = −|1〉 at ε0 → ∞. In Fig. 2.1 the levels
of the ground |E−〉 and excited |E+〉 states are shown by the solid
lines, and the dashed lines show the so-called diabatic states. These
states are defined as the eigenstates of the Hamiltonian with Δ = 0,
i.e. H0 = − ε0

2 σz; they are E↑,↓ = ∓ ε0
2 .

Fig. 2.1. Qubit energy levels with dependence on the energy bias ε0.
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It is useful also to arrive at the basis of the eigenstates |E±〉 in
a different way. For this, we note that the effective magnetic field in
the Hamiltonian (2.1) lies in the xz plane and we want to have this
along the z axis. For this we need to make the rotation around the
y axis:

S = exp
iζσy

2
= cos

ζ

2
+ iσy sin

ζ

2
, (2.10)

where it was taken into account that exp iα
n
σ = cosα+i
n
σ sinα. Let
us find the rotation angle ζ. Note that the unitary transformation
S changes the vector-state, |ψ〉 = S|ψ′〉; at this, the Schrödinger
equation i� ∂

∂t |ψ〉 = H|ψ〉 takes the form i�S ∂
∂t |ψ′〉 = HS|ψ′〉 or

i� ∂
∂t |ψ′〉 = H ′|ψ′〉, where the new Hamiltonian is H ′ = S†HS. We

would like to have this diagonal,

H ′ = −ΔE
2
σz ≡ −ΔE

2
(|E−〉〈E−| − |E+〉〈E+|) , (2.11)

so that

H ′|E−〉 = −ΔE
2

|E−〉 ≡ E−|E−〉,

H ′|E+〉 =
ΔE
2

|E+〉 ≡ E+|E+〉.
(2.12)

We obtain the equation for the desired rotation angle

H = −1
2

(
ε0 Δ

Δ −ε0

)
= SH ′S†. (2.13)

From here, by multiplying the matrices in the r.h.s., we obtain that ζ
is defined by the following: sin ζ = −Δ/ΔE and cos ζ = ε0/ΔE; that
is, tan ζ = −Δ/ε0. In particular, for the relation between the basis
vectors, we can write |Ei〉 = S†

ij |mj〉, where |Ei〉 = {|E−〉, |E+〉} and
|mj〉 = {|0〉, |1〉}. This means

|E−〉 = cos
ζ

2
|0〉 + sin

ζ

2
|1〉,

|E+〉 = sin
ζ

2
|0〉 − cos

ζ

2
|1〉,

(2.14)

which coincide with the formulas (2.8).
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2.2. Rabi oscillations

Even though a two-level system is one of the basic systems of
physics, specific calculations may present difficulties. In particular,
the Schrödinger equation for a two-level system with periodic driving
can be written in the form of the second-order differential equation
with periodic coefficients, which is the Hill equation. This cannot
be solved by quadratures. Nevertheless, in different regions of the
parameter space, we can use approximate analytic results. The choice
of approach depends on a specific problem and on the interrelation
among three key parameters: A, Δ, and ω.

Consider, first, a two-level system subjected to a weak periodic
field, which is described by the Hamiltonian (2.1). In this subsection
we will consider the excitation with weak amplitude and with the
frequency ω close to the resonant qubit frequency ωq ≡ ΔE/�:

A	 Δ, δω ≡ ω − ωq 	 ω. (2.15)

Let us first switch to the representation of the eigenstates of H0

with the help of the transformation S described above. Then we get
the Hamiltonian

H ′ = S†(H0 + V (t))S = −ΔE
2
σz − A cos ωt

2
(cos ζ · σz + sin ζ · σx).

(2.16)

We remind ourselves that in the new representation, the eigenstates
of H0 have the form:

|E−〉 =

(
1

0

)
, |E+〉 =

(
0

1

)
. (2.17)

This means that they are the eigenstates of the operator σz.
For the wave function we choose the following ansatz

|ψ′〉 = a(t)e−i
E−

�
t|E−〉 + b(t)e−i

E+
�

t|E+〉 =

(
aei

ωq
2

t

be−i
ωq
2

t

)
, (2.18)
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which means that we expanded the wave function with the eigen-
energy states depending on time. Then from the Schrödinger equa-
tion i� ∂

∂t |ψ′〉 = H ′|ψ′〉 we obtain

i�

(
ȧ

ḃ

)
= − A

4ΔE
(eiωt + e−iωt)

(
ε0a− Δbe−iωqt

−Δaeiωqt − ε0b

)
. (2.19)

Since we consider the excitation close to the resonance, ω ∼ ωq,
we can omit all the “fast-rotating” terms. This means that we can
omit the terms with the fast time dependence (for instance, e±iωt)
and leave the slowly varying terms of the form e±iδωt. This procedure
can also be explained by averaging Eq. (2.19) over the driving period.
This approach is known as the rotating wave approximation. We get(

ȧ

ḃ

)
= −i AΔ

4�ΔE

(
beiδωt

ae−iδωt

)
. (2.20)

Introducing the notation

Ω(0)
R =

AΔ
2�ΔE

, (2.21)

from Eq. (2.20) we obtain the following equation

ä− iδωȧ+
Ω(0)2

R

4
a = 0. (2.22)

With the substitution a = exp(iκt) we obtain the quadratic equation
in κ, the solution of which gives us κ1,2 = δω

2 ± ΩR
2 , where we defined

ΩR =
√

Ω(0)2
R + δω2. (2.23)

The value Ω(0)
R is called the Rabi frequency, and the value ΩR is

known as the generalized Rabi frequency. Then for a we obtain

a1,2 = A1,2e
i

δω±ΩR
2

t, (2.24)
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where A1,2 are constants, which we will find from the normalization
condition. From the first equation of the system (2.20) we have

b1,2 = −A1,2
δω ± ΩR

Ω(0)
R

ei
−δω±ΩR

2
t ≡ B1,2e

i
−δω±ΩR

2
t. (2.25)

From the normalization condition |a1,2|2 + |b1,2|2 = 1, taking into
account (2.25), we find

A1,2 =
1√
2

Ω(0)
R

ΩR

(
1 ± δω

ΩR

)−1/2

, B1,2 = ∓ 1√
2

(
1 ± δω

ΩR

)1/2

.

(2.26)

So, from Eq. (2.18) we obtain the basis wave functions and the
expansion in them:

|ψ′
1,2〉 =

⎛⎝ a1,2e
i

ωq
2

t

b1,2e
−i

ωq
2

t

⎞⎠ = e±i
ΩR
2

t

(
A1,2e

i ω
2

t

B1,2e
−i ω

2
t

)
,

|ψ′〉 = C1|ψ′
1〉 + C2|ψ′

2〉.

(2.27)

Assume that in the initial moment of time, the system was in the
ground state, |ψ′〉 = |E−〉. We find the expansion coefficients from
the system of equations

(
1

0

)
=

(
C1A1 + C2A2

C1B1 + C2B2

)
. (2.28)

Taking into account that A1B2 −B1A2 = 1 (which is easy to check),
we obtain C1 = B2 and C2 = −B1. In order to find the probability
of the system in the excited or ground state, we expand the wave
function in them: |ψ′〉 = C−|E−〉+C+|E+〉 =

(
C−
C+

)
. Writing down the

expression for C+, which is the bottom element of the column (2.27),
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we obtain

P+(t) = |C+|2 =
∣∣∣∣B1B22i sin

ΩR

2
t

∣∣∣∣2 =
Ω(0)2

R

Ω2
R

sin2 ΩR

2
t

=
1
2

Ω(0)2
R

Ω2
R

(1 − cos ΩRt) . (2.29)

This remarkable result shows the Rabi oscillations of the upper-level
occupation probability. This means that the system experiences the
oscillations with the period TR = 2π/ΩR, when with the unitary
probability it may appear in either the ground or excited state; see
Fig. 2.2(a). At this, the oscillation frequency is proportional to the
driving amplitude and is much smaller than the driving frequency:

ΩR ≈ Ω(0)
R =

AΔ
2�ΔE

∼ A

�
	 ω. (2.30)

The time-averaged probability is described by the Lorentzian shape:

P+ ≡ 1
TR

∫ TR

0
dtP+(t) =

1
2

Ω(0)2
R

Ω(0)2
R + (ω − ωq)

2
. (2.31)

This means that at ω = ωq(ε∗0) there is the resonance and the
average excitation probability has the maximum, 1

2 , see Fig. 2.2(b).
Note this fact. Namely, if we take into account that P− = 1 − P+,
then we obtain that P̄− ≥ P̄+, which means that it is impossible
to create the inverse occupation in a periodically driven two-level
system.

If we write the resonance condition in the form ΔE = �ω, then the
resonance can be interpreted as an exchange of one photon between
the external field and our two-level system. The next subsection is
devoted to the analogous multi-photon processes. Positions of one-
and multi-photon resonances are shown in Fig. 2.2(c). Observation
of such resonances in an experiment can be used for the defini-
tion of the distance between the levels. Such measurements are
called spectroscopy : having the fixed frequency one can define the
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(a) (b) (c)

Fig. 2.2. Resonant excitation of a two-level system: (a) Rabi oscillations,
(b) average upper-level excitation probability, (c) the energy levels and the
positions of the one- and multi-photon resonances, defined by the relations
ΔE(ε∗0) = �ω and ΔE(ε∗0,k) = k · �ω, respectively.

energy-level structure. Besides, from the half width at half maximum
(HWHM), i.e. where P+ = 1

4 , one can define the driving amplitude:
δωHWHM = Ω(0)

R ∝ A.

2.3. Multi-photon excitations

2.3.1. Schrödinger equation

Consider now the strong excitation of a two-level system with the
tunneling amplitude Δ a small value. That is when the following
conditions are fulfilled

Δ 	
√
A · �ω, k�ω ∼ ΔE, (2.32)

where the latter condition indicates the proximity of the energy of k
photons to the qubit energy, �ωq = ΔE ≈ |ε0|. The small parameter
of the problem is Δ2/A�ω; in the next Section we will see that this
defines the adiabaticity parameter, and hence here we consider the
case of the fast excitation. This means that the driving frequency
is sufficiently large. The former condition can be considered as the
condition on the driving amplitude (it is sufficiently large) or as
the condition on the value Δ (its smallness allows the assumption
ΔE ≈ |ε0|).
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Consider the Hamiltonian (2.3). Let us make the transformation
to the rotating coordinate system by means of the operator

U(t) = exp
(
− i

�

∫
V (t)dt

)
≡ exp

(
i
η(t)
2
σz

)
= cos

η

2
+ iσz sin

η

2
,

η(t) =
A

�ω
sinωt.

(2.33)

This operator links the wave functions ψ′ in the rotating system and
the ones in the original system ψ : ψ = U(t)ψ′. Then the Schrödinger
equation i�ψ̇ = Hψ with the substitution ψ = U(t)ψ′ takes the form:
i�Uψ̇′+i�U̇ψ′ = HUψ′. So, in the new system, we have i�ψ̇′ = H ′ψ′,

H ′ = U †HU − i�U †U̇ = U †HU − U †V (t)U = U †H0U

= −1
2

(
ε0 Δe−iη

Δeiη −ε0

)
= −Δ

2
(e−iησ+ + eiησ−) − ε0

2
σz,

(2.34)

where σ± = 1
2 (σx ± iσy), that is σ+ =

(
0 1
0 0

)
and σ− =

(
0 0
1 0

)
.

We now use the Jacobi–Anger expansion,

eix sin τ =
∞∑

n=−∞
Jn(x) einτ , (2.35)

where Jn(x) is the first-kind Bessel function. Then the new Hamil-
tonian takes the form

H ′ = −
∞∑

n=−∞

Δn

2
(e−inωtσ+ + h.c.) − ε0

2
σz,

Δn = ΔJn(A/�ω).

(2.36)

We note that, of course, the unitary transformation U does not
change the level occupations (which are the absolute values of the
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spinor components):

ψ =

(
ψ1

ψ2

)
= Uψ′ = ei

η
2
σz

(
ψ′

1

ψ′
2

)
=

(
ei

η
2ψ′

1

e−i η
2ψ′

2

)
. (2.37)

Here we first consider the evolution of a two-level system without
relaxation. We look for a solution of the Schrödinger equation i�ψ̇′ =
H ′ψ′ in the form

ψ′ =

⎛⎜⎜⎜⎝
ψ′′

1 exp
(
−ikωt

2

)
ψ′′

2 exp
(
i
kωt

2

)
⎞⎟⎟⎟⎠ . (2.38)

This corresponds to the transformation: ψ′′ = exp(ikωt
2 σz)ψ′. We

obtain the equations for ψ′′
1 and ψ′′

2 , which are solved absolutely
analogously to how we did this above. Consider the parameters in
the vicinity of a k-photon resonance, where k�ω ≈ ΔE ≈ |ε0|. In
other words, we now consider the case with small frequency detuning
δωk = kω − |ε0|/�. The rotating-wave approximation consists of
the assumption that in the vicinity of a k-photon resonance, the
fast-oscillating terms with n �= k can be neglected. Then it is
straightforward to solve the Schrödinger equation analogously to how
we did before for a one-photon excitation. As the result, we find the
probability of the upper state, assuming that the system initially was
in the ground state:

P
(k)
+ (t) = |ψ2(t)|2 = |ψ′′

2 (t)|2 = P
(k)
+ (1 − cos ΩR,kt),

ΩR,k =
1
�

√
Δ2

k + (k�ω − |ε0|)2, P
(k)
+ =

1
2

Δ2
k

Δ2
k + (k�ω − |ε0|)2 .

(2.39)

For A 	 �ω we can use the asymptote of the Bessel function:
Jk(x) ≈ xk

2kk!
. Remarkably, at small driving amplitudes A, the

HWHM is proportional to Ak, while for increased driving amplitudes
the HWHM is on the order of Δ. Furthermore, at the point of
resonance we have �ΩR,1 = Δ1 ≈ ΔA/2�ω; and this expression
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coincides with the one obtained above for the Rabi frequency,
Eq. (2.21), if we take into account that in the resonance �ω =
|ε0| ≈ ΔE. This is a remarkable and pedagogic result: look, we have
considered here the regime of the strong excitation that is of high
driving amplitude A, and then, formally, we have shifted to the limit
of the small amplitude. And with this we have obtained the correct
answer, coinciding with the result of the previous subsection!

2.3.2. Liouville–von Neumann equation

Let us now take the relaxation into account. We will describe the
system by the Bloch equations, which include two phenomenological
relaxation time parameters, T1 and T2. For the description of the
dissipative dynamics of a quantum system, it is convenient to use
the density matrix formalism [Blum 1981]. So, we will introduce here
the density matrix and consider the equation for it, first without
dissipation.

It was assumed above that a quantum system is described by a
wave function |ψ〉 — such states are called pure states. But often we
have the situation where a system’s wave function is not known and
we know only that the system with the set of probabilities pi is in the
states of the statistical ensemble of pure states |ψi〉. Such a state is
called a statistical mixture or a mixed state. Accordingly, the density
operator for a pure state is defined as ρ = |ψ〉〈ψ|, and for a mixed
state: ρ =

∑
pi|ψi〉〈ψi|.

From the definition of a density operator, the following properties
follow. It is Hermitian, ρ† = ρ.With this density operator, the system
can be fully described, since it defines the observable values, 〈A〉 =
Sp(ρA); at this Sp(ρ) = 1 and Sp(ρ2) ≤ 1, where the equality sign
corresponds to a pure state, for which ρ2 = ρ. For the description of
the density matrix, consider this in a specific basis {|en〉}:

|ψi〉 =
∑
n

a(i)
n |en〉,

ρnm = 〈en|ρ|em〉 =
∑

i

pi〈en|ψi〉〈ψi|em〉 =
∑

i

pia
(i)
n a(i)∗

m .
(2.40)
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A diagonal element of the density matrix ρnn =
∑
pi|a(i)

n |2 equals the
probability of the state |en〉 in the i-th component of the statistical
ensemble, averaged over the ensemble. So, the diagonal components
of the density matrix ρnn give the probability of observing the system
in the state |en〉. They are called occupations of the respective states.
Off-diagonal components contain the cross terms a(i)

n a
(i)∗
m and reflect

interference phenomena between the states |en〉 and |em〉 in the
coherent superposition of these states in the i-th component of the
statistical ensemble. For this reason, the off-diagonal components of
a density matrix are called coherences.

The equation for the density operator has to be fulfilled both for
the mixed and the pure states. For this reason we can allow ourselves
to consider the simpler case of a pure state:

d

dt
ρ =

d

dt
|ψ〉〈ψ| =

1
i�
H|ψ〉〈ψ| − 1

i�
|ψ〉〈ψ|H = − i

�
[H, ρ]. (2.41)

This equation is called the Liouville–von Neumann equation. (This
equation is also called either quantum Liouville equation or von
Neumann equation.)

Consider the Liouville–von Neumann equation for the case of
a single qubit. It is convenient to use the parametrization for the
density matrix in the form of an expansion in the Pauli matrices:

ρ =
1
2
(1σ0 +Xσx + Y σy + Zσz) =

1
2

(
1 + Z X − iY

X + iY 1 − Z

)

≡
(
ρ00 ρ01

ρ10 ρ11

)
. (2.42)

From the hermiticity requirement it follows that ρ01 = ρ∗10, and from
the normalization requirement it follows that ρ00 + ρ11 = 1.

It is useful to rewrite the Liouville–von Neumann equation for a
single qubit in the form of the so-called Bloch equation. For this,
we define the Bloch vector : 
R = (X,Y,Z). Then for the qubit
density matrix we have: ρ = 1

2(σ0 + 
R
σ). Let us write down the
Hamiltonian analogously, H = −�

2

H
σ, where we have defined the
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effective “magnetic field”, in analogy with the Hamiltonian of the
spin 1/2 in a magnetic field, H = −
μ 
H, see Eq. (1.6). In the case of
the qubit Hamiltonian (2.1) we have 
H = (Δ/�, 0, ε/�). Then for the
density matrix in a pure state we have:

|ψ〉 =

(
cos θ

2

eiφ sin θ
2

)
⇒ ρ = |ψ〉〈ψ| =

1
2

(
1 + cos θ e−iφ sin θ

eiφ sin θ 1 − cos θ

)
.

(2.43)

This means that the components of the Bloch vector are defined by
the polar and azimuthal angles:


R = (sin θ cosφ, sin θ sinφ, cos θ). (2.44)

Then the Liouville–von Neumann equation takes the form

1
2

̇R
σ = − i

�
(Hρ− ρH) =

i

4
[( 
H
σ)(
R
σ) − (
R
σ)( 
H
σ)]

=
i

4
[HiRjσiσj −HiRjσjσi] =

i

4
HiRj [σi, σj ].

(2.45)

In view that

σiσj = δij + iεijkσk, [σi, σj] = i2εijkσk, (2.46)

we obtain


̇R
σ = −εijkHiρjσk = − 
H × 
R · 
σ. (2.47)

From this relation, we have the equation for the vector 
R:


̇R = 
R× 
H. (2.48)

This equation formally coincides with the Bloch equations, without
relaxation for the evolution of a magnetic moment in a magnetic field.
This evolution corresponds to the Larmor precession of a vector 
R

around the effective magnetic field 
H with the angular frequency
| 
H | = 1

�

√
Δ2 + ε20 = ωq. (In order to see this, one can point the z axis

along 
H, then it follows that Rz = const and Rx ∝ sinωqt, Ry ∝
cosωqt.) So, in the absence of relaxation, the dynamics of a system’s
pure state is described by the precession of the vector 
R around the
vector 
H on the unitary Bloch sphere. In particular, if the vector 
H
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coincides with the x axis, i.e. ε0 = 0, then the precession takes place
in the (y, z) plane and the system periodically passes the north and
south poles, which means that it oscillates between the states |0〉 and
|1〉 — these are the so-called quantum beats. So, the quantum beats
allow the transition between the basis (physical) states to be realized.
However, if the qubit is initially in equilibrium, with 
R ‖ 
H, then
it would stay therein. In this case, the transition between the basis
states can be realized by applying the external periodic field, then we
obtain the Rabi oscillations, or by rapidly changing the Hamiltonian
parameters, i.e. by applying rectangular pulses.16

Consider once again the qubit evolution in the absence of any
external perturbation — now by solving the Liouville–von Neumann
equation in the energy representation with the Hamiltonian H0 =
−ΔE

2 σz = E−|E−〉〈E−| + E+|E+〉〈E+|, where E± = ±ΔE/2. In
this representation, from the Liouville–von Neumann equation, we
obtain: ⎧⎨⎩

ρ̇00 = 0,

ρ̇10 = − i

�
ΔEρ10.

(2.49)

The solution of these equations is ρ00 = const and ρ10 =
ρ10(0) exp

(− i
�
ΔEt

)
. These relations, once again, describe the quan-

tum beats.

2.3.3. Bloch equations

If we need to describe the impact of the environment, i.e. if our system
interacts with the reservoir, then the general approach consists of
the consideration of the Liouville–von Neumann equation for the
aggregate system. This equation is then averaged over the reservoir
degrees of freedom. After certain transformations and simplifications,
the Master kinetic equation is obtained. Section 2.5 is devoted
to this approach. Consider here, first, the relaxation phenomena
rather phenomenologically. For this, in order to obtain the decaying

16G. Wendin and V. S. Shumeiko, Superconducting quantum circuits, qubits and
computing, arXiv:cond-mat/0508729 (2005).
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solution, we have to add, in the r.h.s. of the equation ρ̇ij = − i
�
[H, ρ]ij ,

the additional term, −ρij−ρ
(0)
ij

τij
, and then we have

ρ̇ij = − i

�
[H, ρ]ij −

ρij − ρ
(0)
ij

τij
. (2.50)

Indeed, the solution of the equation ρ̇ij = −ρij−ρ
(0)
ij

τij
is ρij(t) = ρ

(0)
ij +

Ce−t/τij . Let us define further the equilibrium values for the density
matrix.

Given that our system is at thermal equilibrium with the
environment at temperature T , as it is known from the course
on statistical physics, the equilibrium density operator is ρ(0) =
exp(−H0/kBT )/Σ, where kB = 1.38 · 10−23 J/K is the Boltzmann
constant. Here, the statistical sum Σ = Tr exp(−H0/kBT ) plays the
role of the normalizing factor. Then for the matrix elements we have

ρ
(0)
00/11 =

1
Σ
〈E∓|e−H0/kBT |E∓〉 =

1
Σ
e−E∓/kBT

=
1
Σ
e±ΔE/2kBT , ρ

(0)
10 = 0. (2.51)

This means that the populations are defined by the Boltzmann
distribution. We find the normalizing factor from the condition
1 = ρ

(0)
00 + ρ

(0)
11 = 2

Σ cosh ΔE
2kBT . From this, we obtain the value for

the parameter Z of the density matrix in equilibrium, which defines
the difference in the level occupations:

Z(0) = ρ
(0)
00 − ρ

(0)
11 = tanh

ΔE
2kBT

. (2.52)

In particular, at low temperatures, we have Z(0) ≈ 1.
So, looking at Eq. (2.50), in the r.h.s. of the equation for Z we

have to add (Z − Z(0))/T1 and for the off-diagonal terms (that is
for X and Y ) we have to add a term of the form ρ10/T2. Here T1

and T2 are phenomenological energy relaxation time and decoherence
time, respectively. The Liouville–von Neumann equation with such
additions results in the so-called Bloch equations. Let us write them
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down here separately for diagonal and off-diagonal density-matrix
components, respectively:

ρ̇ii = − i

�
[H, ρ]ii − ρii − ρ

(0)
ii

T1
,

ρ̇ij = − i

�
[H, ρ]ij − ρij

T2
.

(2.53)

We note that for the off-diagonal terms we have ρji = ρ∗ij, and that,
instead of the diagonal terms, it is sometimes more convenient to use
their difference Z = ρ00 − ρ11.

In our case, we have to put the Hamiltonian (2.36) in the
equation. Leaving only the states with n = k in the rotating-
wave approximation (as it was discussed above), we write down the
Hamiltonian (2.36) in the form

H ′ = −1
2

(
ε0 Δke

−ikωt

Δke
ikωt −ε0

)
, Δk = ΔJk

(
A

�ω

)
. (2.54)

Then the Bloch equations (2.53) take the form:

ρ̇10 = i
Δk

2�
eikωtZ − i

ε0
�
ρ10 − ρ10

T2
,

Ż = i
Δk

�
(e−ikωtρ10 − c.c.) − Z − Z(0)

T1
.

(2.55)

After the substitution ρ10 exp(−ikωt) = 1
2(X̃ + iỸ ), we obtain the

following system of equations

˙̃X =
(
kω +

ε0
�

)
Ỹ − X̃

T2
,

˙̃Y = −
(
kω +

ε0
�

)
X̃ +

Δk

�
Z − Ỹ

T2
,

Ż = −Δk

�
Ỹ − Z − Z(0)

T1
.

(2.56)

In equilibrium, the solution of these equations corresponds to
equating the time derivatives in the l.h.s. of Eq. (2.56) to zero.
Then for the stationary value of the upper-level occupation, P (k)

+ =

ρ
(k)
11 = 1

2(1 − Z
(k)), we obtain at low temperature (when Z(0) ≈ 1,
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see Eq. (2.52)) the following formula

P+(ε0, A) =
∑

k

P
(k)
+ =

1
2

∑
k

Δ2
k

Δ2
k + T2

T1
(k�ω − ε0)2 + �2

T1T2

,

(2.57)

where we have replaced the summation index k → −k. This formula
is useful for the description of the multi-photon resonances in a two-
level system. Note that at T1 = T2 → ∞ this formula coincides
with the one obtained above, Eq. (2.39). We can see from Eq. (2.57)
that the upper-level occupation is maximal at ε0 = k · �ω, which
corresponds to the k-photon resonant transitions between the energy
levels, see Fig. 2.3(a). The width of the resonance lines is defined by
the numerator, which contains the Bessel function. Note that the
asymptotics of the Bessel function, at large values of its argument,

have the form: Jk(x) ≈
√

2
πx cos

(
x− π

4 (2k + 1)
)
; this is the function,

of which the second power (cf. Δ2
k) is quasi-periodic with the period

π. The positions of the Bessel-function zeros are shown by the crosses
in Fig. 2.3(a).

In Fig. 2.3(b) we present the interferogram for P+ in the strong-
driving regime, calculated with Eq. (2.57) for Δ/�ω = 0.8. Such
interferograms are useful as tools for studying realistic systems:
(a) one can define the system spectrum from the position of
resonances (multi-photon spectroscopy), (b) the driving amplitude
can be defined from the distance between the Bessel-function zeros
(power calibration), and (c) analyzing the shape of the resonances,
one can obtain the temperature and the relaxation times, parameters
which relate to the environment. Such an approach to the descrip-
tion of a quantum system is known as Landau–Zener–Stückelberg–
Majorana interferometry.17 This name came about because the
resonant excitation of a system can be explained as a result of
the Landau–Zener transitions (a.k.a. Landau–Zener–Stueckelberg–
Majorana transitions) between the system energy levels together

17S. N. Shevchenko, S. Ashhab, and F. Nori, Landau–Zener–Stückelberg inter-
ferometry, Phys. Reports 492, 1 (2010).
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(a) (b)

Fig. 2.3. Illustration of the Landau–Zener–Stückelberg–Majorana interferom-
etry: (a) position of the resonances and (b) dependence of the time-averaged
upper-level occupation probability P+ on ε0 and A. The restriction A > |ε0| will
be explained later. The data in panel (b) are calculated with the formula (2.57).
We can see several multi-photon resonances at ε0 = k�ω for k = 0, 1, · · · 9. Their
width is modulated by the Bessel functions. The important role is played by the
distance between the successive zeros of a Bessel function: they are marked by
crosses in (a) and they are visible as interruptions in the resonance lines in (b).

with the accumulation of the Stückelberg phase. These fundamental
phenomena are related to various physical systems; therefore the next
section, §2.4, is devoted to their detailed consideration.

2.4. Landau–Zener transitions and Stückelberg
oscillations

So, consider here one more approach to the solution of the problem
about the evolution of a two-level system (qubit), based on the
notion of the adiabatic evolution. This means that we will discuss
quite slow driving, with small frequency. Incidentally, the obtained
results describe correctly the problem with fast evolution as well (See
Footnote 17 on page 54).

2.4.1. Adiabatic energy levels

Consider the adiabatic evolution when a system evolves in one of
its adiabatic states, which are defined as the eigenstates of H(t).
This means that the adiabatic basis consists of the instantaneous
eigenstates of the time-dependent Hamiltonian. This corresponds to
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changing the problem on the eigenstates and eigenvalues in §2.1,
formulated as H0|E±〉 = E±|E±〉, to the following

H(t)|E±(t)〉 = E±(t)|E±(t)〉. (2.58)

Here, we may not solve this problem repeatedly, but rather use the
results from §2.1 with the substitution ε0 → ε(t). In particular, for
the adiabatic energy levels we obtain

E±(t) = ±1
2

√
Δ2 + ε(t)2 ≡ ±1

2
ΔE(t). (2.59)

The non-stationary Schrödinger equation i� ∂
∂t |E±(t)〉=H(t)|E±(t)〉,

together with Eq. (2.58), give

|E±(t)〉 = exp
(
− i

�

∫ t

0
E±(t′)dt′

)
|E±(0)〉 = e∓iζ(t)|E±(0)〉,

ζ(t) =
1
2�

∫ t

0
ΔE(t′)dt′.

(2.60)

{The account of the next-order terms in the quasi-classical (adia-
batic) approximation results in an additional π/4 to the phase (See
Footnote 17 on page 54).} Then, a wave function, which describes
the quantum state of a two-level system as a function of time, can
be expanded in the adiabatic basis,

|Ψ(t)〉 =
∑
±
c±(t)e∓iζ(t)|E±(0)〉 ≡

∑
±
b±(t)|E±(0)〉. (2.61)

Consider adiabatic evolution. Since in the adiabatic approxima-
tion the coefficients c± in Eq. (2.61) do not depend on time between
the quasi-crossings (i.e. the system does not pass from one adiabatic
state to another), the adiabatic evolution from t = ti to t = tf
can be described as the following: the coefficients b±(ti) = c±e∓iζ(ti)

become b±(tf) = c±e∓iζ(tf ). Here we can rewrite the phase, ζ(tf) =
ζ(tf)−ζ(ti)+ζ(ti) ≡ Δζ+ζ(ti), then b±(tf) = e∓iΔζb±(ti) (note that
|b±(t)| do not change). This can be conveniently written in the matrix
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form, after introducing the matrix U for the adiabatic evolution:

b(tf) = U(tf, ti)b(ti),

b(t) ≡
(
b−(t)

b+(t)

)
,

U(tf, ti) =

(
eiΔζ 0

0 e−iΔζ

)
= eiΔζσz ,

Δζ =
1
2�

∫ tf

ti

ΔE(t)dt.

(2.62)

Such a description, by means of the matrices linking the wave-
function amplitudes, is called the transfer-matrix method .

Let us describe the evolution graphically. The ε-dependent energy
levels are shown in Fig. 2.4. The important point is the approach of
the levels at ε = 0, which is also called quasi-crossing or avoided-
level crossing. Two solid lines represent the adiabatic energy levels.

(a)

(b)

Fig. 2.4. (a) The energy levels E in dependence on the bias ε. (b) The bias
ε represents the driving signal ε(t) = ε0 + A sin ωt, which oscillates between
εmin = ε0 − A and εmax = ε0 + A.
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Dashed lines are the diabatic energy levels E↑,↓, corresponding to
the diabatic states. The diabatic basis is formed by the eigenstates
of the operator σz. Note that these states become the eigenstates of
the Hamiltonian, if Δ is neglected.

Next, for simplification, consider the case of the zero offset ε0 = 0.
The adiabatic energy levels E±(t) have minimal distance Δ, which
is realized in the instants of time πn/ω, where n is an integer; see
Fig. 2.5. Since the adiabatic states quickly change with time in the
region of the quasi-crossing and slowly change out of this region,
we can describe the evolution in this latter case adiabatically, with
the probability of non-adiabatic transitions in the vicinity of the
quasi-crossing points. It is convenient not to detach this region of

(a)

(b)

Fig. 2.5. Time dependence of the energy levels during one period. (a) The case
of zero offset, ε0 = 0, which is considered in the text, and (b) more general
case of nonzero offset, ε0 �= 0, studied in Footnote 17 (page 54). The time-
dependent energy levels define the two-stage evolution: transitions in the non-
adiabatic regions are defined by the evolution matrix N , while the adiabatic
evolution is defined by the matrices U1,2 = exp(−iζ1,2σz). The phase changes
ζ1,2 have geometric interpretation: they are equal to the areas under the curves
during the respective time span. The diabatic energy levels, ±ε(t)/2, are shown
by the dashed lines.
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non-adiabaticity, but rather to attribute the transition probability
to this only point, where the levels maximally approach each other.
Such a discretized (stroboscopic) picture significantly simplifies the
calculations; this was strictly grounded in Footnote 17 (page 54).
We call such description the adiabatic-impulse approximation, so as
to emphasize the two-stage character of the evolution. In particular,
this term emphasizes that the non-adiabatic transitions are described
as instantaneous ones, that is, in essence, only a convenient trick for
describing the dynamics.

Within the framework of the adiabatic-impulse approximation,
we can understand the condition for the appearance of resonances,
at |ε0| < A, which was used for plotting Fig. 2.3(a). As one can see
from Fig. 2.4, the point at which levels approaching is crossed, only
if |ε0| < A. Therefore, only in this case, we can expect transitions
to the upper level. This is remarkably confirmed by the numerical
solution of the Schrödinger equation, presented in Fig. 2.3(b).

2.4.2. Single passage: Landau–Zener transition

Consider a non-adiabatic region in the vicinity of the points of quasi-
crossing: t = πn/ω + t′, ω|t′| 	 1. Then the bias can be linearized:

ε(πn/ω + t′) = ±A sinωt′ ≈ ±vt′, v = Aω. (2.63)

The linear Hamiltonian H(t) = −Δ
2 σx∓ vt

2 σz represents the Landau–
Zener problem. Here and below we omit the primes.

Consider the solution, which is based on the fact that the
transitions with adiabatic excitation bear quasi-classical character,
when the change of the action (given by the integral

∫
E(t)dt) is large

[Landau and Lifshitz 1977, §53]. Then the problem regarding the
transition with adiabatic perturbation is formally analogous to the
problem of quasi-classical over-barrier reflection. Information about
the other approaches to the solution of this problem can be found in
many papers, see for example the reference in Footnote 18.

18F. Di Giacomo and E. E. Nikitin, The Majorana formula and the Landau–
Zener–Stückelberg treatment of the avoided crossing problem, Phys. Uspekhi
48, 515 (2005); F. Wilczek, Majorana and Condensed Matter Physics,
arXiv:1404.0637 (2014).
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Assuming that the system initially, at t = −∞, was at the
lower energy level, the probability of transition from the lower level
to the upper one during the single passage is described by the
quasi-classical approximation, as follows. The energy levels E±(t) =
±1

2

√
Δ2 + (vt)2 coincide at two points of the complex plane: at

t = ±iΔ/v ≡ ±t0; then E+(t0) = E−(t0). Thereafter, the probability
P+ that the system appears in the upper level (at t = +∞) is defined
by the integral [Landau and Lifshitz 1977, §53]:

P+ = exp
(
−2

�
Im

∫ t0

0
[E+(t) − E−(t)]dt

)
. (2.64)

We have∫ t0

0
ΔE(t)dt =

Δ2

v

∫ i

0

√
1 + z2dz =

Δ2

2v

(
z
√

1 + z2 + asinh(z)
)i

0

= i
πΔ2

4v
, (2.65)

where we have calculated the integral

I =
∫ √

1 + z2dz =z
√

1 + z2 −
∫
z2 + 1 − 1√

1 + z2
dz

= z
√

1 + z2 − I + asinh(z) (2.66)

and have taken into account that asinh(i) = iπ/2. We obtain the
Landau–Zener probability

P+ = PLZ = exp(−2πδ),

δ =
Δ2

4�v
.

(2.67)

(We note that, while the equation (2.67) is most commonly attributed
to being the Landau–Zener formula, this should be called the
Landau–Zener–Stückelberg–Majorana formula (See Footnote 18 on
page 59).) It happens that this formula describes the transition
probability for arbitrary values of the exponent.19 With a change
in the excitation velocity v from 0 (the adiabatic limit) to ∞

19E. E. Nikitin and S. Ya. Umansky, Nonadiabatic transitions under slow atomic
collisions (Atomizdat, Moscow, 1979).
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Fig. 2.6. Landau–Zener transition at the single passage of the “avoided-level-
crossing point”: the time dependence of the upper-level occupation probability
P+(t). The solid line represents the numerical solution of the Schrödinger equation
and the dashed line corresponds to the analytic solution.

(fast-changes limit), the transition probability P+ varies from 0 to 1.
The parameter δ is called the adiabaticity parameter. The statement
that in the adiabatic limit, the transition probability equals to
zero, is known as the adiabaticity theorem. In Fig. 2.6 the dashed
line shows the instantaneous transition within the adiabatic-impulse
model with the probability given by the formula (2.67). The solid
line is obtained by numerical solution of the Schrödinger equation.
Note the remarkable agreement.

The Landau–Zener formula (2.67) describes the occupation proba-
bility of the upper level P+, which is the squared absolute value of the
probability amplitude. However, when the interference is important,
it is necessary to know also the changes of the respective phase of the
two components of the spinor wave function in the process of passing
the quasi-crossing region. Overall, the evolution process, at passing
this region, is described by the unitary matrix, which for simplicity
we write down here for the case of the adiabatic passage, at δ � 1
(Footnote 17 on page 54):

b(πn/ω + 0) = Nb(πn/ω − 0),

N =

(−ir −t
t ir

)
, r =

√
1 − PLZ, t =

√
PLZ.

(2.68)
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Indeed, let initially the system be, before the transition, at the instant
of time ti = πn/ω − 0 in the ground state,

b(ti) =

(
b−(ti)

b+(ti)

)
=

(
1

0

)
. (2.69)

Then, at tf = πn/ω + 0, from Eq. (2.68) we have the respective
probabilities — to pass to the excited state or to stay in the ground
state:

|b+(tf)|2 = |t|2 = PLZ, |b−(tf)|2 = |r|2 = 1 − PLZ. (2.70)

So, we confirmed that the matrix N is defined so that the diagonal
elements correspond (up to the phase factor) to the “reflection” and
the off-diagonal elements correspond to the “transmission”.

∗ In general case, for the matrix N we have

N =

(
reiϕ −t
t re−iϕ

)
,

ϕ = ϕ(δ) = −π
4

+ δ(ln δ − 1) + arg Γ(1 − iδ), (2.71)

where ϕ(δ) is the so-called Stokes phase, dependent on the adiabati-
city parameter δ, and Γ is the gamma-function. The argument of the
gamma-function asymptotics has the form

argΓ(1 − iδ) ≈
{
Cδ, δ 	 1,

−π/4 − δ(ln δ − 1), δ � 1,

where C ≈ 0.58 is the Euler constant. So, the jump of the phase
during the transition ϕ(δ) is the monotonous function, changing
between −π/2 in the adiabatic (slow) limit (δ � 1) and −π/4 in
the diabatic (fast) limit (δ 	 1). In the case considered above, we
had δ � 1 and ϕ = −π/2.

2.4.3. Double passage: Stückelberg phase

Consider now the process of repeated passage of the level quasi-
crossing point. Such a problem corresponds to one full period of the
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periodic driving. Then, the adiabatic evolution is described by the
matrix

U = eiζσz , ζ =
1
2�

∫ π/ω

0
ΔE(t)dt (2.72)

and the non-adiabatic transitions are described by the matrix N .
Consider the total evolution matrix during one period — see

Fig. 2.5 — this is obtained by simple multiplication of the four
matrices:

NUNU =

(
β −ξ∗
ξ β∗

)
, β = −r2ei2ζ − t2, ξ = irt

(
e−i2ζ − 1

)
.

(2.73)

This means that the evolution is described by the formula b(tf) =
NUNUb(ti). If, as above, the system was initially in the ground
state, Eq. (2.69), then the excitation (transition) probability is
defined by the off-diagonal matrix element, which equals to ξ:

P2 ≡ |b+(tf)|2 = |ξ|2 = |rt(eiζ − e−iζ)|2 = 4PLZ(1 − PLZ) sin2 ζ.

(2.74)

This result shows that the excitation probability is the oscillating
function of the phase ζ. This was first studied by E. Stückelberg.
In the majority of cases, the Stückelberg oscillations used to be
unobservable, since the observable values were described by the
average probability

P+ = 2PLZ(1 − PLZ); (2.75)

see e.g. [Landau and Lifshitz 1977, §90]. This expression, as a matter
of fact, is given by the sum of the two probabilities, which correspond
to the possibilities of excitation during either the first or the second
passage of the quasi-crossing point. These two possibilities are shown
in Fig. 2.7 by the trajectories marked by single or double arrows,
respectively.

The quantum-mechanical interference between different Landau–
Zener transitions gives the result that the excitation probability
after the repeated passage can have the value between 0 (destructive
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Fig. 2.7. Double passage. The adiabatic energy levels are plotted as in Fig. 2.5;
lines with single or double arrows show the trajectories, where the transition
to the upper level happens during either the first or the second passage of the
quasi-crossing points. The respective excitation probabilities are defined by the
expressions PLZ × (1 − PLZ) and (1 − PLZ) × PLZ.

interference) and 4PLZ(1−PLZ) (constructive interference). Suppres-
sion of the transitions at the destructive interference is called the
coherent destruction of tunneling. The constructive interference gives
the probability twice as much as when the interference is not taken
into account, as in Eq. (2.75). This situation is analogous to the
processes in the known optical Mach–Zehnder interferometer.

2.4.4. Multiple passage: interference

For the case of the multiple passage of the quasi-crossing point, we
have that after n half-periods, the evolution matrix will be defined
by the n-th power of the following matrix

Ξ ≡ NU =

(−ir −t
t ir

)(
e−iζ 0

0 eiζ

)
=

(
α −γ∗
γ α∗

)
,

α = −ire−iζ , γ = te−iζ . (2.76)

In order to raise this matrix, it is convenient to make it diagonal
first. For this, we have to find the unitary matrix

A =

(
a −b∗
b a∗

)
, AA† = 1, |a|2 + |b|2 = 1, (2.77)
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such that AΞA† =
(

eiφ 0

0 e−iφ

)
≡ B, where φ is the desired value.

Consider the equation Ξ = A†BA and obtain{
α = |a|2eiφ + |b|2e−iφ,

γ = −2iab sinφ.
(2.78)

From the former equation we find φ: cosφ = Reα. So, we have

Ξn = A†BA ·A†BA · . . . = A†
(
einφ 0

0 e−inφ

)
A =

(
u11 −u∗21
u21 u∗11

)
.

(2.79)

Here we simplify the obtained matrix elements, taking into account
(2.78) (here we are interested only in u21):

u11 = |a|2einφ + |b|2e−inφ = cosnφ+ i sinnφ
(
2|a|2 − 1

)
= cosnφ+ i sinnφ

Imα
sinφ

, (2.80)

u21 = −2iab sin nφ =
γ

sinφ
sinnφ.

The absolute value of the off-diagonal element gives, as above, the
probability of finding the system on the upper level:

P+(n) = |γ|2 sin2 nφ

sin2 φ
. (2.81)

Note that 1 = |α|2 + |γ|2 = (Re α)2 +(Imα)2+ |γ|2 and Reα = cosφ,
from where it follows

sin2 φ = (Imα)2 + |γ|2 = t2 + r2 cos2 ζ, (2.82)

and we can rewrite Eq. (2.81):

P+(n) =
t2

t2 + r2 cos2 ζ
sin2 nφ =

PLZ

cos2 ζ + PLZ sin2 ζ
sin2 nφ.

(2.83)

Here, the second multiplier describes the time dependence, where n =
[ωt/π], and the first multiplier describes the oscillations amplitude.
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(When we defined n, the brackets stand for the integer part, so that
[ωt/π] equals to the number of half-periods.) The amplitude has the
maximum at ζ = π

2 + kπ and minimum at ζ = kπ. This corresponds
to the cases of constructive and destructive interference, respectively,
for which we have

ζ =
π

2
+ kπ : sin2 φ = t2 ⇒ φ ≈

√
PLZ,

P+(t) = sin2
(√

PLZ n
)

;

ζ = kπ : sin2 φ = t2 + r2 = 1 ⇒ φ = π/2,

P+(t) = PLZ sin2
(π

2
n
)
.

(2.84)

These formulas are illustrated in Fig. 2.8. We note the resemblance
of the constructive-interference case with the Rabi oscillations.
Indeed, if the driving frequency ω is large, then the Landau–
Zener probabilities are small and the steps are little visible on the
background of the large-scale oscillations.

* Remarkably, if we would not assume ε0 = 0 and consider the
case of the large-amplitude oscillations (of which the details can be

Fig. 2.8. Constructive (dashed line) and destructive (solid line) interference.
The time dependence of the upper-level occupation P+ is plotted for constructive
(ζ1 = π/2 + kπ) and destructive (ζ1 = kπ) interference at ε0 = 0 and PLZ = 0.1.
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found in Footnote 17 on page 54), then the result of this approach,
within the framework of the adiabatic-impulse model, would coincide

with the formula (2.39), where Δk = Δ
√

2�ω
πA cos

(
A
�ω − π

4 (2k + 1)
)

and which correctly describes the Bessel function asymptote.

2.5. * Quantum relaxation theory

Above, in Section 2.3, we mentioned that the interaction with the
environment leads to the relaxation, and we considered this for
a two-level system, introducing the phenomenological relaxation
times. Here we will pay more attention to the description of the
interaction of a quantum system with the environment and we
will consistently present the quantum relaxation theory. It is worth
emphasizing that accounting for the unavoidable dissipative environ-
ment is particularly important in mesoscopic systems, which interact
with the environment much more strongly than their microscopic
counterparts. We will obtain the so-called Master kinetic equation,
and we will show how in a particular case of a two-level system the
Bloch equation can be obtained from this. And we strongly believe
that it is very instructive to compare the two approaches which we
use to obtain this equation, cf. the phenomenological approach above
and the microscopic detailed derivation below. In this Section we will
follow, to a large degree, the approach from [Blum 1981].

2.5.1. Interaction of a quantum system with a

reservoir

Well, consider an open system S, interacting with a large reservoir
(thermostat) R. The Hamiltonian for the system is

H = HS +HR + V ≡ H0 + V, (2.85)

where we separated the part H0 = HS +HR responsible for the non-
interacting system and the reservoir.

We change from the Schrödinger representation to the interaction
representation. The density operator is transformed as follows

ρI = e
i
�
H0tρe−

i
�
H0t. (2.86)

 M
es

os
co

pi
c 

Ph
ys

ic
s 

m
ee

ts
 Q

ua
nt

um
 E

ng
in

ee
ri

ng
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 B

.V
E

R
K

IN
 I

L
T

PE
 O

F 
N

A
SU

 o
n 

11
/1

6/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



July 4, 2019 14:13 Mesoscopic Physics meets Quantum Engineering 9in x 6in b3513-ch02 page 68

68 Mesoscopic Physics meets Quantum Engineering

Analogously we obtain the interaction operator in the new represen-
tation VI. The Liouville–von Neumann equation, ρ̇ = − i

�
[H0 + V, ρ],

becomes

ρ̇I = − i

�
[VI, ρI]. (2.87)

Its formal solution is

ρ(t)I = ρ(0)I − i

�

∫ t

0
dt′[V (t′)I, ρ(t′)I]. (2.88)

Let us put this solution back into the Liouville–von Neumann equa-
tion (2.87) and take the trace of this equation over the unobservable
reservoir degrees of freedom. Then, for the desired reduced density
matrix of our system, ρS,I = TrRρI, we obtain the equation

ρ̇S,I = − i

�
TrR[V (t)I, ρ(0)I] − 1

�2

∫ t

0
dt′TrR[V (t)I, [V (t′)I, ρ(t′)I]].

(2.89)

In order to simplify this integro-differential equation, usually one can
make the following two key assumptions.

First, the dynamics of the system S does not influence the state
of the “large” reservoir R. This allows the replacement below to be
made:

ρ(t)I → ρ̃(t)I = ρ(t)S,Iρ(0)R. (2.90)

This replacement is known as the irreversibility condition, since after
this, the Liouville–von Neumann equation describes the irreversible
relaxation of the system S. It is assumed that the reservoir is in
thermal equilibrium and then its statistical operator has the known
form:

ρ(0)R =
exp (−HR/kBT )

Σ
, Σ = TrR exp(−HR/kBT ). (2.91)

The second assumption is the so-called Markov approximation:
it is assumed that the interaction with the reservoir destroys the
information about the system state in the past. This means that ρ̇S,I
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depends only on the instantaneous value ρ(t)S,I. Therefore, in the
r.h.s. of Eq. (2.89) for ρ̇S,I we make the following replacement

ρ(t′)S,I → ρ(t)S,I. (2.92)

The Markov approximation will allow us to reduce the integro-
differential equation to the system of linear differential equations
with time-independent coefficients.

Thus, from Eq. (2.89) we obtain

ρ̇S,I = − i

�
TrR[V (t)I, ρ(0)S,I ρ(0)R]

− 1
�2

∫ t

0
dt′TrR[V (t)I, [V (t′)I, ρ(t)S,I ρ(0)R]]. (2.93)

2.5.2. Temporal correlation functions

For further transformations of Eq. (2.93), we assume that in the
interaction operator, we can separate the operators corresponding to
our quantum system (Qi) and the operators corresponding to the
reservoir (Fi), which means that we can write V =

∑
iQiFi. Then

in the interaction representation we have

V (t)I =
∑

i

Q(t)iF (t)i, Q(t)i = e
i
�
HStQie

− i
�
HSt,

F (t)i = e
i
�
HRtFie

− i
�
HRt. (2.94)

We put this in Eq. (2.93), and then we have

ρ̇(t)S,I = − i

�

∑
i

TrR[Q(t)iF (t)i, ρ(0)S,Iρ(0)R]

− 1
�2

∑
i,j

∫ t

0
dt′TrR[Q(t)iF (t)i, [Q(t′)jF (t′)j , ρ(t)S,I ρ(0)R]].

(2.95)
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We rewrite the commutators:

ρ̇(t)S,I =

− i

�

X
i

{Q(t)iρ(0)S,ITrR(F (t)iρ(0)R) − ρ(0)S,IQ(t)iTrR(ρ(0)RF (t)i)}

− 1

�2

X
i,j

Z t

0

dt′{(Q(t)iQ(t′)jρ(t)S,I − Q(t′)jρ(t)S,IQ(t)i)TrR(F (t)iF (t′)jρ(0)R)

−(Q(t)iρ(t)S,IQ(t′)j − ρ(t)S,IQ(t′)jQ(t)i)TrR(F (t′)jF (t)iρ(0)R)}. (2.96)

We can see that in this equation there are terms of two kinds: the
mean values of operators Fi and the two-time mean values. Consider
them by turns. Let us take the trace in the basis {|N〉} of the
eigenstates of the reservoir Hamiltonian HR:

TrR(F (t)iρ(0)R) ≡ 〈F (t)i〉 =
∑
N

〈N |F (t)iρ(0)R|N〉

=
∑
N

〈N |F (t)i|N〉〈N |ρ(0)R|N 〉. (2.97)

Here, it was taken into account that 1 =
∑

N ′ |N ′〉〈N ′| and that the
density matrix ρN ′N in equilibrium is diagonal. We assume that in
this representation, the operators Fi do not have diagonal elements,
〈N |F (t)i|N〉 = 0. (Otherwise, the Hamiltonian HR could be redefined
so as to satisfy this.) We obtain 〈F (t)i〉 = 0.

Consider next the two-time correlation functions

TrR(F (t)iF (t′)jρ(0)R) ≡ 〈F (t)iF (t′)j〉. (2.98)

It is assumed that the reservoir is large and that the effects of
interaction are quickly damped, during the short time, known as the
reservoir correlation time τ . To be more precise, this time is much
shorter than the relaxation of our quantum system, which justifies the
Markov approximation. This means that for a large time difference,
t− t′ � τ , the correlator is equal to

〈F (t)iF (t′)j〉 = 〈F (t)i〉〈F (t′)j〉 = 0. (2.99)

One can see from the definition that the correlation functions are
stationary, which means that they depend only on the difference t−t′
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[see Eqs. (2.99) and (2.94)]:

〈F (t)iF (t′)j〉 = 〈F (t− t′)iFj〉. (2.100)

Then, in Eq. (2.96) we can change the integration variable, t′′ = t−t′,
and, since for t′′ � τ we have Eq. (2.99), we can change the upper
limit of integration for ∞. We obtain

ρ̇(t)S,I = − 1
�2

∑
i,j

∫ ∞

0
dt′′

{
[Q(t)i, Q(t− t′′)jρ(t)S,I] 〈F (t′′)iFj〉

− [Q(t)i, ρ(t)S,IQ(t− t′′)j ]〈FjF (t′′)i〉
}
. (2.101)

We can see that all the information about the reservoir is now
contained in the correlation functions.

2.5.3. Master equation

Let us change from operators to matrix elements — in the eigen-
basis {|m〉} of the Hamiltonian HS. From the definition (2.94) we
have

〈m|Q(t)i|n〉 = eiωmnt〈m|Qi|n〉,
�ωmn = Em − En.

(2.102)

We next define the tensors

Γ+
mkln

�
=

1
�2

∑
ij

〈m|Qi|k〉〈l|Qj |n〉
∫ ∞

0
dt′′e−iωlnt′′〈F (t′′)iFj〉,

(2.103)

Γ−
mkln

�
=

1
�2

∑
ij

〈m|Qj |k〉〈l|Qi|n〉
∫ ∞

0
dt′′e−iωmkt′′〈FjF (t′′)i〉.

(2.104)

From this definition, and taking into account the Hermiticity of the
operators, it follows that

Γ−
nlkm = (Γ+

mkln)∗. (2.105)
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Then we obtain the following (and it is recommended to the reader to
make sure of this, accounting for the condition that 1 =

∑
n |n〉〈n|):

〈m′|ρ̇(t)S,I|m〉 =
∑
n′,n

〈n′|ρ(t)S,I|n〉Rm′mn′ne
i(ωm′n′−ωmn)t. (2.106)

Here, we defined the tensor

Rm′mn′n = −
∑

k

δmnΓ+
m′kkn′ + Γ+

nmm′n′ + Γ−
nmm′n′

−
∑

k

δn′m′Γ−
nkkm, (2.107)

known as the Redfield (or Bloch–Redfield) tensor . This can be
conveniently split into two parts:

Rm′mn′n =: Wmnδn′n − γm′mδm′n′δmn,

Wmn � Γ+
nmmn + Γ−

nmmn = 2ReΓ+
nmmn, (2.108)

γm′m �
∑

k

(Γ+
m′kkm′ + Γ−

mkkm) − Γ+
mmm′m′ − Γ−

mmm′m′ .

We now make the next, so-called, secular approximation, where
it is assumed that in the sum in Eq. (2.106) the main contribution
comes from the time-independent terms, for which ωm′n′ −ωmn = 0.
This approximation assumes that we are interested in the “coarse-
grained” derivative. In other words, the procedure involving averag-
ing of the equation over small time intervals is assumed, during which
the derivative changes little and the temporal terms of the form eiωt

change fast. This is analogous to the rotating-wave approximation,
considered above. The equation ωm′n′ −ωmn = 0 is fulfilled in one of
the three cases: ⎧⎪⎨⎪⎩

(1) m′ = n′, m = n, m′ �= m;

(2) m′ = m, n′ = n, m′ �= n′;

(3) m′ = m = n′ = n.

(2.109)
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Writing down the corresponding terms, we obtain (and it is recom-
mended that the reader checks this)

〈m′|ρ̇(t)S,I|m〉 = δm′m
∑
n 	=m

Wmn〈n|ρ(t)S,I|n〉 − γm′m〈m′|ρ(t)S,I|m〉.

(2.110)

Let us write down this equation in the Schrödinger representation,
by using ρS,I = e

i
�

HStρSe
− i

�
HSt,

〈m′|ρ̇(t)S|m〉 = − i

�
〈m′|[HS , ρ(t)S]|m〉 + δm′m

∑
n 	=m

Wmn〈n|ρ(t)S|n〉

− γm′m〈m′|ρ(t)S|m〉. (2.111)

We rewrite this more compactly, also omitting the subscript S,

ρ̇m′m = − i

�
[H, ρ]m′m + δm′m

∑
n 	=m

Wmnρnn − γm′mρm′m. (2.112)

This is the so-called generalized Master equation. This equation is
also known as the Bloch–Redfield equation. In practice, as the next
step, we should calculate the tensors Γlmnk for a specific case, setting
a physically grounded model for the reservoir and its interaction
with the system, so as to obtain Wmn and γm′m. Let us make
several general remarks concerning the Master equation and then
consider in detail the important and illustrative case of a two-level
system.

In particular, for the diagonal elements (see definition of the
tensor γm′m for m′ = m):

ρ̇mm =
∑
n 	=m

Wmnρnn − ρmm

∑
n 	=m

Wnm. (2.113)

Here the first term defines the gain and the second term defines the
diminution of the population of the level m. The value Wmn holds
the meaning of the transition rate, which means that this is the
transition probability in unit time from the level n to the level m.
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These transitions are induced by the interaction of our system with
the reservoir. Equation (2.113) is called the Pauli principal kinetic
equation.

Consider the transition rates Wmn = 2ReΓ+
nmmn in detail. For

calculations we use the eigen-basis of the reservoir {|N〉}:

Wmn =
2
�2

Re〈n|Qi|m〉〈m|Qj |n〉
∫ ∞

0
dte−iωmnt

×
∑

N,N ′,N ′′
〈N |F (t)i|N ′〉〈N ′|Fj |N ′′〉〈N ′′|ρ(0)R|N〉.

(2.114)

Here the summation over i, j is implied. Now, remember the defini-
tion F (t)i = e

i
�
HRtFie

− i
�
HRt and take into account that ρ(0)R is the

diagonal matrix, 〈N |ρ(0)R|N〉 = exp(−EN/kBT )/Σ, then we obtain

Wmn =
2

�2Σ

∑
N,N ′

Re 〈nN |QiFi|mN ′〉〈mN ′|QjFj |nN〉︸ ︷︷ ︸
|〈nN |V |mN ′〉|2

e−EN /kBT

×
∫ ∞

0
dte

i
�
(EN−EN′−Em+En)t. (2.115)

Here we took into consideration the Hermiticity of the interaction
operator. From this operator, apropos, it follows the equality of
the probabilities for the direct (mN → nN ′) and inverse transitions:
|〈mN |V |nN ′〉|2 = |〈nN ′|V |mN〉|2. We further note that

2Re
∫ ∞

0
dteiωt = 2

∫ ∞

0
dt cosωt ∧=

∫ ∞

−∞
dteiωt = 2πδ(ω) (2.116)

and obtain

Wmn =
2π
�Σ

∑
N,N ′

|〈nN |V |mN ′〉|2e−EN /kBT δ(EN − EN ′ − Em + En).

(2.117)

Here the first multiplier describes the transition probability for the
system from the state |m〉 into the state |n〉 and for the reservoir from
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the state |N ′〉 into |N〉. This formula is called the Fermi’s golden rule
for the transition rates.

For the opposite transition we have

Wnm =
2π
�Σ

∑
N,N ′

|〈mN |V |nN ′〉|2e−EN /kBT δ(EN − EN ′ − En + Em)

= ‖N ′ ↔ N‖ =
2π
�Σ

∑
N,N ′

|〈mN ′|V |nN〉|2 e−EN′/kBT

EN′=EN+En−Em

× δ(EN ′ − EN −En + Em) = e(Em−En)/kBTWmn. (2.118)

Here we used the hermiticity of the operator V and the evenness of
the δ-function. We obtain the relation between the transition rates
upwards and downwards:

Wmn

Wnm
= exp

(
−Em − En

kBT

)
. (2.119)

2.5.4. The case of a two-level system

Consider further the Master equation (2.112) for a two-level system.
For the diagonal elements we have

ρ̇mm = − i

�
[H, ρ]mm +Wmnρnn −Wnmρmm, n �= m. (2.120)

From the normalization condition ρ00 + ρ11 = 1 it follows that ρ̇11 =
−ρ̇00. Then we rewrite Eqs. (2.120) and (2.119):

ρ̇00 = − i

�
[H, ρ]00 +W01ρ11 −W10ρ00, (2.121)

W10

W01
= exp

(
−E1 − E0

kBT

)
= exp

(
− ΔE
kBT

)
. (2.122)

From these two equations, in thermal equilibrium, it follows that

ρ
(0)
11

ρ
(0)
00

=
W10

W01
= exp

(
− ΔE
kBT

)
. (2.123)

This means that in thermal equilibrium we have the Boltzmann
distribution.
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We now exclude ρ11 and Wmn from Eq. (2.121). First, consider

W01ρ11 −W10ρ00 = W01 − ρ00(W01 +W10). (2.124)

Introduce the definition
1
T1

�
= W01 +W10. (2.125)

We obtain ρ
(0)
00 from Eq. (2.123):

1 − ρ
(0)
00

ρ
(0)
00

=
1

ρ
(0)
00

− 1 =
W10

W01
⇒ ρ

(0)
00 =

W01

W01 +W10
= T1W01.

(2.126)

Let us express from here W01 = ρ
(0)
00 /T1, then from Eqs. (2.124) and

(2.121) we have the equation for ρ00

ρ̇00 = − i

�
[H, ρ]00 − ρ00 − ρ

(0)
00

T1
. (2.127)

For the off-diagonal matrix elements, after introducing the
notation

1
T2

�
= γ01, (2.128)

from Eq. (2.112) we obtain the second of the Bloch equations:

ρ̇01 = − i

�
[H, ρ]01 − ρ01

T2
. (2.129)

Thus, in the case of a two-level system, we have derived the Bloch
equations from the generalized Master equation. These are the very
same equations which we have obtained in §2.3 phenomenologically.
So, the reader can compare these two very different theoretical
approaches to the description of an open quantum system.

2.5.5. Lindblad equation

An alternative to the approach described above is the Master
equation in the Lindblad form, or simply, the Lindblad equation.
We will write it down, without derivation, from the textbook.20

20F. Laloë, Do we really understand Quantum Mechanics? Cambridge, UK:
Cambridge University Press (2012), §6.4.
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We specify that the results, obtained from the solution of either the
Lindblad equation or the Bloch–Redfield equations can differ in the
general case; refer to this in Footnote 21. However, for the simplest
system, a qubit, they give an identical result. So, here we will write
down the Lindblad equation for the general case and we will consider
the particular case of a single qubit.

Quantum dynamics of an open system with the Hamiltonian H

is described by the Lindblad equation:

ρ̇ = − i

�
[H, ρ] +

∑
α

L̆α[ρ], (2.130)

where the interaction with the environment is described by the
Lindblad superoperators

L̆α[ρ] = LαρL
†
α − 1

2
{L†

αLα, ρ} =
1
2
[Lαρ, L

†
α] +

1
2
[Lα, ρL

†
α].

(2.131)

Here we have given two equivalent definitions. The interaction with
the environment results in relaxation; different channels of relaxation
are enumerated by the subscripts α and are described by the Lindblad
operators Lα, which have the general form as the following, Lα =√

ΓαAα.
In particular, for a qubit Lrelax =

√
Γ1σ and Lφ =

√
Γφ/2σz.

Instead of the relaxation rates, it is often more convenient to use
respective times: T1 = Γ−1

1 and Tφ = Γ−1
φ . Then for the two

relaxation channels, we have:

L̆relax[ρ] =
1

2T1
(2σρσ† − {σ†σ, ρ}), L̆φ[ρ] =

1
2Tφ

(σzρσz − ρ).

(2.132)

Now, it is convenient to take the density matrix in the form ρ =
1
2

(
1+Z X−iY

X+iY 1−Z

)
. And then the reader only needs to multiply the

respective matrices in Eq. (2.132), group the obtained result with

21J.R. Johansson, P.D. Nation, and F. Nori, QuTiP 2: A Python framework for
the dynamics of open quantum systems, Comp. Phys. Comm. 184, 1234 (2013).
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the Pauli matrices, and obtain, instead of Eq. (2.130), the following

1
2
(Ẋσx + Ẏ σy + Żσz)

= − i

�
[H, ρ] − 1

2T1
(1 + Z)σz − 1

2T2
Xσx − 1

2T2
Y σy,

(2.133)

1
T2

�
=

1
Tφ

+
1

2T1
. (2.134)

The obtained equation coincides with the Bloch equations considered
above. Here the relaxation of the diagonal components of the density
matrices (the populations) appears during the time of energy relax-
ation T1, and the relaxation of the off-diagonal elements (coherences)
appears during the decoherence time T2.

Conclusion to Chapter 2

A two-level system is, probably, the most fundamental model in non-
relativistic quantum mechanics. (Another fundamental system is the
harmonic oscillator, and to this we will devote a significant part of
Chapter 5.) On the other hand, we have seen in the previous Chapter
that the modern quantum technologies are based on this two-level
system, a qubit. That is why we have paid so much attention to the
dynamics of a qubit.

The detailed approach allowed us to consider the number of
notions in this Chapter, to which little attention is paid in traditional
textbooks of quantum mechanics, but which are frequently met
in different areas of modern physics. We here have learned such
notions as the spectrum of a two-level system, Rabi oscillations,
pure and mixed states, Landau–Zener transitions and Stückelberg
oscillations, equations for a density matrix — the Liouville–von
Neumann equation, the Bloch–Redfield equation and the Lindblad
equation.

For the description of the dynamics of a qubit driven by a periodic
signal, we have used three different approaches. The first regime was
the theory of periodic perturbation for weak amplitudes A 	 Δ
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(which resulted in the Rabi oscillations), the second regime was
for the strong and fast excitation, A · �ω/Δ2 � 1, for which we
have used the rotating wave approximation, and the third regime
was related to the adiabatically slow changes, when the adiabaticity
parameter was large, Δ2

A·�ω ≥ 1, that is A · �ω/Δ2 ≤ 1, for which we
have used the so-called adiabatically-impulse method, also known
as the transfer-matrix method. At that, each of these regimes,
strictly speaking, was correct for the mentioned inequalities. It
is remarkable, however, that the regions of their applicability are
much wider and are essentially overlapping. This can be checked by
comparing the analytic solutions with the numerical ones, as e.g.
in Footnote 22. And in this Chapter here, we have demonstrated
the mutual agreement of all these methods by considering respective
limiting cases.

Problems for independent work and for self-assessment

2.1. (**) Obtain the qubit energies and eigenstates from its
Schrödinger equation.

2.2. (**) Do the same by means of the transformation S =
exp(iζσy/2).

2.3. (***) Describe the Rabi oscillations for resonant driving, with
ω = ωq.

2.4. (****) Describe the Rabi oscillations for nonzero frequency
detuning, δω = ω − ωq �= 0.

2.5. (*) Based on Eqs. (2.29)–(2.31), describe the spectroscopy of a
driven two-level system.

2.6. (****) Making use of the respective rotating-wave approxima-
tion, describe the multi-photon excitation of a strongly driven
two-level system, i.e. obtain Eq. (2.39).

2.7. (**) Rewrite the Liouville–von Neumann equation, with the
pseudospin Hamiltonian, in the form of the Bloch equation,

̇R = 
R× 
H.

22S. Ashhab, J.R. Johansson, A.M. Zagoskin, and F. Nori, Two-level systems
driven by large-amplitude fields, Phys. Rev. A 75, 063414 (2007).
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2.8. (*) Show that the free evolution of a spin is described by the
quantum beats.

2.9. (****) Solve the Bloch equations with strong driving and with
dissipation and obtain the formula, describing the multi-photon
resonances, Eq. (2.57).

2.10. (***) Given the formula (2.57), plot the upper-level occupation
probability as a function of the bias and driving amplitude, and
analyze its usefulness for the interferometry.

2.11. (**) In analogy with the tasks 2.1–2.2, obtain the adiabatic
energy levels and draw them.

2.12. (**) Describe the adiabatic evolution, by introducing the
transfer matrix.

2.13. (**) Given the quasi-classical formula for the transition (2.64),
obtain the Landau–Zener formula.

2.14. (***) Solve the respective Schrödinger equation and be con-
vinced of the accuracy of the Landau–Zener formula.

2.15. (*****) Matching the solutions of the Schrödinger equation
close to the avoided-level crossing and far from it, obtain
the transfer matrix N for the Landau–Zener transition (see
Appendix in Footnote 17 on page 54). Note that we need this
result, Eq. (2.68), to describe the interference.

2.16. (**) Multiply the transfer matrices for a one-period evolution
and obtain the Stückelberg oscillations, Eq. (2.74).

2.17. (***) Obtain the upper-level occupation after n half-periods,
Eq. (2.83).

2.18. (**) Having obtained Eq. (2.83), demonstrate the cases of
constructive and destructive interference.

2.19. (*****) Following the lines of Sec. 2.5, describe the relaxation
theory and obtain the Master equation (2.112). This is admit-
tedly a demanding task, but would be useful especially for
students specializing in theoretical physics to attempt. Note
that this is not necessary for understanding the main ideas of
this course, but students studying quantum technologies are
also welcome to try this.

2.20. (**) Verify Eq. (2.105).
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2.21. (***) Demonstrate that Eq. (2.110) follows from Eq. (2.106) in
the secular approximation.

2.22. (**) Having the Master equation (2.112), analyze it for the
diagonal elements (occupations).

2.23. (***) Obtain the Bloch equations from the Master equation
(2.112) for a qubit.

2.24. (***) Obtain the Bloch equations from the Lindblad equation
(2.130) for a qubit.
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Chapter 3

SUPERCONDUCTING QUANTUM
CIRCUITS

“. . . a river is simultaneously in different places
. . . everywhere at the same time . . . for it, only
the present exists . . .”

H. Hesse23

In accordance with the aims of our course, it is convenient to speak
about a specific system. And here, appropriate examples are the
qubits. Indeed, as discussed above, we note that (a) the qubits
present the basic system of quantum mechanics, considering which,
we can expound many basic problems, (b) they are interesting for
possible applications in the field of quantum engineering, and (c) the
possibility of these applications, in turn, is the locomotive of funda-
mental research in mesoscopic, superconducting and semiconducting
systems.

One of the requirements for a physical realization of qubits is
the integrability, which is the possibility of wiring up qubits with
each other and with the controlling electronics. Such a possibility
can be represented by solid-state realizations. For the least level of
dissipation, superconductors are used.

The simplest possibility of the integrable electric circuit is repre-
sented by an electric resonant LC circuit. Consider the example: a
circuit of two elements connected in parallel, an inductance L and a

23H. Hesse, Siddhartha, SPb: Azbuka (2007) {translated from Russian by the
author}.
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capacitance C. The voltage drop on them is equal to q/C = −Lİ,
where q is the charge on the capacitor plate. The derivative from this
equation gives LÏ + I/C = 0. And the structure of this equation,
apart from the notations, coincides with the equation of a harmonic
oscillator, mẍ+ kx = 0. As it is known, after quantization with the
harmonic potential we obtain equidistant energy levels. This does
not allow the lowest two levels to be isolated. One then needs the
nonlinearity in the system. This means that we need a nonlinear
inductance, defining the link between the current derivative and the
voltage, V = −Lİ with L = L(I, V ).

The only non-dissipative nonlinear element is a Josephson junc-
tion. In what follows, we will consider how such a junction can be
described as a nonlinear inductance. After that, the principal types of
superconducting qubits will be presented in detail. We will consider
classical circuits and the procedure of their quantization.

Superconducting qubits can be realized on the basis of Josephson
junctions.24,25 Significant progress was reached in the study of such
qubits: both single and coupled qubits were realized, superposition
and entangled states were observed, the series of effects was studied
in relation to transitions in such multi-level qubit devices, etc.26

The first public and commercial quantum computers are built on
superconducting qubits.27

3.1. Some information on superconductivity

Before describing the Josephson effect, consider briefly the basic
properties of superconductors. For further acquaintance with such
fascinating phenomena like superconductivity, we recommend the

24Yu. Makhlin, G. Schön, and A. Shnirman, Quantum-state engineering with
Josephson-junction devices, Rev. Mod. Phys. 73, 357 (2001).
25J. Clarke and F. K. Wilhelm, Superconducting quantum bits, Nature 453, 1031
(2008).
26J. Q. You and F. Nori, Atomic physics and quantum optics using superconduct-
ing circuits, Nature 474, 589 (2011); X. Gu, A.F. Kockum, A. Miranowicz, Y.X.
Liu, and F. Nori, Microwave photonics with superconducting quantum circuits,
Phys. Rep. 718–719, pp. 1–102 (2017).
27See https://www.research.ibm.com/ibm-q and https://www.dwavesys.com.
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textbook [Schmidt 1997]. For the first familiarization, one will find it
useful to pick up some more information from other textbooks, such
as Il’ichev and Greenberg.28

(1) Infinite conductivity. The major property of superconductors is
the flow of dissipationless current. The current can be induced,
for example, in a ring of the area S and inductance L, by putting
it in the magnetic field B and decreasing the temperature. Then
in the ring, the current appears, I = Φ/L = BS/L. This assumes
that its resistance equates to zero when the temperature is
below the critical temperature Tc. The characteristic value for the
maximal, or as they say, critical, current density is 106 A/cm2.
Correspondingly, the heat liberation is equal to zero, according to
the Joule–Lenz law, Q = I2Rt. For the technologically important
aluminum and niobium the critical temperatures are Tc = 1.2
and 9.2 K, respectively. The boiling temperature of liquid helium
is 4.2 K and that of liquid nitrogen is 77 K. In this respect,
the discovery of the so-called high-temperature superconductors
(HTSC) with Tc > 77 K such as yttrium ceramics (Tc ∼ 90 K) was
important. Interestingly, to date, there is no generally accepted
theory explaining the superconductivity in HTSC.

(2) Macroscopic wave function of the condensate. The conventional
superconductivity is explained within the Bardeen–Cooper–
Schrieffer theory by coupling electrons, which form the so-called
Cooper pairs with zero spin. The size of a Cooper pair is charac-
terized by the coherence length ξ0. The aggregate of such bosons
forms the Bose–Einstein condensate, which means that the
electron pairs are situated on the same quantum level and they
can be described by a single wave function, Ψ(r) = |Ψ(r)|eiϕ(r).
The wave function is normalized by the density of the Cooper
pairs, |Ψ(r)| =

√
ns. For the current density of the Cooper pairs

with charge 2e and mass 2m (where we denoted, with m and

28E. V. Il’ichev and Ya. S. Greenberg, Quantum informatics and quantum bits
on the base of superconducting and Josephson structures, Novosibirsk, NSTU
(2013).
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e = −|e|, the mass and the charge of an electron) we have

js = (2e)
(

Ψ∗p− 2eA/c
2(2m)

Ψ + c.c.

)
= −i e�

2m
(Ψ∗∇Ψ − Ψ∇Ψ∗) − 2e2

mc
|Ψ|2 A (3.1)

= 2e |Ψ|2 �∇ϕ− 2eA/c
2m

≡ 2ensvs.

This means that the phase gradient ∇ϕ defines the current in
the system via the superfluid velocity vs. Here it was taken
into account that the presence of a magnetic field corresponds
to the replacement p → p − (2e)A/c and p = −i�∇. So, the
supercurrent is related to the phase gradient as follows:

js = 2ens
�∇ϕ− 2eA/c

2m
. (3.2)

(3) Perfect diamagnetism. A magnetic field does not penetrate
into bulk superconductors, unlike normal metals, but rather
is expelled from them. This is related to the appearance of
the surface current, of which the field shields the external
magnetic field, known as the Meissner effect. In order to be
convinced in this, consider a homogenous superconductor in a
weak magnetic field (such that we may assume ns = const)
and in the thermodynamic equilibrium (when there is no normal
current, i.e. j = js). Then from Eq. (3.2) we obtain

rot j = −2e2ns

mc
B. (3.3)

This is the London equation. To this, we have to add the Maxwell
equations, rotB = 4π

c j and divB = 0. Then, making use of the
known relation, rot rotB = ∇(divB) − ΔB, we get

rot j =
c

4π
rot rotB = − c

4π
ΔB ∧= −2e2ns

mc
B

⇒ ΔB =
1
λ2

B, (3.4)
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where λ2 = mc2

8πe2ns
is the so-called field-penetration depth. Indeed,

for the flat boundary, we obtain the solution B = B0e
−x/λ. This

means that the magnetic field penetrates into a superconductor
only to the depth of the order of λ. This value is small, usually
of the order of 0.1 μm.

(4) Magnetic flux quantization. Consider a doubly connected super-
conductor; a ring, for example. Let us mentally picture the circuit
C inside the ring and integrate along it the formula (3.2). Then
the l.h.s. gives zero, since inside the superconductor there is no
magnetic field, and we have 0 =

∫
C dl(�∇ϕ − 2eA/c). Let us

take into account that according to the Stokes theorem, the
vector potential circulation gives the magnetic flux inside the
ring,

∫
C dlA =

∫
SC
dS∇×A = B

∫
S dS = BS = Φ. Here we

assume that the magnetic field is homogeneous inside the ring,
over the area S. We obtain Φ = �c

2e

∫
C dl∇ϕ. On the other hand,

the requirement of the wave function to be single-valued gives
that over the full path-tracing

∫
C dl∇ϕ = δϕ = −2πn, where n

is an integer and the negative sign is introduced for convenience.
We obtain

Φ = nΦ0, Φ0 =
hc

2 |e| . (3.5)

This means that the magnetic flux trapped by the supercon-
ducting ring, Φ = BS, can take only values multiple of the flux
quantum Φ0 (Φ0 ≈ 2 · 10−15 Wb). Note also that in a general
case, the change of a phase is defined by the magnetic flux:
δϕ = −2πΦ/Φ0.

(5) Quasiparticle excitations. In the non-stationary regime, the
response of a superconductor is defined both by the superconduc-
tive condensate and the quasiparticle excitations over the ground
state. The excitations are separated by the gap 2ΔS from the
ground state, and therefore they can be neglected at sufficiently
low temperature, kBT 	 ΔS. The value 2ΔS corresponds to the
energy, which is necessary for splitting one Cooper pair. Another
condition on the absence of the quasiparticle excitations is the
absence of high-frequency fields with �ω ∼ ΔS, which means
that it is necessary also to have ω 	 ΔS/�.
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3.2. Josephson effect

Consider a weak link between two bulk pieces of a superconductor —
the banks of the junction — so that this junction does not signifi-
cantly change the state of the superconductors. The role of a weak
link can be played by, for instance, the thin interlayer of an insulator,
as shown in Fig. 3.1. The characteristic value of the critical current for
such junctions is 10 A/cm2, which is much smaller than the critical
current of the bulk superconductors. The presence of the perturba-
tion in the form of the weak link leads to the interference of the banks’
wave functions; as a result, the common wave function is formed. As
we will see, this state is characterized by flow of the dissipationless
current through the interlayer insulator. This is the stationary
Josephson effect . Moreover, if the dc voltage is applied to the junc-
tion, then the alternating current would flow through the junction —
the phenomena known as the non-stationary Josephson effect. Such
current-carrying states are characterized by the phases of the conden-
sate wave functions ϕ1,2. Importantly, the observation of the Joseph-
son effects allowed, for the first time in the history of physics, the
quantum-mechanical values, which are the phases ϕ1,2, to be directly
linked to the macroscopic values — the current and the voltage.

Let us derive the formulas for the stationary and non-stationary
Josephson effects in the simplest approach, proposed by Feynman
(see Footnote 10 on page 16 and [Schmidt 1997]). Consider a
weak link of two identical superconducting condensates in the

(a) (b)

Fig. 3.1. (a) Josephson tunnel junction — two superconductors S1,2, separated
by a thin layer of an insulator I . (b) Josephson junction J , included in a ring,
which is pierced by an external magnetic flux Φe.
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junction banks, as in Fig. 3.1(a), which are described by the space-
homogeneous condensate wave functions Ψ1,2 = √

ns,1,2 e
iϕ1,2 . It is

assumed that the phase difference changes rapidly on the weak link
and that this phase gradient — or the phase difference ϕ = ϕ1−ϕ2 on
the tunnel junction — parameterizes the current state. The current is
assumed to be weak, that is why we can neglect its intrinsic magnetic
field.

Consider a Josephson junction embedded in a ring as shown in
Fig. 3.1(b). Let us integrate Eq. (3.2) along the circuit C, from
point 1 to point 2. Since there is no supercurrent within a bulk
superconductor, js = 0, we have

�

∫ 2

1
dl∇ϕ = � (ϕ2 − ϕ1) ≡ −�ϕ

∧=
2e
c

∫ 2

1
dlA

≈ 2e
c

∮
dlA =

2e
c

Φe. (3.6)

Here we made the approximation that the circuit was complemented
up to the circular one, which is justified by the fact that the vector
potential A does not have any singularity in the vicinity of the
junction J . We have obtained the important relation that the phase
difference on the junction is defined by the magnetic flux,

ϕ = 2π
Φe

Φ0
. (3.7)

So, we expect a Josephson structure to be highly sensitive to changes
in a magnetic flux. We will discuss such magnetometers (so-called
superconducting quantum interference devices, or SQUIDs) in more
detail later.

Assume now that the electric potential difference (the voltage)
V is applied to the junction (as in Fig. 3.1(a)) for convenience we
assume V < 0, so that eV > 0. The two states of the junction banks,
shown in Fig. 3.2, form a two-level system with the energy levels
defined by the shift of the chemical potential and equal to ±eV . Let
us define the vector-states for the junction banks so that they form
the basis of a two-level system

|ψ1〉 =

(
1

0

)
, |ψ2〉 =

(
0

1

)
. (3.8)
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Fig. 3.2. Energy diagram of a tunnel Josephson junction.

(Note that again we have a two-level system, though in a different
context.) Let us expand the wave function in this basis:

|ψ〉 = a1|ψ1〉 + a2|ψ2〉 =

(√
ns1e

iϕ1

√
ns2e

iϕ2

)
. (3.9)

Here the expansion coefficients are chosen so that they are normal-
ized by the density of states, and the phase is detached: a1,2 =√
ns1,2 exp(iϕ1,2).
The system’s Hamiltonian has the diagonal elements which

are equal to the system’s energy in the respective state: H11 =
〈ψ1|H|ψ1〉 = eV and H22 = −eV . The energy difference is equal
to 2eV , which corresponds to the Cooper-pair charge 2e. The off-
diagonal elements describe transitions between the levels, which are
related to the tunneling through the barrier, which we characterize
by the value B: H12 = H21 = B. Then the Hamiltonian becomes

H =

(
eV B

B −eV

)
= eV σz +Bσx. (3.10)

And from the Schrödinger equation i� ∂
∂t |ψ〉 = H|ψ〉 we obtain

i�ȧ1 = eV a1 +Ba2,

i�ȧ2 = Ba1 − eV a2

(3.11)
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or, taking into account Eq. (3.9),⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ṅs1 = −ṅs2 =
2Bns0

�
sinϕ,

ϕ̇1 = −B
�

cosϕ− eV

�
,

ϕ̇2 = −B
�

cosϕ+
eV

�
.

(3.12)

Here ns0 is the density of superconducting electrons in the banks
without accounting for the weak link (this is slightly different
from ns1,2). Since the current through the tunneling junction is
proportional to the rate of change of electron density, Is ∝ dns/dt,
we get the formula for the stationary Josephson effect :

IJ = Ic sinϕ, (3.13)

where Ic is the junction critical current, which by assumption is much
smaller than the critical current of the junction banks.

Subtracting the second equation of the system (3.12) from the
third one, we obtain the formula for the non-stationary Josephson
effect

ϕ̇ =
2eV

�
. (3.14)

From this relation we get ϕ(t) = ϕ(0) + 2e
�
V t. Then, for the

supercurrent in (3.13) we obtain

IJ = Ic sin
(
ϕ(0) +

2e
�
V t

)
. (3.15)

This means that applying the voltage results in flowing of the
alternating current with the frequency

ω =
2eV

�
. (3.16)

Consequently, the average power, consumed from the external source
for the supercurrent drive, is zero, IJV = 0. This means that the
supercurrent, Eq. (3.15), does not dissipate energy. Furthermore, if
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we invert Eq. (3.14),

V =
�

2e
ϕ̇, (3.17)

it becomes clear that the non-stationary Josephson effect consists
in the appearance of the dc voltage on the junction, if the phase
difference linearly depends on time.

So, if the junction is arranged with a stationary phase difference,
φ = φ(0), and there is no voltage applied (V = 0), then the direct
current flows through the junction IJ = Ic sinϕ(0) ≤ Ic. If the direct
voltage is applied, then the alternating supercurrent appears, as
described in Eq. (3.15). (At that, there is also a negligibly small
normal current.)

Consider now the current-biased junction, i.e. the regime with the
predetermined current (and not the voltage, as above) with value
larger than the critical one I > Ic. It is important now to account
for the normal current, which is defined by the value I − Ic. The full
current is equal to the sum of the normal current V/R, with R being
the resistance of the junction in normal state, and the supercurrent,
Eq. (3.13),

I = Ic sinϕ+
�ϕ̇

2eR
. (3.18)

Integrating this equation with respect to the time-dependent variable
ϕ(t), we can obtain, for the voltage V = �

2e ϕ̇, the following (see, for
example, in Footnote 28 of page 85):

V (t) = R
I2 − I2

c

I + Ic cosωt
, ω =

2e
�
R
√
I2 − I2

c . (3.19)

This means that, if the applied current is larger than the critical one,
then the alternating voltage would appear on the junction. It can be
shown that averaging over time gives

2eV̄ = �ω. (3.20)

This can be interpreted as that the transfer of one Cooper pair
through the junction is accompanied by the release of one quantum of
electromagnetic radiation, which is known as Josephson generation.
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From the definition of inductance as a proportionality coefficient
between the current derivative and the voltage, V = L(dI/dt), we
obtain from Eqs. (3.13) and (3.14) the Josephson inductance of the
junction:

LJ =
V

dIJ/dt
=

�

2eIc cosϕ
. (3.21)

This means that a Josephson junction is described as a non-linear
sign-changing inductance.

The relations above allow us to calculate also the Josephson
energy of a junction:

E(ϕ) =
∫
IJV dt = EJ (1 − cosϕ) , EJ =

�Ic
2|e| , (3.22)

where we have defined characteristic energy of the junction EJ ; at
integration, the constant was chosen so as to have E(ϕ = 0) = 0.

These relations could also be obtained by considering the station-
ary Josephson effect as an equilibrium phenomenon. Then the current
can be obtained by differentiating the thermodynamic potential:
IJ = c ∂F/∂Φ, where the magnetic flux is related to the phase,
Φ/Φ0 = ϕ/2π. We obtain the expression for the respective Josephson
energy: F = c(−1)

∫
IJdΦ = EJ (1 − cosϕ).

Besides the Josephson energy, EJ , a junction is also characterized
by the electrostatic charging energy EC . This energy is related to
the charge Q = CJV on the plates of the tunnel junction with the
capacitance CJ . The corresponding electrostatic (Coulomb) energy
is CJV

2/2 = Q2/2CJ . Then the characteristic charging energy per
electron is EC = e2/2CJ . (Note that in literature there is also another
definition of the characteristic electrostatic energy, per Cooper pair,
(2e)2/2CJ .)

The ratio of the two characteristic energies, EJ and EC , describes
several types of qubits. The following three sections are devoted to
the description of the basic types of superconducting qubits; see also
Footnotes 16, 24 and 26 (on pages 51 and 84, respectively).
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3.3. Current-biased junction

3.3.1. Mechanical analogy

This section is devoted to the simplest realization of a superconduct-
ing qubit, the phase qubit , which is based on a tunnel Josephson
junction with current.

The scheme of physical realization is shown in Fig. 3.3(a), and the
electric equivalent circuit is presented in Fig. 3.3(b). The junction
is described by the resistance R connected in parallel with the
capacitance CJ and the Josephson element J , in which flows the
supercurrent IJ = Ic sinϕ.

(a) (b)

(c) (d)

Fig. 3.3. (a) Scheme of a phase qubit, based on a current-biased Josephson
junction. (b) Electric equivalent circuit. (c) Potential energy as a function of the
order-parameter phase difference ϕ for Idc/Ic = 0.5. (d) The same as in panel
(c), but in the vicinity of the local minimum. The working levels of the qubit are
shown and denoted by 0 and 1, as well as the next level 2, which is used for the
state read-out.
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For the dynamic variable ϕ — the order-parameter phase differ-
ence of the junction — one can write down the motion equation, using
the Kirchhoff law for the full current as well as the formula (3.14),
linking the voltage and the phase difference. This current is split into
the normal component, V/R, the displacement current, CJdV/dt,
and the Josephson current in Eq. (3.13). We obtain

�CJ

2e
d2ϕ

dt2
+

�

2eR
dϕ

dt
+ Ic sinϕ = I. (3.23)

The bias current can have both direct and alternating com-
ponents, for example, in the form of a harmonic signal. In this
section, for simplicity, we will not consider the alternating current.
Then the motion equation (3.23) can be multiplied by �/2e and
rewritten in the form of the equation for the mechanical motion of
a particle with mass m = (Φ0/2π)2 CJ = �

2/8EC , coordinate ϕ,
experiencing a friction coefficient λ = (Φ0/2π)2R−1 and potential
energy U(ϕ):

mϕ̈+ λϕ̇ = −dU
dϕ

, (3.24)

U(ϕ) = −EJ(cosϕ+ ϕI/Ic). (3.25)

The potential energy has the form of the washboard shown in
Fig. 3.3(c). Such mechanical analogy allows description of classical
dynamics of a Josephson junction. When the current is less than the
critical value, I < Ic, there are local minima of the potential; the
particle exhibits local oscillations and the average value of the phase
difference is constant. According to Eq. (3.14), when that happens,
the voltage at the junction is equal to zero. The small oscillations in
the absence of a driving force (at I = 0) appear with the so-called
plasma frequency of a Josephson junction (which will be defined
later). At I ≥ Ic there are no local minima and the particle rolls
down the board, which corresponds to the continuous change of the
phase ϕ on the junction and the appearance of the voltage. So, at
I = Ic the plasma oscillations become unstable, and this corresponds
to the transition to the dissipative regime, with the voltage across
the junction.
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3.3.2. Quantization of the circuit

Continuing the mechanical analogy, we can write down the
Lagrangian and the Hamiltonian and quantize the system. For
simplicity we neglect here the dissipation (λ = 0); the smallness of
this value is necessary for practical applications. The electrostatic
energy plays the role of the kinetic energy, K = mϕ̇2/2 =
(�2/16EC )ϕ̇2, and the Josephson energy U(ϕ) plays the role of the
potential energy. Then we have for the Lagrangian: L = K−U . And
the Lagrange equation,

d

dt

∂L

∂ϕ̇
=
∂L

∂ϕ
,

gives us the motion equation (3.24), or equivalent to this, Eq. (3.23).
Canonical momentum, conjugated to the canonical coordinate ϕ,

is defined as p = ∂L/∂ϕ̇ and can be rewritten in the form of the
charge on the junction, Q = CJV , or in the form of the number of
Cooper pairs on the junction, n = Q/2e, as follows:

p = mϕ̇ =
�

2e
CJV = �

Q

2e
= �n, (3.26)

which defines the physical meaning of the generalized momentum.
The canonical Hamiltonian for the junction with current is

H(p, ϕ) = pϕ̇− L =
p2

2m
+ U, (3.27)

and it can be conveniently rewritten, using the Cooper-pair num-
ber n:

H(n,ϕ) = 4ECn
2 − EJ(cosϕ+ ϕI/Ic). (3.28)

The quantization is done by the replacement in the Hamilto-
nian (3.27) of the canonical coordinate by the operator, ϕ→ ϕ̂, and
of the canonical momentum by the differential operator: p → p̂ =
−i�∂/∂ϕ.29 (In what follows, the hats of operators will be omitted

29Here a note about the phase operator is to the point. The problem of the
operator definition relates to the 2π periodicity of the phase; then the minimal
uncertainty of the Cooper-pair number n, at definite phase, would be 1/2π and
not zero. Strictly speaking, the “phase operator” can only be introduced for large
Cooper-pair number n � 1, which is the case here. See the detailed discussion in
par. 2.2.1 in [Zagoskin 2011].
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besides cases where this would lead to an ambiguity.) Instead of the
momentum operator, it is more convenient to use the operator of the
Cooper-pair number, n = p/� = −i∂/∂ϕ, for which the commutation
relation [ϕ, p] = i� gives [ϕ, n] = i. This commutation relation means
that the phase and the number of Cooper pairs cannot be defined
simultaneously:

ΔnΔϕ ≥ 1. (3.29)

They experience quantum fluctuations with two limiting cases. The
first one takes place when the kinetic energy is dominating, at
EC � EJ ; this describes the situation with small fluctuations of
charge, Δn	 n. Inversely, for EC 	 EJ , the well-defined value is the
phase. In the respective cases, the charge and phase (or flux, in the
geometry of an interferometer) qubits are realized (see Footnote 16 on
page 51).

3.3.3. Phase qubit

So, a quantum circuit, which consists of a current-biased Josephson
junction, is described by the Hamiltonian (3.28). The quantization
results in the appearance of discrete energy levels in the potential
with local minima, as it is shown in Fig. 3.3(d). Since the potential
differs from the harmonic one, the energy levels are non-equidistant.
The lower two levels play the role of the operational qubit levels.

For the description of the phase qubit, we approximate the
potential U by a parabola, expanding it near the minimum, where
U ′ = 0 = EJ (sinϕ− I/Ic) and ϕ = ϕ0 = arcsin I/Ic. Then, omitting
the constant term, we have

U ≈ EJ cosϕ0
(ϕ− ϕ0)2

2
≡ mω2

q

(ϕ− ϕ0)2

2
,

ω2
q =

EJ cosϕ0

m
=

8EJEC

�2

√
1 −

(
I

Ic

)2

.

(3.30)

Here we can also introduce

ωp =
√

8EJEC/�, (3.31)
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which is the so-called plasma frequency — the frequency of small
oscillations in the absence of the driving force (I = 0). The energy
levels in such harmonic potential have the form Ek = �ωq(k + 1/2).
So, the distance between the qubit energy levels, ΔE = E1 − E0 =
�ωq, is defined by the bias current and by the plasma frequency of
zero oscillations ωp. We can now see that the phase qubit is the
two-level approximation of a Josephson junction with current, when
we can afford to disregard the upper levels. Such a qubit, similar to
any other two-level system, can be described in terms of the Pauli
matrices with the Hamiltonian H0 = −ΔE

2 σz.
The principle of operation of the phase qubit is shown in

Fig. 3.3(d). The bias current I is defined so that there are three
energy levels in the well, the uppermost of which is close to the top
of the potential barrier. The lower two levels are the working qubit
levels, which are controlled by the excitations with the frequency
equal to ωq. These levels are far beneath the top of the potential-
barrier, so the probability of tunneling is exponentially small. This
corresponds to the localization in the potential well, that is ϕ̄ =
const, and so the voltage across the junction is equal to zero,
V = �

2e
˙̄ϕ = 0. In addition, the upper level is not excited, since

the transition from level 1 to level 2 requires the frequency ω21 =
(E2 − E1) /� < ωq. This level is involved in the read-out of the qubit
state. Namely, the pulse is applied at the frequency ω21; the transition
to this level takes place and the probability of this process is equal to
the occupation probability of level 1 — the upper qubit level — which
requires measurement. Following which, tunneling from level 2 out of
the potential well occurs and the voltage pulse V = �

2e ϕ̇ is registered.
In this way, the probability of this voltage pulse is used to define the
qubit population.

Note that introducing the characteristic frequency in Eq. (3.31)
allows the inequalities for EC and EJ , mentioned above, to be
clarified. We have to compare respective terms of the Hamiltonian
with the characteristic frequency, or, more precisely, with the energy
gap between the levels, defined by this frequency, �ωp =

√
8EJEC .

Then, the almost classical regime, with the domination of the
Josephson energy, is realized at �ωp 	 EJ , that is at EC 	 EJ .
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3.4. Superconducting island — charge qubit

Consider the charge superconducting qubit . It is based on a super-
conducting island, or the so-called Cooper-pair box .30 The island is
formed by a Josephson junction (with the energy EJ, capacitance CJ

and phase difference ϕ) and the gate capacitance Cg, by means of
which the island is connected to the gate electrode with the voltage
Vg, as shown in Fig. 3.4(a). The smallness of the island and the
capacitances provide large charging energy. We note that the island
is in the regime called Coulomb blockade, where the Cooper pairs
can tunnel discretely and the charge of the island is a well-defined
value. In what follows, in Sec. 4.4, we will also discuss the Coulomb
blockade for normal structures.

The electrostatic energy of the circuit, shown in Fig. 3.4(a), can
be written for the island voltage V = (�/2e)ϕ̇ and transformed as
follows:

CJV
2

2
+
Cg(Vg − V )2

2
→ 4EC

(
CΣV

2e
− CgVg

2e

)2

≡ 4EC(n− ng)2.

(3.32)

Here we have defined the total capacitance of the island CΣ = CJ+Cg

and the characteristic charging energy EC = e2/2CΣ; during the

(b)(a) (c)

Fig. 3.4. (a) Schematic of the charge qubit. (b) Energy levels of the super-
conducting island with the excess number of Cooper pairs n = −2,−1, 0, 1, 2.
(c) Energy levels without accounting for the Josephson energy (two crossing lines)
and the two-level approximation for EJ/4EC = 0.05.

30M. Tinkham, Introduction to Superconductivity, 2nd ed., McGraw-Hill,
New York (1996), Chapter 7.
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transformation, we have omitted an insignificant constant. We have
also defined the number of the Cooper pairs on the island, n = CΣV

2e =
CΣ�

4e2 ϕ̇ = �

8EC
ϕ̇, and the dimensionless voltage on the gate electrode,

ng = CgVg/2e. Subtracting the junction Josephson energy, we obtain
the system Lagrangian

L(ϕ, ϕ̇) = 4EC

(
�

8EC
ϕ̇− ng

)2

+ EJ cosϕ. (3.33)

Coming to the canonical momentum, p = ∂L/∂ϕ̇ = �(n − ng), we
get the Hamiltonian

H(ϕ, p) = 4EC(n− ng)2 − EJ cosϕ =
4EC

�2
p2 − EJ cosϕ. (3.34)

Next, we do the quantization as described in the previous section.
We write down the Hamiltonian in the charge basis, that is the
basis of the charge-operator eigenstates, n̂|n〉 = n|n〉. From here we
have the expression for the charge operator, plus the completeness
condition for the respective projectors:

n̂ =
∑

n

n|n〉〈n|,
∑
n

|n〉〈n| = 1. (3.35)

Recall now (see [Landau and Lifshitz 1977], §15) that a particle
wave function in the coordinate representation with the definite
momentum p has the form ψp(r) ≡ 〈r|p〉 = eirp/�. In our case,
the role of the generalized coordinate is played by ϕ and instead of
the momentum, we use n = p/�. Then we have the wave function
〈ϕ|n〉 = einϕ. (Also we have the commutation relation [ϕ, n] = i.)
From this, using the completeness condition (3.35), we obtain the
expansion

|ϕ〉 =
∑
n

|n〉〈n|ϕ〉 =
∑
n

e−inϕ|n〉. (3.36)

Also, there is the inverse transformation (in all but name, the inverse
Fourier transformation)

|n〉 =
1
2π

∫
dϕeinϕ|ϕ〉. (3.37)
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As an exercise, let us check this:

|n〉 =
1
2π

∫
dϕeinϕ

∑
l

e−ilϕ|l〉 =
∑

l

|l〉 1
2π

∫ 2π

0
dϕei(n−l)ϕ

=
∑

l

|l〉δnl = |n〉. (3.38)

Having in mind that we need the expression for cosϕ, it follows from
Eq. (3.37) that

|n± 1〉 = e±iϕ|n〉 ⇒ (eiϕ + e−iϕ)|n〉 = |n+ 1〉 + |n− 1〉.
(3.39)

Here, in particular, we observed that the effect of the operator
exp(ilϕ) is analogous to the finite-displacement operator Ta =
exp

(
i
�
ap̂
)

such that Taψ(r) = ψ(r + a).
So, for the first and second terms in Eq. (3.34), we can write in

the charge representation:

(n− ng)2 =

(∑
n

n|n〉〈n| − ng

)2

=

(∑
n

n|n〉〈n|
)2

−2ng

∑
n

n|n〉〈n| − n2
g ·
∑
n

|n〉〈n|

=
∑
n

(n − ng)2|n〉〈n|, (3.40)

cos ϕ̂ =
1
2
(eiϕ + e−iϕ) ·

∑
n

|n〉〈n|

=
1
2

∑
n

(|n+ 1〉〈n| + |n− 1〉〈n|). (3.41)

In the latter term, we make the change of the summation variable,
and as a result, we obtain the Hamiltonian in the charge representa-
tion:

H =
∑
n

{
4EC(n− ng)2|n〉〈n| − EJ

2
(|n+ 1〉〈n| + |n〉〈n + 1|)

}
.

(3.42)
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Here, the first, dominating, term describes the charging energy (recall
that for the charge qubit, EC � EJ). The respective energy levels
4EC(n− ng)2 are shown in Fig. 3.4(b). Here it is convenient to
consider the excess Cooper-pair number on the island, rather than
their total number. For this consideration, assume that the voltage
is changed around some integer value ng ∼ n̄g, then n − ng =
(n − n̄g) − (ng − n̄g) ≡ N − Ng, and in order to avoid introducing
new variables, we change N → n and Ng → ng; then for illustration
see Fig. 3.4.

In the two-level approximation, the Hamiltonian takes the form

H = 4EC{n2
g|0〉〈0| + (1 − ng)2|1〉〈1|} − EJ/2{|0〉〈1| + |1〉〈0|}.

(3.43)

We account for the completeness condition, |0〉〈0| + |1〉〈1| = 1,
and obtain

2|1〉〈1| = |1〉〈1| + |1〉〈1| + |0〉〈0| − |0〉〈0| = 1 + |1〉〈1| − |0〉〈0|.
(3.44)

Omitting the constant term (i.e. the one proportional to the unity
matrix |0〉〈0| + |1〉〈1|), we get the expression for the Hamiltonian

H = −2EC(1 − 2ng){|0〉〈0| − |1〉〈1|} − EJ/2{|0〉〈1| + |1〉〈0|}.
(3.45)

Or, introducing the Pauli matrices,

H = −Δ
2
σx − ε

2
σz, (3.46)

Δ = EJ , ε = 4EC(1 − 2ng). (3.47)

So, the superconducting island can be described as a two-level
system with controllable parameters. This is the charge qubit.
The energy levels of the qubit can be obtained by diago-
nalizing the Hamiltonian (3.46): E± = ±(1/2)

√
Δ2 + ε2 =

±2EC

√
(1 − 2ng)2 + (EJ/4EC)2. These energy levels are plotted in

Fig. 3.4(c).
In practice, they use the charge qubits with two junctions,

embedded in a loop pierced by the external magnetic flux. This allows
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the Josephson energy to be made tunable. Consider for simplicity
the case with two identical junctions with the critical currents Ic
and the phase differences ϕ1 and ϕ2. Neglecting the loop geometric
inductance, we have ϕ1 − ϕ2 = 2πΦ/Φ0. The total current can then
be written in the form

I = I1 + I2 = Ic(sinϕ1 + sinϕ2) = Ĩc sinϕ,

Ĩc = 2Ic cos π
Φ
Φ0
, ϕ =

ϕ1 + ϕ2

2
. (3.48)

So, the loop with two junctions is described as a single junction with
the critical current Ĩc = Ĩc(Φ), which corresponds to the effective
Josephson energy EJ(Φ) = �Ĩc/2e. This allows the two parameters
in the Hamiltonian (3.46) to be changed: ε = ε(Vg) and Δ = Δ(Φ).

Consider separately the special type of charge qubits, the so-called
transmon. Its schematic is shown in Fig. 3.5. This type of qubits
probably harbours the most prospects to date,31 due to the long
decoherence times. The transmon itself consists of the charge qubit
shunted by a large capacitance CB and coupled to the transmission-
line resonator, which explains its name. The charge qubit in this
case is in the form of the loop with two Josephson junctions, as was
considered above. This loop is pierced by the external magnetic flux
Φ from the current-carrying conductor situated nearby. This can be
described as a single junction with the Josephson energy EJ (Φ) =
EJ0 cos(πΦ/Φ0). The qubit is coupled with the resonator, which is

Fig. 3.5. Transmon: the charge qubit shunted by large capacitance CB and
coupled to the transmission-line resonator.

31G. Wendin, Quantum information processing with superconducting circuits:
A review, Rep. Prog. Phys. 80, 106001 (2017).
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formed by the transmission line interrupted by two capacitances.
Such a system, composed of a qubit and a resonator, presents much
interest on its own for both fundamental science and applications, so
we will devote a significant part of Chapter 5 to this.

The special feature of a transmon is its large shunting capacitance
CB, which results in a decrease in the charging energy of the
superconducting island:

EC =
e2

2CΣ
=

e2

2
(
Cg + CJ + CB

) ≈ e2

2CB
. (3.49)

This is done to decrease the curvature of the qubit energy levels,
which is defined by the ratio (EJ/EC)−1, as is seen from the construc-
tion in Fig. 3.4(c). The shunting capacitance CB decreases essentially
this curvature. The ratio EJ/EC ∼ 10 is chosen; then the energy
levels become almost flat and hence depend little on the charge
fluctuations (noises). (True, this results in a decreased possibility
of control by means of the gate voltage, so, now, the connection
with the controlling electronics appears via the resonator.) Thanks to
this, they manage to reach record decoherence times, of the order of
tens of microseconds. For comparison, the time of a single operation
on superconducting qubits is of the order of one nano-second. This
means that before the phase is lost, one can make tens of thousands
of operations, which is now enough to run quantum algorithms.

3.5. Ring with junctions

We have considered the phase qubit above. When such a qubit
contains a loop (that is in the geometry of an interferometer), it
becomes possible to control it by the external magnetic flux —
such qubits are called flux qubits. The simplest realization would
be a qubit in the form of a ring with one junction. And we will
start from the discussion of such a classical circuit, having in mind
its importance for applications. However, to create a double-well
potential in such a circuit, a large inductance is required so that
the respective energy would be of the order of the Josephson energy.
But a large geometric inductance would require a large loop size
and strong influence of the electromagnetic environment. In order to
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avoid this, the geometric inductance is replaced by the Josephson
one. This allows the bistable situation to be achieved at a negligibly
small geometric inductance of the loop. To date, the most popular
circuit among researchers is the version with three junctions, while
study the rings with larger number of junctions are also studied.

3.5.1. Single-junction interferometer

Consider a superconducting ring with a Josephson junction pierced
by the magnetic flux Φe, see Fig. 3.1(b). This magnetic flux induces
the circulating current I, and then the total magnetic flux in the ring
with inductance L is

Φ = Φe − LI. (3.50)

As we have seen, the total flux is defined by the phase difference on
the junction, ϕ = 2πΦ/Φ0. Accounting for the Josephson relation,
we rewrite Eq. (3.50):

ϕ = ϕe − β sinϕ, ϕe = 2πΦe/Φ0. (3.51)

Here the interferometer parameter was defined:

β =
2πLIc

Φ0
. (3.52)

Expressing the current from Eq. (3.50), I = −(Φ − Φe)/L, we
obtain the following instead of Eq. (3.23)

�CJ

2e
ϕ̈+

�

2eR
ϕ̇+ Ic sinϕ+

Φ0

2πL
(ϕ− ϕe) = 0. (3.53)

Similar to the evolution of an autonomous Josephson junction
considered above [see Eq. (3.24)], this corresponds to the mechanical
motion in the potential

U = EJ(1 − cosϕ) + EL
(ϕ− ϕe)

2

2
, EL =

Φ2
0

(2π)2 L
. (3.54)

Here EL describes the magnetic energy; with this we can rewrite
the interferometer parameter, β = EJ/EL. The potential can be
conveniently rewritten as

U = EJ

(
1 − cosϕ+

(ϕ− ϕe)2

2β

)
. (3.55)
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If we plot the dependence U(φ), we would see that the potential
has several minima only if β > 1. In particular, at ϕe = π where the
external flux is equal to half-integer flux quantum, the potential takes
on the nature of a double-well. Incidentally, the minima correspond
to the two opposite current directions in the ring.

However, the case of β > 1 corresponds to the large inductance L,
for which a large ring is required, which would be strongly susceptible
to external noise. Below, we will consider how to get the double-well
potential at negligibly small inductance. But now we would like to
make several remarks about one of the most important applications
of the theory of superconductivity, which are the interferometers. For
further reading, consult, for example, the textbook [Schmidt 1997].

The relation (3.51) defines implicitly the phase difference on a
junction as a function of the external flux, ϕ = ϕ(ϕe), and hence
also the dependence of the current in the ring on the magnetic flux,
I = I(Φe). (This dependence, in general, is multi-valued, with a
hysteresis.) In practice, the current in such a ring is measured by
inductively coupling it to a resonant circuit. Such a ring is called
the single-junction interferometer, or SQUID — Superconducting
QUantum Interference Device. Such devices are used for ultra-high-
precision measurements of magnetic flux or other physical variables
which can be converted to a magnetic flux. The modern SQUIDs
can measure magnetic fields with a precision of up to 10−10 gauss
(note, for comparison, that the Earth self-field is about 0.5 gauss) or
a voltage with a precision of up to 10−15 V.

A single-junction SQUID is also called rf SQUID. In practice two-
junction interferometers, or dc SQUIDs, are also used. Such a SQUID
is a ring with two junctions, which is embedded in a circuit with direct
current. This is similar to the schematic presented in Fig. 3.3, where
one junction is replaced by a ring with two junctions. As we have
seen, this results in the critical current depending on the magnetic
flux, see Eq. (3.48).

3.5.2. Flux qubit

Consider a ring with three Josephson junctions, two of which have
identical parameters, EJ1 = EJ2 ≡ EJ , and the third one is α
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(a) (b)

Fig. 3.6. (a) The flux qubit consists of a ring with three Josephson junctions,
denoted as J1, J2, and J3. The ring is pierced by a controlling external magnetic
flux Φe. (b) Potential energy of the flux qubit with zero offset, f = 0, (thick line)
and non-zero offset, f = 0.01 (dashed line); the parameter α = 0.8. The horizontal
lines show the energy levels in the wells in the cases of neglecting (solid lines) and
correcting for tunneling effects (dashed lines).

times smaller, EJ3 = αEJ , see Fig. 3.6(a). The order-parameter
phase difference on the three junctions equals ϕ1, ϕ2, and ϕ3,
respectively. Their sum is defined by the total flux in the ring,
which approximately equals the external magnetic flux at very small
geometric inductance:

ϕ1 + ϕ2 + ϕ3 = 2π
Φ
Φ0

=
2π
Φ0

(Φe − LI) ≈ 2π
Φe

Φ0
≡ 2π

(
1
2

+ f

)
.

(3.56)

The potential energy of the ring is defined by the Josephson
energies of the junctions:

U = −EJ(cosϕ1 + cosϕ2 + α cosϕ3)

= −EJ(2 cosϕ− cosϕ+ − α cos(2πf − 2ϕ+)), (3.57)

where the phase ϕ3 was excluded using the relation (3.56) and we
also defined ϕ± = (ϕ1 ± ϕ2)/2. The potential profile has two local
minima, which at f = 0 are defined by the values ϕ− = 0 and ϕ+ =
±ϕ0 = ± arccos(1/2α) (U ′/EJ = 2 sinϕ+ − 2α sin 2ϕ+). Classical
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motion between these two minima is restricted by the high potential
barriers in the direction of changing ϕ−. Therefore we can consider
the motion as being one-dimensional at ϕ− = 0 with the potential
energy

U(ϕ+, f) = −EJ(2 cosϕ+ − α cos(2πf − 2ϕ+)), (3.58)

which depends on the generalized coordinate ϕ+ and the external
magnetic flux f . The potential becomes the double-well potential for
the values f close to 0 and α between 0.5 and 1. This is demonstrated
in Fig. 3.6(b).

The local minima, where ∂U/∂ϕ+ = 0 at ϕ+ = ±ϕ0, define the
states with the persistent current in the ring with opposite directions
and the amplitudes

Ip = Ic sin(ϕ+ + ϕ−) = ±Ic sinϕ0 = ±Ic
√

1 − 1/(2α)2. (3.59)

These current-carrying states define the basis of the flux qubit.
The energy levels for these states are shown by the solid lines in
Fig. 3.6(b). A non-zero offset f moves apart these levels by the value
δU = 2IpΦ0f ≡ ε. And the quantum-mechanical tunneling with the
amplitude Δ results in the lifting of the degeneracy in energy and
splitting of the levels.

So, we come to the fact that the flux qubit is described by
the two-level Hamiltonian, which formally coincides with that for
a charge qubit, Eq. (3.46), with the difference that the values Δ and
ε now have different meaning. Also, the Hamiltonians are defined
in different bases — the charge and the current bases for these two
types of qubits. In practice, the qubits often have constant value
Δ, while the bias ε contains both constant component ε0 and the
alternating one ε̃(t). The former bias parameter, ε0, changes the
distance between the energy levels ΔE =

√
Δ2 + ε20, and the latter

driving parameter, ε̃(t), controls the population of these levels. For
most of the applications, it is convenient to consider the alternating
part of the bias in the form of a harmonic signal.
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Conclusion to Chapter 3

In summary, let us write down the Hamiltonian, which describes
qubits, in the form

H(t) = −Δ
2
σx − ε(t)

2
σz, (3.60)

ε(t) = ε0 +A sinωt. (3.61)

As a rule in studying dynamics, we consider the value Δ constant and
the other parameters — ε0, A and, ω — to be the control parameters.
They can be changed by means of either the external current, gate
voltage, or magnetic flux — in dependence on the specific type of
the circuit (qubit) — for a phase, charge, or flux qubits, respectively.
The Hamiltonian (3.60) is written in the computational basis which
corresponds to diverse observable quantities for different types of
qubits. In particular, for a flux qubit, these are the states with the
current in clockwise and counterclockwise directions; for a charge
qubit, these are the number of the excess Cooper pairs on the island.
Corresponding to the foundations of quantum mechanics, one would
expect the possibility of finding such systems in the superposition of
these macroscopic states. This was reliably confirmed by numerous
experiments.

Let us now present, for the readers’ information, basic quantita-
tive characteristics of superconducting qubits:

∗ Distance between energy levels Δ/h ∼ 1 − 10 GHz (which corre-
sponds to excitation and emission by microwave photons);

∗ thickness of a Josephson junction ∼ 1 nm, and the scale for a circuit
∼ 1μm;

∗ effective temperature T ∼ 50 mK (which corresponds to
1 GHz h/kB ; it is necessary to have kBT < Δ);

∗ characteristic times for relaxation and decoherence T1,2 ≤ 10μs;
∗ ratio EJ/EC has different orders of magnitude as listed: for charge

qubits — 0.1, for flux qubits — 10, and for phase qubits — 106.
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Problems for independent work and for self-assessment

3.1. (***) Based on the two-level model, describe the two Josephson
effects.

3.2. (**) Solve the differential equation for the current, Eq. (3.18).
3.3. (**) Average, over one period, the voltage on the junction, in

Eq. (3.19), which would lead to the relation for the Josephson
generation.

3.4. (**) Based on the Kirchhoff law, write down the equation of
motion for a current-biased Josephson junction and draw its
potential energy.

3.5. (**) Expanding in series the potential energy from the previous
task, get the characteristic frequency of the phase qubit.

3.6. (**) Analyzing the electrostatic energy of a superconducting
island, write down its Hamiltonian.

3.7. (***) Quantize the Hamiltonian of the island and write it in
the charge basis.

3.8. (*) Write down the island Hamiltonian in the two-state
approximation and obtain the pseudo-spin Hamiltonian of the
charge qubit.

3.9. (**) Obtain and sketch the potential energy of a single-junction
interferometer.

3.10. (***) Plot the potential energy of the three-junction ring as a
function of ϕ− and ϕ+, and be convinced that it has steep walls
in the direction of increasing ϕ−, which allows us to assume
ϕ− = 0.

3.11. (**) Demonstrate that the three-junction ring (after the pre-
vious task) can be considered as a flux qubit; for this, sketch
the potential energy as a function of ϕ+ and analyze it.
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Chapter 4

NORMAL QUANTUM CIRCUITS

“When studying science, the examples are more
useful than the rules.”

[I. Newton]

Many of the quantum properties, inherent to superconducting cir-
cuits, can be realized in normal-metal coherent systems. This relates
to systems of size much smaller than the coherence length Lϕ. The
phase coherence means that the particles can be described by a wave
function, which evolves according to the Schrödinger equation. In
the present chapter we will describe such systems, paying particular
attention to specific properties such as conductance quantization and
Coulomb blockade, which are important for quantum engineering.
For further reading we recommend the textbooks [Moskalets 2010],
[Zagoskin 2011] and the references in Footnotes 32 and 33 below.

4.1. Low-dimensional structures

Such systems are realized on the basis of a two-dimensional electron
gas (2DEG), in which electrons are restricted from moving along
one dimension, with their freedom of mobility confined to a plane,
perpendicular to that dimension. Such a situation appears in a

32S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge, UK:
Cambridge University Press (1997).
33E. Akkermans and G. Montambaux, Mesoscopic Physics of Electrons and
Photons, Cambridge, UK: Cambridge University Press (2007).
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(a) (b)

Fig. 4.1. (a) Formation of a two-dimensional electron gas (2DEG) on the
heterojunction GaAs/AlxGa1−xAs. Application of the voltage to gates creates
areas of geometrical shadow, which are not accessible to the electrons of the
2DEG. At a certain configuration of the gates, they create quantum wires and
dots, which will be described later. (b) Potential energy around the boundary.
Asymmetric potential results in quantization in the well with a single energy
level for electrons forming 2DEG.

heterojunction of two semiconductors, for example, gallium arsenide
and aluminium-doped gallium arsenide, GaAs/AlxGa1−xAs, which is
schematically shown in Fig. 4.1(a). In such a heterojunction, due to
the incommensurability of the lattices, the curvature of the conduc-
tion bands appears. As a result, in the vicinity of the junction, the
potential well arises, as it is shown in Fig. 4.1(b). It is important, first,
that the quantization in the transverse direction results in there being
only one energy level in the potential well; second, the electrons pos-
sess high mobility in the longitudinal direction; lastly, the collective
electrons can be described as quasiparticles with the electron charge e
and mass m, which is different, generally speaking, from the free elec-
tron mass me. Additional electrodes (or the gates, as they say) allow
“press out” of electrons from the area of their geometrical shadows by
means of the negative gate voltage, Vg < 0, as shown in Fig. 4.1(a).
In this way, the low-dimensional structures are formed. The charac-
teristic parameters for a 2DEG are the following: coherence length
Lϕ ∼ 1μm, Fermi wavelength λF ∼ 50 nm (note the difference from
conventional metals, where λF ∼ 0.1 nm), effective mass of the
quasiparticles m � 0.07me (me ≈ 10−30 kg), density n ∼ 1012 cm−2.

To describe low-dimensional structures, consider the spectrum
quantization for them in the simplest model, when electrons are
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confined in a three-dimensional well of the size Lx×Ly×Lz. Then, the
assumption of the phase coherence allows the system to be described
in a single-particle approximation with the Schrödinger equation for
conduction electrons (quasiparticles) with the effective mass m:

− �
2

2m

3∑
i=1

∂2

∂x2
i

ψ = Eψ. (4.1)

Here x1 = x, x2 = y, x3 = z. We assume that our three-dimensional
potential well has infinitely high walls, which means that we apply
the zero boundary conditions on the wave function at xi = 0, Li. We
obtain the solution by separating the variables and normalizing the
wave function to unity:

ψ(x, y, z) = ψ1(x)ψ2(y)ψ3(z),

ψi(xi) =
√

2
Li

sin kixi,

ki =
πni

Li
, ni = 1, 2, . . . , (4.2)

E =
3∑

i=1

Ei, Ei =
�

2k2
i

2m
=

�
2π2

2m
n2

i

L2
i

.

Thus, the state of the electrons in the three-dimensional potential
well is defined by the set of three numbers ni. The respective basis
functions and energies are the following: ψ =

∏3
i=1 ψ

(ni)
i (xi) =

ψ
(n1)
1 (x)ψ(n2)

2 (y)ψ(n3)
3 (z) and En1,n2,n3 =

∑
iE

(ni)
i .

The maximally filled number of levels nmax
i ≡ Ni is defined by

the chemical potential μ, which in the absence of fields equals the
Fermi energy εF . Then the maximal wave number equals kF =
pF /� =

√
2mεF /�, and for the maximal number of the levels

we get

Ni =
[
LikF

π

]
=
[
Li

λF /2

]
, (4.3)

where the Fermi wavelength is λF = 2π/kF . This result means, in
particular, that, if Li < λF /2, none of the energy levels is filled and
the current cannot flow through such samples at low voltages.
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Fig. 4.2. Quantum wire: in the plane of the 2DEG where the regions inacces-
sible for electrons are shaded; the wire length is Lx � λF and the width is
Ly ≥ λF /2.

For the transverse quantization in heterojunctions, which we
discussed above, the potential is such that its characteristic width
Lz is larger than or of the order of λF/2. And so the conductivity of
the 2DEG is defined by a single subband with nz = 1; the energy of
2DEG is then counted from Ez = �

2π2/2mL2
z . If other dimensions

are also of the order of the Fermi wavelength, as in Fig. 4.2, then
such a system becomes one- or zero-dimensional. Such conductors
are called quantum wires and quantum dots, respectively. Note that
if the system is large in size along the x direction, Lx � λF , then
Nx � 1 and the distance between the energy levels becomes small,
ΔEx ∼ εF /Nx → 0, therefore the spectrum can be considered
continuous: Ex = p2/2m.

We note separately that the potential, which forms 2DEG, is
essentially asymmetric. This corresponds to the transverse electric
field �E = E0�ez. Hence, for such structures in some problems, it
is essential to take into account the so-called Rashba spin-orbit
interaction. In the general case, the spin-orbit interaction appears
in relativistic quantum mechanics by expanding the Dirac equation
in the powers of 1/c. Another illustrative way of deriving the spin-
orbit Hamiltonian is by making use of the Lorentz transformations of
the electromagnetic field. Next, the electric field �E in the coordinate
system, bound with the electron, acts as the effective magnetic
field �B = 1

c2
�E × �v = 1

mc2
�E × �p. Then the spin-orbit Hamiltonian

is given by the Zeeman interaction of the electron spin with this
field:

HSO =
g

2
μB�σ �B =

gμBE0

2mc2
�σ · �ez × �p ≡ α�p× �σ · �ez. (4.4)
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The value α introduced here appears to be sufficiently large: even
though it is inversely proportional to the squared light velocity, the
potential energy demonstrated in Fig 4.1(b) changes over atomic-
size distance, and therefore the electric field E0 has a significant
value. On the other hand, the respective energy should be compared
with the Fermi energy, and it is small for 2DEG — much less than
for the conduction electrons in 3D conductors. Thereby, a series
of problems for low-dimensional structures is solved with addition
of the term in Eq. (4.4) to the Hamiltonian of free conduction
electrons. Having introduced this spin-orbit interaction here, in our
first-iteration approach to this field, we will neglect this term in what
follows.

4.2. Conductance quantization

Consider the conductivity of a quantum wire — a one-dimensional
conductor — which is connected to bulk conductors as shown in
Fig. 4.3(a). These conductors play the role of the reservoirs, which
are characterized by certain values of the temperature T and the
chemical potential μ, and accordingly the electrons in them are
described by the Fermi distribution function. We assume that the
voltage is applied to the banks of the contact, V > 0, and respectively
the chemical potentials are shifted by the value of the electric
potential, ±eV/2. The wire is assumed to be ballistic, which means
that the dephasing length is larger than its length, Lϕ � L. We

(a) (b)

Fig. 4.3. (a) Quantum wire with a single scatterer. By means of the additional
gates (not shown in the schematic), the voltage V is applied. (b) Transmission
and reflection coefficients for the electronic waves, incident from the left (shown
at the top) and from the right (shown at the bottom).
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further assume that there is a scatterer (an impurity) within the
wire, which is characterized by the reflection coefficients.

The solution of the Schrödinger equation, i�∂Ψ
∂t = − �

2

2m
∂2

∂x2 Ψ, is
the wave function

Ψp(x, t) =
1√
L
e−i ε

�
tei

p
�
x, ε =

p2

2m
. (4.5)

m, p, and ε are respectively the mass, momentum, and kinetic energy
of an electron, and L ≡ Lx. The wave function of an electron is
normalized to unity,

∫ L
0 dx |Ψ|2 = 1. The current, created by the

electron motion with momentum p, can be calculated as follows:

Ip = e
i�

2m

(
Ψ
∂

∂x
Ψ∗ − Ψ∗ ∂

∂x
Ψ
)

=
e�

m
Im
(

Ψ∗ ∂
∂x

Ψ
)

=
ev

L
,

(4.6)

where v = p/m is the electron velocity.
To obtain the total current, we have to sum over all the states,

accounting for their occupations by multiplying to the distribution
function f(p). Assuming that the conductor is long (L� λF ), we can
change the summation to an integration. Indeed, for p = pn = �

πn
L ,

we have Δp = pn+1 − pn = π�/L → 0. Therefore we can use the
relation 1 = L

�πΔp and make the replacement Δp→ dp to obtain

∑
n
· · · =

L

π�

∑
n

Δp · · · → L

π�

∫ pF

0
dp · · · ≈ L

2π�

∫ ∞

−∞
dp · · ·

(4.7)

Then for the total current, accounting for the two-fold degeneracy in
spin, we have

I =
∑

Ipf(p) ≈ 2
L

h

∫ ∞

−∞
dpIpf(p) =

2e
mh

∫ ∞

−∞
dppf(p)

=
2e
mh

∫ ∞

0
dpp (f(p) − f(−p)) . (4.8)
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Let us compute for the integration with respect to the energy ε =
p2/2m; then dε = pdp/m and we obtain

I =
2e
h

∫ ∞

0
dε (f>(ε) − f<(ε)) , (4.9)

where f>(ε) and f<(ε) correspond to electrons with v > 0 and v < 0,
respectively. Let us discuss these distribution functions. Electrons
incident from the left and right banks are described by the Fermi
distribution functions

f1,2 = fF (ε− μ1,2) =
[
1 + exp

(
ε− μ1,2

kBT

)]−1

(4.10)

with respective chemical potentials μ1,2 = μ ± eV/2. The electrons
from the left bank with the probability T̃ pass by the scatterer and
those with the probability R are reflected from it; the electrons from
the right bank with the probability T̃ ′ are transmitted and those with
the probability R′ are reflected; see Fig. 4.3(b). The probabilities
of the states’ occupations are characterized by the distribution
functions; to the right from the scatterer we have: f<(ε) = f2 and
f>(ε) = T̃ f1 + R′f2. Then from Eq. (4.9), accounting for the fact
that 1 −R′ = T̃ ′, we obtain

I =
2e
h

∫ ∞

0
dε
(
T̃ f1 − T̃ ′f2

)
. (4.11)

Next, we assume that the potential barrier, associated with the
scatterer, is symmetric so T̃ ′ = T̃ . Consider, in what follows, the
response linear in the voltage, which means that we assume |eV | 	 μ.
Then we can expand the distribution functions (4.10) into series:

fF

(
ε− μ∓ eV

2

)
≈ fF (ε− μ) ∓ eV

2
f ′F (ε− μ) , (4.12)

f ′F = − 1
4kBT

cosh−2 ε− μ

2kBT
−→
T→0

−δ(ε− μ). (4.13)
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Then, for the conductance of the quantum wire, we obtain the
so-called Landauer formula:

G =
I

V
= G0

∫ ∞

0
dεT̃ (ε)

(
−∂fF

∂ε

)
, (4.14)

where we have introduced the conductance quantum

G0 =
2e2

h
. (4.15)

At zero temperature (i.e. at T 	 μ), and accounting for Eq. (4.13),
we obtain for the conductance:

G|T=0 = G0T̃ (μ). (4.16)

This formula reduces the problem of kinetics — which is the
definition of the current — to the quantum-mechanical problem of
scattering.

We emphasize that even in the absence of a scatterer, when
the transmission probability T̃ = 1, the conductance of a quantum
wire is not infinite — such a one-dimensional conductor creates the
resistance R0 = 1/G0 ≈ 13 kΩ. Note that G0 ≈ 7.8 · 10−5 siemens (1
siemens = 1 Ω−1), and one can find in literature another definition
of a characteristic conductance without the factor “2” in Eq. (4.15).

Finally, let us discuss the situation where the quantum wire is
not a strictly one-dimensional conductor, but rather a conductor of
finite width Ly — a two-dimensional conducting channel. Then the
number of the levels which are filled is Ny = [2Ly/λF ], corresponding
to the transverse quantization. We have to sum over them, and then
the Landauer formula takes the form [Moskalets 2010, Chapter 8]:
G|T=0 = G0

∑Ny

n=1 T̃n(μ). Note that the number Ny depends on
the channel width Ly, which in an experiment is defined by the
gate voltage Vg. So, the Landauer formula describes the stepwise
dependence of the conductance on the voltage. If T̃n = 1, then
as illustrated in Fig. 4.4(b), the height of the steps equals G0 in
the dependence of the conductance G on the channel width Ly.
If T̃n < 1, then the conductance decreases correspondingly, and
the resistance of the conductor increases. We emphasize that for a
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(a) (b)

Fig. 4.4. Dependence of the number of conducting subbands Ny (a) and of the
conductance G (b) on the conductor width Ly . The height of the conductance
steps is G0, and their width is λF /2.

macroscopic conductor, the conductivity is G = σ S
L , which is linearly

dependent on the conductor width, while for a mesoscopic conductor
this dependence is stepwise.

4.3. Aharonov–Bohm effect

Mesoscopic systems allow the study of fundamental effects such as
the Aharonov–Bohm effect in quantum mechanics, where the scalar
and vector electromagnetic potentials directly (via the phase of a
particle wave function) define the observable values. This means that
they have physical meaning on their own. In contrast, observables in
classical physics are defined by electric and magnetic fields only, while
the potentials are introduced only as a convenient parametrization.
And so, for the electric field and the magnetic-field induction we have:
B = rotA and E = −∇ϕ− 1

c
∂A
∂t (this is written in the CGS system,

while in SI: B = rotA and E = −∇ϕ− ∂A
∂t ). Such “parametrization”

corresponds to the Maxwell equations in vacuum: rotE = −1
c

∂B
∂t and

divB = 0. Note that the Maxwell equations are not changed by the
gauge transformation: A → A + ∇χ and ϕ→ ϕ− 1

c
∂χ
∂t .

4.3.1. Conductance oscillations

Consider the manifestation of the Aharonov–Bohm effect in a
mesoscopic sample. For this, let us calculate the transmission of the
electron current through a doubly-connected sample — a ballistic
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Fig. 4.5. Propagation of the current through the doubly-connected mesoscopic
sample pierced by the magnetic flux Φ.

ring. Let this ring be pierced by the magnetic flux Φ. This could be
a weak magnetic field — so weak that its influence (via the Zeeman
term) can be neglected and only changes of the phase factor should
be taken into account. But more illustrative would be to imagine a
thin solenoid inside the ring. The vector potential of such a field is
directed tangentially to the circle around the solenoid and depends
only on the circle radius R, that is on the distance from the solenoid:
A = Φ/2πR. The magnetic-field induction outside the solenoid is
B = rotA = 0. Therefore in such a formulation of the problem in
classical physics, the presence of the solenoid field does not influence
the current in the circuit, as in Fig. 4.5.

For the mesoscopic formulation of the problem, we need to discuss
the propagation of the electronic wave — the splitting in point A and
the interference in point B. As we have seen above, the conductance
is defined by the transmission coefficient.

The wave function of a free electron, moving along a certain
trajectory, is defined by the Schrödinger equation (1/2m)(−i�∇ −
eA/c)2ψ = Eψ and has the form:

ψ(r′) = const · exp

[
i

�

∫ r′

r0

dr (p− eA/c)

]
= ψ(r0) · a(r′, r0).

(4.17)

Here we have fixed the lower integration limit at a certain point
r0, therefore the normalizing constant is defined as ψ(r0). The
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value a(r′, r0) is the probability amplitude of the transmission from
one point to another. Correspondingly, for the propagation of the
electronic wave along the upper and lower parts of the ring, we
have

a(rB1,2, rA) ≡ a1,2 = |a1,2| eiδ1,2 , δ1,2 = δ
(0)
1,2 − e

�c

∫
1,2

Adl.

(4.18)

Here we have separated the term δ
(0)
1,2 independent of the vector

potential. In the absence of external forces, the momentum is
conserved hence δ(0)1,2 = p

�
L1,2. Then for the total probability of the

electron transmission, we have by adding the amplitudes,

|a1 + a2|2 = |a1|2 + |a2|2 + 2 |a1a2| cos(δ1 − δ2). (4.19)

And for the phase difference, corresponding to propagations along
the upper and lower branches, we get

δ1 − δ2 = δ
(0)
1 − δ

(0)
2 − e

�c

∮
Adl = Δδ(0) +

2πΦ
ΦN

0

, (4.20)

where we have defined the magnetic flux quantum,

ΦN
0 =

hc

|e| , (4.21)

which, distinct from the case of superconductors, contains the
electron charge e, rather than the charge of a Cooper pair 2e.
(Φ(N)

0 = hc
|e| ≈ 4 · 10−7 gauss · sm2 in the system of units CGS and

Φ(N)
0 = h

|e| ≈ 4 · 10−15 Wb in SI.) In what follows, we will omit the
index N from ΦN

0 .
Taking into account of that, the conductance is proportional to

the electron transmission coefficient, satisfying Landauer formula,
and we may obtain

G = G1 +G2 + 2
√
G1G2 cos

(
Δδ(0) +

2πΦ
Φ0

)
, (4.22)
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where G1,2 are the conductances of the upper and lower parts of the
circuit. In a symmetric formulation of the problem, G1 = G2, and
the conductance is a periodic function of the magnetic flux:

G = 2G1

[
1 + cos

(
Δδ(0) +

2πΦ
Φ0

)]
∈ (0 · · · 4G1), (4.23)

where the minimal value, 0, corresponds to the destructive interfer-
ence of the two waves and the maximal value, 4G1, is the result of the
constructive interference. This is one more radical distinction from
the case of classical conductors, where there is no interference and
the conductances sum up: G = 2G1.

* We note that the full solution of the problem on the transmission
through our doubly-connected conductor, Fig. 4.5, (which assumes
the solution of the Schrödinger equation in each of the branches and
then the matching of the respective wave functions) would give the
following expression for the transmission coefficient of an electron
with the wave number k = p/� [Moskalets 2010]:

T (k) =
4 sin2 (kL/2) cos2 (πΦ/Φ0)

[1 + cos (2πΦ/Φ0) − 2 cos kL]2 + sin2 kL
, (4.24)

where L is the ring circumference, and correspondingly G =
G0T (kF ).

4.3.2. Persistent current

Consider one more important visualization of the Aharonov–Bohm
effect, which is the possibility of an undamped current in thermo-
dynamical equilibrium — the so-called persistent current — flowing
in an isolated normal mesoscopic ring, pierced by a magnetic flux
[Moskalets 2010]. This persistent current, similar to the conductance
above, is the periodic function of the magnetic flux. This current is
obtained by summing up the partial currents of different states with
the quantum number n, which comes from the periodic boundary
conditions for the wave function.

Let us calculate the persistent current in a one-dimensional
isolated ring. Assume either that there is a solenoid inside this ring,
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or the ring is placed in the weak magnetic field, so that the ring
is pierced by the magnetic flux Φ, and the Zeeman term in the
Hamiltonian can be neglected. Consider the coordinate x along the
ring. Since the circulation of the vector potential gives the magnetic
flux, we have Ax = −A = −Φ/L. Then the Hamiltonian takes the
form:

H =
1

2m

(
−i� ∂

∂x
− e

c
Ax

)2

= − �
2

2m

(
∂

∂x
− i

2πΦ
Φ0

1
L

)2

,

Φ0 =
hc

|e| . (4.25)

For the solution of the Schrödinger equation Hψ = Eψ we obtain

ψ =
1√
L

exp
(
ikx+ i

2πΦ
Φ0

x

L

)
,

∫ L

0
dx |ψ(x)|2 = 1,

E =
�

2k2

2m
. (4.26)

The wave vector k is defined from the single-valuedness condition
for the wave function, ψ(x + L) = ψ(x), from which we have kL +
2πΦ/Φ0 = 2πn, or

kn =
pn

�
=

2π
L

(
n− Φ

Φ0

)
. (4.27)

From here, the expression for the spectrum follows,

En =
h2

2mL2

(
n− Φ

Φ0

)2

. (4.28)

Let us calculate the partial current of an electron:

In = e

(
ψ∗

n

p̂− eA/c

2m
ψn + c.c.

)

=
e�

2m
2Re

(
ψ∗

n

(
−i ∂
∂x

− 2πΦ
Φ0

1
L

)
ψn

)
=
e�kn

mL
, (4.29)
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or

In =
eh

mL2

(
n− Φ

Φ0

)
. (4.30)

Note, first, that I−n = In and, second, that In = −1
c

∂En
∂Φ .

In order to obtain the total current, we need to sum up the partial
currents while accounting for the distribution function:

I =
∞∑

n=−∞
InfF (En) =

eh

mL2

∞∑
n=−∞

(
n− Φ

Φ0

)
fF (En). (4.31)

Consider for simplicity the case of zero temperature. Then the Fermi
distribution function indicates that all the states under the Fermi
level, En < μ, are occupied, and above the Fermi level there are
no occupied states. Then there are two possible cases — when the
number of occupied states is odd or even, see Fig. 4.6.

Consider, first, the case, where the total number of electrons N
is odd. Then in Eq. (4.31) we have

(N−1)/2∑
n=−(N−1)/2

n = 0,
(N−1)/2∑

n=−(N−1)/2

1 = N. (4.32)

And also let us go from the total electron number to the Fermi
velocity by noting that in Eq. (4.27) we have pF = 2π�

L N , then it

Fig. 4.6. Occupied energy states for two possible values of the chemical potential.
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(a) (b)

Fig. 4.7. Dependence of the persistent current in the ring on the magnetic flux
for the cases of odd (a) and even (b) number of electrons in the ring.

follows that vF = hN
mL . And we obtain

Iodd = −I0 Φ
Φ0
,

∣∣∣∣ Φ
Φ0

∣∣∣∣ < 1
2
. (4.33)

Here, the current amplitude I0 = evF /L corresponds to the current
of one electron at the Fermi level in the ring. The obtained saw-
tooth dependence of the current on the magnetic flux is shown in
Fig. 4.7(a). This is the diamagnetic current.

For the case of even number of electrons in the ring:
∑
n = N

2 sgnΦ
and for the positive value of the flux we obtain

Ieven = I0

(
1 − 2

Φ
Φ0

)
, 0 <

Φ
Φ0

≤ 1. (4.34)

The obtained dependence is demonstrated in Fig. 4.7(b). We note
that, for even N , the dependence becomes paramagnetic.

We emphasize that the change in the number of electrons by
1 changes the ring response — from diamagnetic to paramagnetic.
This kind of effect is called the parity effect .

* Note that the obtained formulas, Eqs. (4.33) and (4.34), can be
unified in the form of the Fourier expansion

I = I0
2
π

∞∑
k=1

(−1)kN sin (2πkΦ/Φ0)
k

. (4.35)

* At arbitrary non-zero temperature, the summation in Eq. (4.31)
can be transformed to the form of a Fourier series by making use of
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the known and useful Poisson summation formula:

∞∑
n=−∞

g(n) =
∫ ∞

−∞
dxg(x) + 2Re

∞∑
k=1

∫ ∞

−∞
dxg(x) ei2πkx. (4.36)

As the result, one can obtain [Moskalets 2010]:

I = I0
2
π

T

T ∗

∞∑
k=1

cos (2πkL/λF )
sinh (kT/T ∗)

sin (2πkΦ/Φ0) , T ∗ =
hvF

2π2L
.

(4.37)

(We note that 2π/λF = kF = 2πN/L, if the Fermi level either
coincides with one of the doubly-degenerate levels or hits exactly
in the middle between them.) From here, in particular, at low
temperatures, we obtain the formula (4.35). At high temperatures,
the series can be limited by the first term and then it can be seen
that the effect exponentially decreases as the temperature increases.

So, we can see that the persistent current has a number of
interesting properties: (i) it is periodic in the flux Φ, (ii) its amplitude
I0 is defined by the contribution of a single electron at the Fermi
level, (iii) it displays the parity effect, (iv) it decays exponentially at
T > T ∗.

4.4. Coulomb blockade

Above we have considered the peculiarities of quantum transport
through a quantum wire and a doubly-connected conductor pierced
by the magnetic flux. Consider now the quantum transport through a
quantum dot, of which the schematic is shown in Fig. 4.8. A quantum
dot (also an island or a grain) is formed by several capacitances Cj,
to which the electric potentials ϕj are applied. The gate voltage
Vg is used to control the quantum-dot state and, correspondingly,
the transport current, created by the bias voltage V . Note that
the superconducting analogue of a quantum dot — the Cooper-pair
box — was considered in Sec. 3.4.
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(a) (b)

Fig. 4.8. (a) Schematic of the quantum dot (QD) weakly coupled to the 2DEG
and biased by the electric potentials ϕ1,2. (b) Equivalent schematic of the
quantum dot, to which the bias voltage V = ϕ2 −ϕ1 and the gate voltage Vg are
applied.

4.4.1. Energy levels in a quantum dot

Let us calculate the energy associated with adding n electrons to
an initially electro-neutral island. The added charge equals the sum
of the charges on the inner plates of the capacitors, to which the
potential difference Δϕj = ϕI − ϕj = ϕI − Vj is applied (ϕI stands
for the island potential):

ne =
∑

CjΔϕj = ϕI

∑
Cj −

∑
CjVj ≡ CΣϕI + eng,

CΣ =
∑

Cj , ng = −1
e

∑
CjVj.

(4.38)

From here, the expression for the island potential follows: ϕI =
e(n − ng)/CΣ. Then for the electrostatic energy of the island we get

E =
∑ Cjϕ

2
I

2
=
e2(n− ng)2

2C2
Σ

∑
Cj = EC(n− ng)2, (4.39)

where EC = e2/2CΣ is the characteristic charging energy of the
island. If we minimize the energy (4.39), then we obtain n0 = ng,
and this is the so-called induced or gate charge. Since the number of
electrons is an integer, this corresponds to the number in the interval
n0 − 1

2 ≤ n ≤ n0 + 1
2 . In order to demonstrate this, the energy levels

E/EC = (n − ng)2 are plotted in Fig. 4.9 as a function of the gate
charge ng, that is, as a matter of fact, the dimensionless voltage.

Let us analyze the system energy levels at V = 0, where we are
interested in the dependence on ng = CgVg/|e|. We can see that
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Fig. 4.9. Energy levels, E/EC , in a quantum dot for several values of the excess
number of electrons n.

at the integer values of the parameter ng, the energy levels, which
correspond to the change in the number of electrons on the island,
are maximally separated from one another. And in this case, in order
to change the island charge by the charge of one electron, we need to
change the system energy by E = EC . At integer ng, the application
of a small bias voltage cannot change the island charge, and the
current through it would not pass. This regime is called the Coulomb
blockade. At |V | < EC/|e|, the current through the island equals
zero; at |V | > EC/|e| the current, linear in voltage, appears, which
is related to the resonant tunneling of single electrons — at integer
ng.

If ng is a half-integer, say ng = 1/2, then changing the island
charge does not require energy: the states with n = 0 and n = 1
have equal energies — and the island is deblockaded. At vanishingly
small bias voltage, the current will flow through the quantum wire.
Such a device is called a single-electron transistor (SET). The field
involving the study of such devices, for which the Coulomb blockade
is important, is sometimes called single-electronics.

4.4.2. Conductance of a quantum dot

The state of a quantum dot is characterized by the probability Pn

of n electrons dwelling in it. The set of these probabilities can be
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described by the balance equation (which is also called the kinetic
or master equation). For this, let us define the value Γn+1,n to be
the number of transitions per unit time (transition rate) from the
state n to the state n + 1. Assuming that only transitions between
neighboring states are possible, we can write:

dPn

dt
= Γn,n+1Pn+1 + Γn,n−1Pn−1 − (Γn+1,n + Γn−1,n)Pn.

(4.40)

The kinetic equation (4.40) for the stationary distribution is equiva-
lent to the detailed balance equation. Indeed, this equation, with the
l.h.s. zero, is fulfilled under the condition

Γn,n+1Pn+1 = Γn+1,nPn. (4.41)

Now, let us calculate the current through the quantum dot. Let
Γ±

L (n) and Γ±
R(n) denote the transition rates from the left (L) and

right (R) electrodes to (+) and from (−) the dot, see Fig. 4.10.
Then we have

Γn+1,n = Γ+
L (n) + Γ+

R(n),

Γn−1,n = Γ−
L (n) + Γ−

R(n),
(4.42)

and for the current, say, between the left electrode and the dot:

I = e

∞∑
n=0

Pn

(
Γ+

L (n) − Γ−
L (n)

)
. (4.43)

Consider the conductivity for a dot, in which only the two states,
with N and N + 1 electrons, are important. Denote these states as 0

Fig. 4.10. Tunneling of electrons into the quantum dot and out of it.
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and 1, which refer to the number of excess electrons. Then we need
to consider only two probabilities P0 and P1, for which P0 + P1 = 1.
Then from the detailed-balance equation (4.41) we have

P1 =
Γ1,0

ΓΣ
, P0 =

Γ0,1

ΓΣ
, ΓΣ = Γ1,0 + Γ0,1. (4.44)

The rates of transitions between the two states in the dot have the
form:

Γ1,0 = Γ+
L (0) + Γ+

R(0), Γ0,1 = Γ−
L(1) + Γ−

R(1). (4.45)

Putting (4.45) in Eq. (4.44), we obtain the current from Eq. (4.43)

I = e
Γ−

R(1)Γ+
L (0) − Γ+

R(0)Γ−
L (1)

ΓΣ
. (4.46)

In order to proceed further, we note that the transition rate is related
to the occupation of the respective state in the banks, that is the
Fermi distribution function:

Γ+
L,R(0) = ΓL,R

0 fF (ε0 − μL,R), μL,R = μ± eV

2
, (4.47)

Γ−
L,R(0) = ΓL,R

0 [1 − fF (ε0 − μL,R)] . (4.48)

Here ε0 is the energy of the state with 0 excess electrons in
the dot. Also, for convenience, we assumed that the voltage is
applied symmetrically, as ±eV/2 from the left and from the right.
Analogously, we can write down the rates for the state with 1 excess
electron. For simplicity, consider the case of the deblockaded dot,
when ε1 = ε0. Then Γ±

L,R(1) = Γ±
L,R(0) ≡ Γ±

L,R. Also we remind the
reader that in the approximation linear in eV/μ, we have for the
Fermi function

fF

(
ε− μ∓ eV

2

)
≈ fF (ε− μ) ∓ eV

2
f ′F (ε− μ), (4.49)

f ′F = − 1
4kBT

cosh−2 ε− μ

2kBT
−→
T→0

−δ(ε− μ). (4.50)
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Then in the approximation linear in voltage:

Γ−
RΓ+

L − Γ+
RΓ−

L = ΓR
0 ΓL

0 (fF (ε− μL) − fF (ε− μR))

≈ ΓR
0 ΓL

0 eV (−f ′F ), ΓΣ ≈ ΓL
0 + ΓR

0 . (4.51)

Let us also introduce Γ̃L,R = hΓL,R
0 , and then for the conductance

G = I/V we obtain

G = G0
Γ̃LΓ̃R

Γ̃L + Γ̃R

1
4kBT

cosh−2 ε− μ

2kBT
, G0 =

2e2

h
. (4.52)

This formula has to be related to the classical case of two parallel
resistances, which looks as follows:

R =
1
G

= RL +RR =
1
GL

+
1
GR

=
GL +GR

GLGR
⇒ G =

GLGR

GΣ
.

(4.53)

In particular, for GL = GR, it follows that G = GL/2.
* A separate interest also presents the derivation of the formula

(4.47): Γ+
j (0) = Γj

0fF (ε − μj). In order to obtain the transition
frequencies, one needs to use Fermi’s golden rule, see Eq. (2.117):

Γi→f =
2π
�

|〈f |Ht| i〉|2 δ(εf − εi), (4.54)

where the tunneling Hamiltonian

Ht = tj
∑

k

a
(j)
k c† + h.c., (4.55)

is described by the amplitude tj, the annihilation operator of an
electron in the j-th electrode a(j)

k , and the creation operator in the
dot c†.

Conclusion to Chapter 4

Mesoscopic-size conductors have a number of basic differences from
macroscopic conductors. For them the charge and spectrum quanti-
zation are important.
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The conductance of a mesoscopic conductor has a step-wise
dependence on its width, which is distinct from the linear dependence
for a macroscopic conductor. Besides, the conductance is defined
by the probability of transmission through the conductor. If the
transmission is ballistic, then the height of the steps is defined
by the conductance quantum, G0 = 2e2/h. If the conductor has
one conducting channel (i.e. its width is of the order of the Fermi
wavelength), then, even in the absence of impurities, its resistance
has finite value, R0 = 1/G0 ≈ 13 kΩ.

For mesoscopic conductors, it is important to account for possible
interference. In particular, for a doubly-connected conductor, the
Aharonov–Bohm effect is displayed as the oscillatory dependence of
the conductance on the magnetic flux, with the periodicity ΦN

0 =
h/|e| ≈ 4 · 10−15 Wb.

The conductance of a mesoscopic-size island is described by the
Coulomb-blockade regime. The electrons tunnel one by one and the
gate voltage can control the current through such a single-electron
transistor.

Problems for independent work and for self-assessment

4.1. (**) Find the eigen-values and the eigen-functions of a free
particle in a 3D box.

4.2. (***) Derive the Landauer formula for the conductance of a
1D conductor with a single impurity; note the difference from
Ohm’s law.

4.3. (***) Plot the conductance of a quantum wire, described by the
Landauer formula, for non-zero temperature to demonstrate
how it washes out the steps.

4.4. (**) Demonstrate that the Aharonov–Bohm effect results in
the periodic dependence of conductance on the magnetic flux,
with the period equal to the magnetic flux quantum.

4.5. (*****) Calculate the transmission coefficient for the doubly-
connected ballistic conductor; see Eq. (4.24) and the reference
next to it.

4.6. (**) Write down the Hamiltonian for an electron in a 1D
ballistic ring; find its eigen-energies and eigen-states.
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4.7. (***) After the previous task, write down and plot the
dependence of the current on the magnetic flux in the ring for
the two cases, where their number is odd and even, respectively.

4.8. (*****) Calculate the persistent current in a ring for non-zero
temperature; see Eq. (4.37) and the reference next to it.

4.9. (*) Analyze the persistent current, Eq. (4.37), at high temper-
atures.

4.10. (**) Analyze the spectrum of electrons on a quantum dot and
describe the Coulomb blockade and a single-electron transistor.

4.11. (****) Study the conductance of a quantum dot in terms of
the transition rates.

 M
es

os
co

pi
c 

Ph
ys

ic
s 

m
ee

ts
 Q

ua
nt

um
 E

ng
in

ee
ri

ng
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 B

.V
E

R
K

IN
 I

L
T

PE
 O

F 
N

A
SU

 o
n 

11
/1

6/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



July 4, 2019 14:14 Mesoscopic Physics meets Quantum Engineering 9in x 6in b3513-ch05 page 135

Chapter 5

CIRCUIT QUANTUM
ELECTRODYNAMICS

“The long journey has passed,
After the distant cloud.
I will sit to rest.”

Matsuo Basho34

As discussed previously, it is interesting and important to study not
only single mesoscopic systems, but also their connection with other
subsystems (see Footnote 9 on page 15). Below, we will consider
two illustrative examples, one on the system of a quantum dot
coupled to a classical nanomechanical oscillator and another for
the system composed of a superconducting qubit and a quantum
resonator on the base of a transmission line. In the former problem,
we will consider the case of a slow resonator, of which the frequency
ω0 is much smaller than all other characteristic frequencies in
the problem. In particular, if the respective distance between the
quantum levels is much smaller than the thermal broadening, �ω0 �
kBT , then such a resonator should be treated as a classical one.
And the system “a quantum dot — a classical resonator” will be
considered in the framework of the so-called semi-classical theory.
On the latter example we will consider the inverse situation, when

34Matsuo Basho. This haiku was translated by the author from “Japanese lyric
poetry. Matsuo Basho,” AST publishers, Moscow, translated by V. Sokolov
(2002). {This haiku in Russian: “ , .

.”}
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�ω0 > kBT . In this case, the resonator should be considered as a
quantum-mechanical object and the whole system “qubit-resonator”
is described in full analogy with an atom interacting with a quantum
field. Making such an analogy, we will familiarize ourselves with the
formalism to describe such systems.

So, the system “qubit-resonator” is analogous to one of the basic
systems of quantum optics — an atom in an electromagnetic field.
And here it is important to note that the large number of effects for
such a system is described by the semi-classical theory, where an atom
is treated as a discrete quantum system, and the field is assumed
classical.35 In the general case, quantum consideration is needed,
which implies using the elements of the quantum optics theory [Scully
and Zubairy 2012].

5.1. Quantum dot and nanomechanical oscillator

Consider a quantum dot (island) in such a configuration as in the
last section of the previous chapter with only one distinction —
one of the capacitor plates is now a suspended bridge, which can
oscillate (see Fig. 5.1). Such an object of small cross-section is called
a nanomechanical resonator . If its frequency is small in comparison
with the other characteristic frequencies, then it is described as a
classical oscillator. Of course, especially interesting is the situation
when such an object can pass to the quantum regime. Here we will
not consider this situation but rather we will consider this in the
next section, on the example of another resonator.

So, here we consider a normal island, created by the three
capacitances C1, C2, and CNR. One of the plates of the capacitor
CNR is formed by the nanomechanical resonator, or, for brevity, the
nanoresonator. The position of the nanoresonator is characterized
by the displacement of its central point u. This displacement is
assumably much smaller than the distance d between the plates.
Then the capacitance between the nanoresonator and the qubit has

35N. B. Delone and V. P. Krainov, Atoms in Strong Light Fields, Springer Series
in Chemical Physics Vol. 28, Springer, Berlin (1985); Atomizdat, Moscow (1978).
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Fig. 5.1. Quantum dot and nanomechanical resonator; description of the system
by introducing effective (quantum) capacitance Ceff .

the form

CNR(u) ≈ CNR0 +
∂CNR

∂u

∣∣∣∣
u=0

u ≡ CNR

(
1 +

u

ξ

)
,

ξ−1 =
1

CNR0

∂CNR

∂u

∣∣∣∣
u=0

, ξ ∼ d� u. (5.1)

By the subscript “0” we have here denoted the value at u = 0;
hereafter we will not write down this index. In order to make the
estimates, we can consider the capacitor to be plane-parallel for which

CNR(u) =
εε0S

d+ u
≈ CNR0 − CNR0

d
u, (5.2)

from where, in particular, we can see that ξ = −d. Here ε stands
for the dielectric constant of the medium, equal to 1 for the vacuum;
ε0 ≈ 8.8 · 10−12 F/m is the electric constant.

The displacement of the nanoresonator influences the qubit via
the changes of the polarization charge. (In order to have this influence
essential, they apply large voltage VNR, of the order of several volts.)
Also, we assume that there is the electronics, which can probe the
oscillation frequency of the nanoresonator, which, for simplicity, we
do not show in Fig. 5.1. Let us aim to define the state (i.e. the charge)
of the quantum island by means of measuring the frequency of the
classical nanoresonator.
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Consider a semi-classical theory for our system, when the island
is described as a quantum system and the resonator is described
as a classical system. Let the force, acting on the nanomechanical
resonator, drive it from the side of the quantum subsystem, the
quantum dot, and also assume that there is another periodic probe
force Fp sinωpt. Then we have the equation for the displacement
u of the classical nanoresonator with the effective mass m and the
eigen-frequency ω0, under the influence of the force, and without
accounting for the dissipation:

m
d2u

dt2
+mω2

0u = Fq

(
u,
du

dt

)
+ Fp sinωpt. (5.3)

Note here that oscillations in a non-linear system, described by
Eq. (5.3), can be reduced to the oscillations of an equivalent linear
system making use of the Krylov–Bogolyubov asymptotic expansion
formalism.36 Here we would like to demonstrate how to act even
simpler: we will consider the system, composed of a quantum dot
and a classical resonator by introducing the parametric (or, as they
say, quantum) capacitance.

The change of the number of electrons on the island is related to
their stochastic tunneling. But, since the resonator frequency is small,
it “sees” the average island occupation 〈n〉. As we have discussed in
the previous section (see Eq. (4.38)), the island potential is related
to the average number of electrons on the island,

ϕI =
e (〈n〉 − ng)

CΣ
,

CΣ =
∑

Cj , ng = −1
e

∑
CjVj = −C2V + CNRVNR

e
. (5.4)

Then, for the charge we have QNR = (VNR − ϕI)CNR and we can
define the effective differential capacitance, as it is shown in Fig. 5.1,

36N. N. Bogoliubov and Yu. A. Mitropolsky, Asymptotic Methods in the Theory
of Non-linear Oscillations (Gordon and Breach, New York, 1961); Nauka, Moscow
(1974).
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by differentiating the charge QNR on the capacitor (CNR) plate:

Ceff(u) =
∂QNR

∂VNR
= CNR − eCNR

CΣ

(
∂〈n〉
∂VNR

+
∂

∂VNR

CNRVNR

e

)
≡ Cgeom + CQ,

Cgeom = CNR − C2
NR

CΣ
=
CNR(C1 + C2)

CΣ
≈ CNR, CNR � C1,2,

CQ(u) = −eCNR

CΣ

∂〈n〉
∂VNR

=
C2

NR

CΣ

∂〈n〉
∂ng

. (5.5)

Here, the effective capacitance was split into geometric and (small)
“quantum” constituents.

Now we can consider the force, which acts on the nanoresonator
from the side of the island, as an electrostatic force with the effective
capacitance Ceff . Beside the direct voltage, let there be a small
alternating voltage applied to the nanoresonator:

VNR(t) = VNR + VA sinωpt, VA � VNR. (5.6)

Then, we take into consideration that VNR(t)2 ≈ V 2
NR +

2VNRVA sinωpt, CNR(u)2 ≈ C2
NR0 (1 + u/ξ)2, and that accounting

for the dependence on u in the other terms result in negligibly small
corrections, and we obtain

Fq =
1
2
∂

∂u

(
Ceff(u)V 2

NR(t)
) ≈ 1

2
V 2

NR

∂(CNR +CQ)
∂u

+ VNRVA sinωpt
∂CNR

∂u

= F0 + Fq (u) + Fp sinωpt.

(5.7)

Here we have defined the amplitude Fp = VNRVA
CNR

ξ , and separated
the displacement-dependent term

Fq = V 2
NRCQ

u

ξ2
, CQ =

C2
NR

CΣ

∂ 〈n〉
∂ng

, (5.8)
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and we denoted the (insignificant) constant terms with F0. If we move
the term Fq in the equation of motion (5.3) to the left side of the
equality, we obtain the shift for the term linear in the displacement
u:

mω2
0 → mω2

0 −
V 2

NR

ξ
CQ = mω2

eff = m(ω0 + Δω)2

≈ mω2
0 + 2mω0Δω. (5.9)

This means that for the frequency shift we obtain

Δω = − V 2
NR

2mω0ξ
CQ ∝ ∂ 〈n〉

∂ng
. (5.10)

So, the frequency shift is defined by the quantum capacitance.
Experimentally, this allows the state of the quantum subsystem
(here, the quantum dot) to be defined by measuring the resonator
frequency shift (here, the nanomechanical resonator).

* Quantum dot–charge qubit . In conclusion, consider the situation
where only two states are relevant for the quantum dot, which
means that it operates as a charge qubit. Then, it is not difficult to
show that the ground and excited states correspond to the quantum
capacitances of opposite signs. Indeed, as we have discussed, such a
charge qubit is described by the Hamiltonian

H = −ε0
2
σz − Δ

2
σx, ε0 = 2EC

(
ng − n(0)

g

)
, (5.11)

where the value Δ defines the tunneling between the two charge
states. By linking the charge basis and eigen-energy basis, we have

〈n〉 = P− 〈n〉− + P+ 〈n〉+ = 〈n〉− + P+

(〈n〉+ − 〈n〉−
)
,

〈n〉± =
1
2

(
1 ± ε0

ΔE

)
, ΔE =

√
Δ2 + ε20. (5.12)

In the ground/excited states we have P± = 0, from where 〈n〉 = 〈n〉±
and

∂ 〈n〉
∂ng

= ± ∂

∂ng

ε0
2ΔE

. (5.13)
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From here it can be seen that the quantum capacitances and the
frequency shifts (5.10) in the ground and excited states have opposite
signs.

5.2. Flux qubit and transmission-line resonator

In this section we will consider the system “qubit-resonator” in the
case where the resonator is in the quantum regime. For concreteness,
we consider the system composed of a flux superconducting qubit
inductively coupled to the transmission-line resonator. We will
demonstrate the remarkable fact that such a system is analogous
to an atom in electromagnetic field.

First, we consider the realization of the quantum resonator on the
base of the transmission line. Such a resonator is situated between
the two cuts in the transmission line, which form the capacitors C0

and are situated at x = ±l/2, see Fig. 5.2. We assume that the qubit
is inductively coupled to the current in the resonator and is situated
at its center, x = 0.

Let us start from describing a transmission line.

(a)

(b) (c)

Fig. 5.2. (a) Schematic of the qubit inductively coupled to the quantum
resonator on the base of a transmission line; (b) equivalent circuit for the
description of a small section of the transmission line; (c) the flux qubit with
the three Josephson junctions.37

37A. N. Omelyanchouk, E. V. Il’ichev, and S. N. Shevchenko, Quantum coherent
phenomena in Josephson qubits (Naukova Dumka, Kiev, 2013).
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5.2.1. Transmission line

A transmission line can be described as an infinite series of the
elementary circuits, as it is shown in Fig. 5.2(b).38 Here the
elementary inductance, capacitance, and conductance are equal to:
ΔL = LΔx, ΔC = CΔx, and ΔG = GΔx, where L, C and G stand
for the inductance, capacitance, and conductance (which describes
the dielectric losses in the material between the two conductors)
per unit length. Neglecting the Ohmic losses (R = 0), we can write
down the following equations, using the Kirchhoff laws for the current
I(x,t) and the voltage V (x,t):

I(x, t) − I(x+ Δx, t) = ΔGV (x, t) + ΔC
∂V (x, t)
∂t

,

V (x, t) − ΔL
∂I(x, t)
∂t

− V (x+ Δx, t) = 0. (5.14)

Dividing by Δx, and tending Δx to zero, we obtain the well-known
telegraph equations:

∂I(x, t)
∂x

= −GV (x, t) − C
∂V (x, t)
∂t

,

∂V (x, t)
∂x

= −L∂I(x, t)
∂t

. (5.15)

These equations can be written identically for the current and the
voltage: (

∂2

∂x2
− 1
v2

∂2

∂t2
+
κ

v2

∂

∂t

){
I(x, t)

V (x, t)

}
= 0, (5.16)

where v = 1/
√
LC has the meaning of the phase velocity and κ =

G/C describes the losses in the transmission line.
Consider further the monochromatic wave, for which

I(x, t) = I(x)eiωt, V (x, t) = V (x)eiωt, (5.17)

38D. M. Pozar, Microwave Engineering, Wiley, New York (1990).
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where taking the real part is implied. Such substitution gives(
∂2

∂x2
+ γ2

)
V (x) = 0, (5.18)

where we have defined the value γ, which can be written as follows,
accounting for the smallness of the losses:

γ =

√
ω2

v2
+ i

κω

v2
=
ω

v

√
1 + i

κ

ω
≈ ω

v
+ i

κ

2v
≡ k + iα. (5.19)

We obtain the solution of Eq. (5.18) for the voltage

V (x) = V+e
iγx + V−e−iγx. (5.20)

Note that e−ikx corresponds to the wave propagating to the right
and eikx corresponds to the wave propagating to the left.

From Eq. (5.15) we have the relation between the current and the
voltage

∂V (x)
∂x

= −iωLI(x) ⇒ I(x) =
i

ωL
iγ(V+e

iγx − V−e−iγx)

≈ − k

ωL
(V+e

iγx − V−e−iγx), (5.21)

or

I(x) = −V+

Z0
eiγx +

V−
Z0
e−iγx, Z0 =

√
L

C
. (5.22)

Here the value Z0 denotes the transmission-line impedance.

5.2.2. Transmission-line resonator

Consider an open transmission line of length l, forming the resonator.
Let us now define normal modes of the resonator without dissipation
(κ = 0). Then, assuming that the current through the boundaries at
x = ±l/2 equals to zero, we obtain

V+ = −V−, kj
l

2
= πj − π

2
, j = 1, 2, . . . ,

Ij(x) =
2V−
Z0

cos kjx, Vj(x) = −i2V− sin kjx.

(5.23)
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In particular, for the fundamental mode of the λ/2-resonator (l =
λ/2) we have kr ≡ k1 = π/l and ωr ≡ ω1 = k1v = π/

√
LrCr, where

Lr = Ll and Cr = Cl are the full inductance and capacitance of the
resonator.

Further we can expand the current in the resonator over the nor-
mal modes. For simplification of the situation, we consider the fre-
quencies close to the frequency ωr, so that we can ignore all the
modes besides the fundamental one. We have specified the coordinate
dependence and now we return to the time-dependent expressions for
the current and voltage for the fundamental mode with k1 = π/l (in
what follows we omit the subscript j = 1)

I(x, t) = Aq(t) cos kx, (5.24)

where we describe the time dependence by the product Aq(t), in
which the value q will be chosen later as a generalized coordinate and
the constant A will be chosen from the considerations of making the
analogy with a harmonic oscillator. Then for the voltage we obtain

V (x, t) = −L
∫ x

0
dx′

∂I(x′, t)
∂t

= −LA
k
q̇(t) sin kx. (5.25)

Next, we introduce the Hamiltonian as the total energy of the
resonator, which is better written by choosing A =

√
2m
Lr
ωr, with m

standing for some multiplier of the dimensionality of mass:

Hr =
∫ l/2

−l/2
dx

(
LI2

2
+
CV 2

2

)
=
mq̇2

2
+
mω2

r q
2

2
. (5.26)

This fully coincides with the Hamiltonian of a harmonic oscillator.
This allows the system to be quantized with the generalized coor-
dinate q and the conjugate momentum p = mq̇. It is convenient to
introduce the annihilation and creation operators

a(t) =
mωrq + ip√

2m�ωr
, a†(t) =

mωrq − ip√
2m�ωr

. (5.27)
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Comparing Eqs. (5.24) and (5.17), note that a(t) = eiωta and a†(t) =
e−iωta†. These operators act in the space of the number of photons —
these are the so-called Fock states,

a|n〉 =
√
n|n− 1〉, a†|n− 1〉 =

√
n|n〉. (5.28)

In terms of these operators, we can rewrite the operators of the
current and voltage and the Hamiltonian as follows

I = Ir0(a+ a†) cos
πx

l
, Ir0 =

√
�ωr

Lr
,

V = iVr0(a− a†) sin
πx

l
, Vr0 =

√
�ωr

Cr
, (5.29)

Hr = �ωr

(
a†a+

1
2

)
.

In particular, we obtain that on the boundaries, x = ±l/2, there is
no current and the voltage equals to ±W , with W = iVr0

〈
a− a†

〉
=

−2Vr0 Im 〈a〉. So, we have related the voltage on the ends of the
resonator to the mean value of the operator of the photon field in
the resonator.

5.2.3. Hamiltonian of the system “qubit-resonator”

As we have seen, the qubit Hamiltonian in the flux basis (which is the
basis of the circulating-current states) {|↑〉, |↓〉} has the form Hqb =
−Δ

2 σx − ε0
2 σz. The qubit current operator in this basis equals to

Iqb = −Ipσz. The qubit and the resonator are connected inductively
through the mutual inductance M , and hence the Hamiltonian of
their interaction has the form:

Hint = MI(0)Iqb = −g(a† + a)σz, g = MIr0Ip. (5.30)

The full Hamiltonian of the system (without taking into account
the relaxation processes and excitation) includes the contributions of
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the non-interacting qubit, the resonator and the interaction term:

Hqb-r = Hqb +Hr +Hint

= −Δ
2
σx − ε0

2
σz + �ωr

(
a†a+

1
2

)
− g(a† + a)σz .

(5.31)

This Hamiltonian is analogous to the one, which describes the
interaction of atoms and photons in cavity quantum electrodynamics
[Scully and Zubairy 2012]. By analogy, the part of the solid-state
theory where we deal with similar systems, is called circuit quantum
electrodynamics (cQED).39

Let us change to the representation of the qubit eigen-states,
similar to how we did this before. This is needed, for example, in
consideration of the dissipative processes; in particular, the qubit
relaxation appears from the excited to the ground state. Namely, let
us make the transformation

S = exp
(
i
η

2
σy

)
, sin η =

Δ
ΔE

,

cos η = − ε0
ΔE

, ΔE =
√

Δ2 + ε20, (5.32)

such that S†HqbS = ΔE
2 σz. Then in the new representation, the full

Hamiltonian takes the form

H ′
qb-r =

ΔE
2
σz + �ωr

(
a†a+

1
2

)
− g(a† + a)

(
ε0

ΔE
σz − Δ

ΔE
σx

)
.

(5.33)

We now introduce the operators σ± = 1
2 (σx ± iσy), which can be

interpreted as the raising/lowering operators for the qubit:

σ ≡ σ− =
1
2

(σx − iσy) =

(
0 0

1 0

)
,

39R. J. Schoelkopf and S. M. Girvin, Wiring up quantum systems, Nature 451,
664 (2008).
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σ† ≡ σ+ =
1
2

(σx + iσy) =

(
0 1

0 0

)
, (5.34)

σ |e〉 ≡ σ |1〉 = σ

(
1

0

)
=

(
0

1

)
= |0〉 ≡ |g〉 , σ† |0〉 = |1〉 ,

or, in unified form:

σ|k〉 =
√
k|k − 1〉, σ†|k − 1〉 =

√
k|k〉, k = 0, 1 (5.35)

which is analogous to Eq. (5.28). Note that the vector state of the
system can now be written in the form:

|k, n〉 = |k〉 ⊗ |n〉, k = {0, 1}, n = {0, 1, 2, . . .}. (5.36)

Let us now put σx = σ+σ† in Eq. (5.33). We leave only the terms,
corresponding to saving the energy in the system. Then we obtain
the famous Jaynes–Cummings Hamiltonian:

HJC =
ΔE
2
σz + �ωr

(
a†a+

1
2

)
+ gε(a

†σ + aσ†), gε = g
Δ

ΔE
.

(5.37)

This procedure means that we have neglected the terms proportional
to a, a†σ† and so forth. Note that this approximation is equivalent
to the rotating-wave approximation, which assumes ΔE/� ≈ ωr.
In order to confirm this, the interested reader can change to the
interaction representation as follows

|ψ′(t)〉 = exp
(
i

�
H0t

)
|ψ〉, H0 =

ΔE
2
σz + �ωra

†a. (5.38)

The interaction term in Eq. (5.37) describes the transfer of a photon
to the resonator (aσ†) and the other way round (a†σ).

Let us describe now the excitation of such a system. For this, we
assume that the alternating signal is applied at the resonator input,
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which is to the left capacitance in Fig. 5.2,

Vin = V |x=− l
2
−0 = VA sinωdt =

VA

2i
(
eiωdt − e−iωdt

)
. (5.39)

To the right, the voltage is given by the operator in Eq. (5.29):

Vres = V |x=− l
2
+0 = iVr0

(
a− a†

)
sin

πx

l

∣∣∣
x=−l/2

= −iVr0

(
a− a†

)
.

(5.40)

The energy, corresponding to such microwave excitation is

Hμw =
C0ΔV 2

2
=
C0

2
(
V 2

in + V 2
res − 2VinVres

)
. (5.41)

After omitting the “fast-rotating” terms and constants in this
Hamiltonian, in the rotating-wave approximation, we obtain

Hμw = ξ
(
a†e−iωdt + aeiωdt

)
, ξ =

1
2
C0VAVr0. (5.42)

This Hamiltonian has to be added up with the one in Eq. (5.37), so
as to obtain the total Hamiltonian for the system “qubit-resonator”
while accounting for the excitation.

5.2.4. Coherent states and the quasi-classical

Hamiltonian

Let us now describe the photons in the resonator by means of the so-
called coherent states. We will first learn this notion briefly, referring
to [Scully and Zubairy 2012]. A coherent wave packet has minimal
uncertainty and is analogous to a classical field. The coherent state
|α〉 is defined as the eigen-state of the annihilation operator a and
can be obtained from the vacuum state by the action of the operator
D as follows

a|α〉 = α|α〉, |α〉 = D|0〉 ≡ exp(αa† + α∗a)|0〉. (5.43)
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The operator D is the unitary one, D† = D−1, and acts as the
displacement operator,

D−1aD = a+ α, D−1a†D = a† + α∗. (5.44)

The value α describes the mean number of photons in the coherent
state:

〈n〉 = 〈α|a†a|α〉 = 〈0|D−1a†DD−1aD|0〉 = 〈0|(a† + α∗)(a+ α)|0〉
= |α|2. (5.45)

Note that the coherent states can be expressed via the Fock states:

|α〉 = e−|α|/2
∞∑

n=0

αn

√
n!
|n〉, (5.46)

and the probability that there are n photons in the state |α〉 is
described by the Poisson distribution:

p(n) =
〈n〉ne−〈n〉

n!
. (5.47)

Before averaging over the coherent state, let us make the trans-
formation to get rid of the corresponding temporal term: U =
exp

(
iωdta

†a
)
. We note that i�U̇U † = −�ωda

†a and UaU † = ae−iωdt.
Then the total Hamiltonian, before and after the transformation (see
Eqs. (5.31) and (5.42)), can be written as follows

Htot = −Δ
2
σx − ε0

2
σz + �ωra

†a− g(a† + a)σz

+ ξ
(
a†e−iωdt + aeiωdt

)
,

H̃ = UHtotU
† + i�U̇U † (5.48)

= −Δ
2
σx − ε0

2
σz + � (ωr − ωd) a†a− g(a†eiωdt + ae−iωdt)σz

+ ξ
(
a† + a

)
.

We average now the Hamiltonian over the coherent state, and we
obtain the Hamiltonian of the qubit interacting with the resonator
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in the coherent state:

H = 〈H̃〉 = 〈α|H̃ |α〉 = −Δ
2
σx − ε0

2
σz + �(ωr − ωd)〈n〉

− g(α∗eiωdt + αe−iωdt)σz + ξ(α∗ + α). (5.49)

Now, let α be a real value (its phase can be excluded by shifting
the initial moment of time, see the term with g). Then, omitting the
constants, we finally obtain the Hamiltonian for the qubit connected
to the driven resonator:

H = −Δ
2
σx − ε0 +Ad cosωdt

2
σz, Ad = 4αg = 4

√
〈n〉g. (5.50)

So, we note, with pleasure and satisfaction, that we came to the
Hamiltonian of a driven qubit, which we actually considered in the
previous chapters.

5.3. Hybrid systems on the base of mesoscopic ones

The previous two sections were devoted to the mesoscopic systems on
the base of superconducting Josephson circuits and the normal low-
dimensional conductors. These systems have a number of advantages.
For example, the opportunity of controlling the parameters in the
wide range. To the disadvantages of these systems, we face the
challenges of isolating such quantum systems from the environment.
Absent of these disadvantages are the microscopic systems, to which
we can relate electrons, photons, atoms. What is interesting is the
opportunity of linking the microscopic and mesoscopic subsystems
(see Footnote 9 on page 15). For example, for applications in the
field of quantum computations, mesoscopic qubits can be used in
the quantum processor, and microscopic qubits can be used in the
capacity of the long-term memory.

For mesoscopic quantum systems, in distinction from their micro-
scopic counterparts, it is important to take into account the impact
of controlling and read-out devices. The control can be executed
by means of applying current, voltage, or magnetic flux. These
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Fig. 5.3. Schematic of a hybrid system on the base of a mesoscopic subsystem.

parameters can have both constant and alternating components. For
reading out the states, one can use the resonators, in particular,
nanomechanical or electrical ones, as considered in the previous two
sections.

The relatively large size and additional electronics result in the
essential influence of the dissipative environment on the mesoscopic
system. This issue was discussed when we considered dissipative
dynamics in Chapter 2.

Finally, a mesoscopic system itself may not consist singly of one
but a system of qubits, or from a qubit coupled to a quantum
resonator. Partly, we have addressed such problems in the present
Chapter. In summary, we can unify what was said in the form of a
schematic; see Fig. 5.3.

Conclusion to Chapter 5

Quantum optics or quantum electrodynamics of optical resonators
studies the fundamental interaction of atoms and electromagnetic
field. The field is characterized by the frequency ω0 and the energy
of photons �ω0. There are two possible situations: when �ω0 � kBT ,
then the field can be considered in the semi-classical approximation,
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and when �ω0 ≥ kBT , then the entire system should be considered
as an aggregate quantum-mechanical object.

In this Chapter, we have considered the solid-state realizations of
such systems, where the role of an atom is played by a normal or
superconducting mesoscopic subsystem, the qubit, and the oscillator
can be a nanomechanical or electrical resonator. On these specific
examples, we have demonstrated how to describe such systems in the
two cases. In particular, a qubit-resonator system is described by the
Jaynes-Cummings Hamiltonian; in the semi-classical approximation
this reduces to the Hamiltonian (5.50) for a driven qubit. So, we
considered the basic approaches and some of the notions of this new
field — circuit quantum electrodynamics.

Problems for independent work and for self-assessment

5.1. (*****) With reference to Footnote 36 on page 138, study
how oscillations in a non-linear system can be reduced to the
oscillations of an equivalent linear system. This is a very useful
task and pedagogical trick for a theoretical physics student,
though this can be skipped for the first reading of the lecture
course.

5.2. (***) Lead the electrostatic analysis of a quantum dot, formed
by the capacitors, of which one is variable (e.g. due to a
mechanical resonator), and demonstrate that this can be
described by the parametric capacitance, Eq. (5.5).

5.3. (***) Expanding in series, for small displacement u, demon-
strate that the resonator frequency shift is defined by the
quantum subsystem state, as in Eq. (5.10).

5.4. (**) Find the quantum capacitance CQ ∝ ∂ 〈n〉 /∂ng for the
charge qubit.

5.5. (**) Describe a transmission line; obtain the telegraph equation
with losses.

5.6. (***) Obtain and quantize the Hamiltonian of a transmission-
line one-mode resonator.

5.7. (*) Write down the Hamiltonian of a coupled qubit and a
quantum oscillator, Eq. (5.31).
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5.8. (**) Assuming the rotating-wave approximation, transform the
Hamiltonian from the previous task to the Jaynes–Cummings
Hamiltonian.

5.9. (*) Include driving via voltage to the qubit-resonator
Hamiltonian.

5.10. (***) Average the qubit-resonator Hamiltonian over a coherent
state, and demonstrate that the Jaynes–Cummings Hamilto-
nian is then reduced to the semi-classical Hamiltonian of a
driven qubit, Eq. (5.50), which we used in previous chapters.
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CONCLUSION

“However, all of what I depicted. . ., apparently
with such needless particulars — all this leads
to the future and will be necessary there. At
its place, everything will respond; I could not
refrain; and if boring, I would ask not to read.”

F. M. Dostoevskiy40

In conclusion of this lecture course, let us summarize principal
definitions and results, which were considered in the respective
chapters.

(0) Mesoscopic Physics (Mesoscopics) studies the manifestations of
quantum effects in systems of many particles (condensed media)
on scales and time spans when the system phase coherence is
important. Having in view possible applications, this field of
physics is also called Quantum Engineering.

(1) Quantum computation is the field of studying problems related
to the manipulation and transmission of information using the
laws and objects of quantum mechanics. The theory of quantum
computation can be seen as a subdivision of non-relativistic

40F. M. Dostoevskiy, The Adolescent, Literatura artistica, Chisinau (1986);
the quotation was translated here by the author {this quotation in Russian:
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quantum mechanics, of which the central object is a two-level
system — the qubit, for brevity. A qubit is described by a wave
function or a state vector, which corresponds to the superposition
of two basis states:

|ψ〉 = α|0〉 + β|1〉. (i)

The principle of superposition, generalized for a system of two
qubits, results in the entangled states, when the wave function,
e.g. (|01〉 − |10〉)/√2, cannot be factorized. This corresponds to
the non-local quantum correlation, the manifestation of which
is sometimes referred to as the Einstein-Podolsky-Rosen para-
dox. These correlations present the basic resource for quantum
computation. And their fundamental importance is emphasized
by the fact that quantum correlations are stronger than classical
ones (Sq > Scl), which is known as the violation of the Bell
inequalities.

(2) Many important problems can be considered by studying the
dynamics of a two-level system with periodic excitation, i.e. the
driven qubit, which is described by the Hamiltonian

H(t) = −Δ
2
σx − ε(t)

2
σz, ε(t) = ε0 +A cosωt. (ii)

The distance between the stationary energy levels of the qubit,
ΔE =

√
Δ2 + ε20, is essentially the controllable value. When the

excitation frequency ω is a multiple of the qubit characteristic
frequency ωqb = ΔE/�, namely when k · ω = ωqb, then we have
the multi-photon excitation of a qubit, related to the absorption
of k photons of the driving field by the two-level system. In par-
ticular, when the frequencies are equal, ω = ωqb, the occupation
of the qubit levels oscillates between 0 and 1 with the Rabi
frequency ΩR (ΩR ∝ A): P+(t) = (1/2) (1 − cos ΩRt). In
the inverse limiting case of adiabatically slow changes, when
ω � ωqb — the transitions between the levels are described
by the Landau–Zener–Stueckelberg–Majorana formula: P+ =
exp

(
− πΔ2

2A�ω

)
. The phase accumulation under such evolution,

ζ =
∫
dt
√

Δ2 + ε(t)2/2�, results in interference phenomena —
the Stückelberg oscillations.
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(3) Many applications of superconductivity are related to the
Josephson effects. The stationary Josephson effect consists of a
non-dissipative supercurrent flowing through the tunnel junction,
IJ = Ic sinφ. Here, the phase difference φ in a doubly-connected
geometry is defined by the external magnetic flux: φ = 2πΦe/Φ0,
where Φ0 = hc/2|e| is the flux quantum. And if the direct
voltage is applied to the contact, then the phase difference
depends on time, φ̇ = 2eV/�, and the current oscillations appear
with the frequency ω = 2|eV |/� — this is the non-stationary
Josephson effect. A Josephson junction is characterized by a
non-linear inductance, LJ = LJ(φ), and this allows qubits to
be realized on this, which makes up the procedure of quantizing
respective circuits. For the phase, charge, and flux qubits, which
are described by the Hamiltonian (ii), their parameters depend
on the applied current, voltage, and magnetic flux, respectively:

phase: ε = ε(Ibias), charge: ε = ε(Vg), flux: ε = ε(Φe). (iii)

And so, the superconducting circuits result in the appearance,
on the mesoscopic scale, of not only coherent effects such as the
flowing of non-dissipative currents, but also in the appearance of
the superposition states.

(4) If the size of a conducting system is comparable with the Fermi
wavelength, Li ∼ λF , then this becomes a low-dimensional
system — a two-dimensional electron gas, a quantum wire, or
a quantum dot. In this case, the quantization of charge and
spectrum, as well as the interference, becomes important. The
conductivity of a one-dimensional conductor — the wire — is
proportional to the transmission coefficient: in particular, at zero
temperature

G|T=0 = G0T̃ (μ). (iv)

And even at the reflectionless transmission, at T̃ = 1, the
conductance is finite and equal to the conductance quantum
G0 = 2e2/h. For mesoscopic conductors, the Aharonov–Bohm
effect is important: the vector and scalar potentials, A and
ϕ, directly influence the observable values. In particular, the
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conductance of a doubly-connected sample depends on the
piercing magnetic flux: G(Φ) ∼ cos

(
2πΦ/Φ(N)

0

)
. Here, the

periodicity is described by the value Φ(N)
0 = hc/|e|, which differs

from the superconducting magnetic flux quantum by the factor
of 2.

(5) Modern mesoscopic physics also studies composite systems.
Such a hybrid system, on the base of a mesoscopic quantum
subsystem, can also include a microscopic subsystem, controlling
electronics, read-out resonators, and dissipative environment. We
have considered two illustrative examples: a quantum dot plus
a classical nanomechanical resonator and a flux qubit plus a
quantum electrical resonator. In the former case, one can define
the average number of electrons on the dot 〈n〉 from the resonator
frequency shift Δω. If a resonator frequency is sufficiently large,
�ωr ≥ kBT , then it should be described quantum-mechanically.
For an electric resonator, in this case, the current and the voltage
are replaced by the photon creation and annihilation operators,
and the resonator’s Hamiltonian is �ωr

(
a†a+ 1/2

)
. Then the

qubit-resonator system is described by the Jaynes–Cummings
Hamiltonian

H =
ΔE
2
σz + �ωra

†a+ g
(
a†σ + aσ†

)
. (v)

If a resonator is classical, it is described by means of the coherent
states and then the Hamiltonian of the form (v) reduces to the
Hamiltonian (ii). In the general case, the system qubit-resonator
is formally analogous to the basic system of quantum optics —
the atom-photon system, describing the interaction of matter
and field. The branch of physics studying such systems is called
circuit quantum electrodynamics.
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