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IMechanism of Photodynamic Therapy|

The porphyrins are macrocyclic compounds with unique spectroscopic and photophysical properties, a high anticancer and biological activity. They are widely
used as probes for the structure and dynamics of nucleic acids, as photosensitizers in anticancer photodynamic therapy, anti-viral and antimicrobial agents, as a

Light Photoactivedrug ~ Biological

carrier of antisense oligonucleotides for their delivery, stabilizers of G-quadruplexes.

* Reactive oxygen species / free radicals
* PDT initiates cellular apoptosis

Binding of two multicharged cationic meso-porphyrins to synthetic double-stranded polynucleotides of different base composition and secondary structure including DNA (B-
form), RNA (A-form), and DNA:-RNA hybrids (A-form) has been studied in neutral aqueous buffered solutions without and with low and near-physioplogical NaCl content in a
wide range of molar phosphate-to-dye ratios, P/D, using various spectroscopic techniques. The types of the porphyrin binding to the polynucleotide depending on P/D ratio were
determined, and the spectroscopic properties and features of the complexes formed were established.
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CONCLUSIONS

TMPyP* and TMPyP*" porphyrins bind to the polynucleotide duplexes via a three competitive binding modes:

(i) external ligand binding with or without self-stacking dominates at P/D < 4;

(ii) intercalation of the porphyrin chromophore between the nucleic bases of GC-containing ds-
deoxypolyribonucleotides (B-DNA) was observed at P/D > 30;

(iii) embedding of the porphyrin monomers or partially stacked porphyrin J-dimers into the biopolymer
groove prevails at P/D >30.
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Stabilization Possible applications of porphyrin aggregates:
of porphyrin aggregates: _ design of new photonic materials

electrostatic forces - light- harvesting systems

-1 stacking - molecular electronics

H-bonding, - solar batteries TMPyP3* discriminates between polynucleotide duplexes containing A-U (A-T) and G-C base pairs at low P/D
van der Waals forces - nonlinear optics P
hydrophobic interaction - chemotherapeutics

In contrast to TMPyP*, large bathochromic shifts of the TMPyP** Soret band at high P/D don’t depend on the

Example of natural porphyrin aggregates: polynucleotide base composition and type of helical structure.

light-harvesting complexes of the plants (200 chlorophyll molecules)
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